
Proofs of Restricted Shuffles

Full version?

Björn Terelius and Douglas Wikström

CSC KTH Stockholm, Sweden
{terelius,dog}@csc.kth.se

Abstract. A proof of a shuffle is a zero-knowledge proof that one list
of ciphertexts is a permutation and re-encryption of another list of ci-
phertexts. We call a shuffle restricted if the permutation is chosen from
a public subset of all permutations. In this paper, we introduce a general
technique for constructing proofs of shuffles which restrict the permuta-
tion to a group that is characterized by a public polynomial. This gen-
eralizes previous work by Reiter and Wang [22], and de Hoogh et al. [7].
Our approach also gives a new efficient proof of an unrestricted shuffle
that we think is conceptually simpler and allow a simpler analysis than
all previous proofs of shuffles.

Keywords: cryptographic protocols, election schemes, mix-nets, proof
of a shuffle

1 Introduction

Mix-Nets. Suppose that N senders S1, . . . , SN each wish to send a message, but
remain anonymous within the group of senders, e.g., the senders could be voters
in an election. Chaum [5] introduced the notion of a mix-net (or anonymous
channel) to solve this problem. A mix-net is a cryptographic protocol executed
by k mix-servers M1, . . . ,Mk, where k typically is much smaller than N . All
provably secure mix-nets proposed in the literature take as input a list L0 of
ciphertexts and order the mix-servers in a chain. Each mix-server Mj in the
chain takes as input the output Lj−1 of the previous mix-server in the chain.
It processes each ciphertext in Lj−1 by decrypting and/or re-encrypting it, and
then forms its output Lj as the processed ciphertexts in random order. This
operation is called a shuffle. If the ciphertexts are not decrypted during process-
ing, the mix-servers then perform a joint verifiable decryption of the final list
Lk. In some applications, the final output of the mix-net may be a list of the
ciphertexts themselves, in which case no joint decryption takes place.

In Chaum’s original construction a generic cryptosystem is used. A sender
encrypts its message mi as Epk1

(Epk2
(· · ·Epkk(mi) · · · )), where pk j is the pub-

lic key of the jth mix-server, and the mix-servers use standard decryption when
? The original publication is available at http://www.springerlink.com/content/

q84516u323h381j7/.



processing the ciphertexts. Park et al. [18] observed that if a homomorphic cryp-
tosystem is used, the increase in the size of the submitted ciphertext can be
avoided. Another, perhaps more important, consequence of using a homomor-
phic cryptosystem is that it simplifies the construction of a zero-knowledge proof
that a mix-server shuffles its input correctly, a so called proof of a shuffle. We
give a detailed account of previous work on such protocols later, but first we
conclude the discussion on mix-nets.

Although the mix-servers use the homomorphic properties of the cryptosys-
tem constructively, Pfitzmann [20] points out that a non-malleable cryptosystem
must be used in the submission phase. There are several ways to achieve this in
a provably secure way.

The security of a mix-net as a whole was first formalized by Abe and Imai [1]
in a standalone model, but they did not provide a construction that satisfied
their definition. The first definition of security in the UC framework [4] and the
first mix-net provably secure as a whole was given by Wikström [25]. Later work
[26] gave simpler and more efficient constructions.

Previous Work On Proofs of Shuffles. As far as we know the first proof of a shuffle
appears in Sako and Kilian [24] based on a previous protocol by Park et al. [18].
They give a cut-and-choose based zero-knowledge proof of a shuffle with sound-
ness 1/2. Its soundness can be increased using repetition, but this becomes
computationally expensive if the number of ciphertexts is large. The first ef-
ficient proofs of shuffles were given independently by Neff [17] and Furukawa
and Sako [11]. Both approaches were subsequently optimized and generalized, in
particular by Groth [13] and Furukawa [9] respectively. Wikström [26] presented
a proof of a shuffle based on an idea distinct from both that of Neff and that of
Furukawa and Sako.

These shuffles have all been optimized and/or generalized in various ways,
e.g., for proving re-encryption and partial decryption shuffling [10], for shuffling
hybrid ciphertexts [12], or to reduce communication complexity [15].

A different approach to mix-nets was introduced by Adida and Wikström
[3, 2]. They investigate to what extent a shuffle can be pre-computed in such
a way that the shuffling can be done in public and the online processing of
the mix-servers can be reduced to joint decryption. The construction in [2] is
conceptually appealing, but inefficient, whereas the construction in [3] is very
efficient as long as the number of senders is relatively small.

In a recent paper, Wikström [27] shows that any proof of a shuffle can be
split in an offline part and an extremely efficient online part. The offline part
is executed before, or at the same time, that senders submit their inputs and
consists of a commitment scheme for permutations and a zero-knowledge proof
of knowledge of correctly opening such a commitment. The online part is a
commitment-consistent proof of a shuffle, where the prover shows that it cor-
rectly uses the committed permutation to process the input. This drastically
reduces the online complexity of provably secure mix-nets.

Motivated by insider attacks, Reiter and Wang [22] construct a proof of a
rotation (they use the term “fragile mixing”). A rotation is a shuffle, where the

2



permutation used is restricted to a random rotation of the ciphertexts. Their idea
is to reduce the incentive of insiders to reveal any input/output-correspondence,
since this would reveal the complete permutation used, which is assumed to be
associated with a cost for the insider. Recently, a more efficient proof of a rotation
is given by de Hoogh et al. [7]. In fact, they give two protocols: a general protocol
for any homomorphic cryptosystem and rotation, and a more efficient solution
which requires some mild assumptions on the homomorphic cryptosystem used.

De Hoogh et al. lists several possible applications of proofs of rotations be-
yond the classical application of proofs of shuffles for mix-nets, e.g., secure inte-
ger comparison [21], secure function evaluation [16], and submission schemes in
electronic election schemes [23].

1.1 Our Contribution

We introduce a novel technique for restricting the class of permutations in
a proof of a shuffle of N ciphertexts by showing that π is chosen such that
F (xπ(1), . . . , xπ(N)) = F (x1, . . . , xN ) for some public polynomial F . In particu-
lar, we can prove that the permutation is contained in the automorphism group
of a (directed or undirected) graph on N elements.

A concrete general proof of rotation with efficiency comparable to that of
de Hoogh et al. [7] is trivially derived from our technique, but several other
natural concrete examples are derived just as easily, e.g. the list of ciphertexts
may be viewed as a complete binary tree and the set of permutations restricted
to isomorphisms of the tree.

Furthermore, the basic principle behind our technique can be used in a nat-
ural way to construct a novel efficient proof of an unrestricted shuffle with an
exceptionally simple analysis. Given the large and unwieldy literature on how to
construct efficient proofs of shuffles we think this conceptual simplification is of
independent interest.

1.2 Informal Description of Our Technique

We briefly describe our results and the technique we use, but before we do so we
recall the definition of Pedersen’s perfectly hiding commitment scheme [19], or
more precisely a well known generalization thereof. The commitment parameters
consist of N+1 randomly chosen generators g, g1, . . . , gN in a group Gq of prime
order q in which the discrete logarithm assumption holds. To commit to an array
(e1, . . . , eN ) ∈ ZNq , the committer forms gs

∏N
i=1 g

ei
i . Below we use the fact that

sigma proofs can be used to efficiently prove any polynomial relation between
the values e1, . . . , eN .

A New Proof of a Shuffle. We first describe how to prove that a matrix M ∈
ZN×Nq over a finite field Zq hidden in a Pedersen commitment is a permuta-
tion matrix. Let 〈·, ·〉 denote the standard inner product in ZNq and let x =
(x1, . . . , xN ) be a list of variables. If M does not have exactly one non-zero

3



element in each column and each row, then
∏N
i=1〈mi, x〉 6=

∏N
i=1 xi where mi

denotes the ith row of M . This can be tested efficiently by Schwarz-Zippel’s
lemma, which we recall states that if f(x1, . . . , xN ) is a non-zero polynomial of
degree d and we pick a point e from ZNq randomly, then the probability that
f(e) = 0 is at most d/q.

To prove that M is a permutation matrix, given that it has exactly one non-
zero element in each row and column, is of course trivial; simply show that the
elements of each row sum to one.

We observe that proving both these properties can be done efficiently using
the matrix commitment scheme used in [11, 27]. The commitment parameters
of this scheme consists of independently chosen generators g, g1, . . . , gN of a
group Gq of prime order q. To commit to a matrix M , the committer com-
putes (a1, . . . , aN ) = (gs1

∏N
i=1 g

mi,1
i , . . . , gsN

∏N
i=1 g

mi,N
i ). which allows publicly

computing a commitment of all 〈mi, e〉 as
∏N
j=1 a

ej
j = g〈s,e〉

∏N
j=1 g

〈mj ,e〉
j . The

prover may then use standard sigma proofs to show that
∏N
i=1〈mi, e〉 =

∏N
i=1 ei.

To show that the sum of each row is one it suffices to prove that
∏N
j=1 aj/

∏N
j=1 gj

is on the form gs for some s.
At this point we may invoke the commitment-consistent proof of a shuffle in

[27] to extend the above to a complete proof of an unrestricted shuffle, but we
also present a more direct construction.

Restricting the Set of Permutations. In the interest of describing the techniques,
we consider how to restrict the set of permutations to the automorphism group
of an undirected graph G . Let the graph have vertices V = {1, 2, 3, . . . , N} and
edges E ⊆ V × V and encode the graph as a polynomial FG (x1, . . . , xN ) =∑

(i,j)∈E xixj in Zq[x1, . . . , xN ]. Observe that π is contained in the automor-
phism group of G if and only if FG (xπ(1), . . . , xπ(N)) = FG (x1, . . . , xN ).

Suppose that a prover has shown that a committed matrix M ∈ ZN×Nq is
a permutation matrix corresponding to a permutation π. If π is not contained
in the automorphism group of G , it follows from Schwartz-Zippel’s lemma that
Pr
[
FG (eπ(1), . . . , eπ(N)) = FG (e1, . . . , eN )

]
is exponentially small, when e ∈ Zq

is randomly chosen by the verifier. Since Me = (eπ(1), . . . , eπ(N)) the veri-
fier can easily compute a commitment of the permuted random exponents as∏N
j=1 a

ej
j = g〈s,e〉

∏N
j=1 g

eπ(i)
i . The prover can then use a standard sigma proof

to prove the equality, for example by proving correct computation of each gate
in the arithmetic circuit for the polynomial.

Note that it is not important that the polynomial comes from a graph. Hence,
we can apply the same technique to prove that π satisfies F (eπ(1), . . . , eπ(N)) =
F (e1, . . . , eN ) for any public polynomial F .

2 Notation and Tools

We use n as the security parameter and let q denote an n-bit prime integer. The
field with q elements is denoted by Zq. Our protocols are employed in a group

4



Gq of prime order q with standard generator g, in which the discrete logarithm
problem is assumed to be hard. We use bars over vectors to distinguish them
from scalars. The angle bracket 〈a, b〉 denotes the inner product

∑N
i=1 aibi of two

vectors a, b ∈ ZNq . For a list u = (u1, . . . , uN ) ∈ GNq and a vector e ∈ ZNq we
abuse notation and write ue =

∏N
i=1 u

ei
i . Throughout, we use S ⊆ Zq to denote

the set from which the components of our random vectors are chosen.
If R1 and R2 are relations we denote by R1 ∨R2 the relation consisting of

pairs ((x1, x2), w) such that (x1, w) ∈ R1 or (x2, w) ∈ R2.

Matrix Commitments. We use a variation of Pedersen commitments [19] in a
group Gq, to commit to a matrix over Zq. The commitment parameter ck needed
to commit to an N × 1 matrix consists of a description of the group Gq with
its standard generator g and randomly chosen group elements g1, . . . , gN ∈ Gq.
An N × 1-matrix M over Zq is committed to by computing a = Cck (M, s) =
gs
∏N
i=1 g

mi
i , where s ∈ Zq is chosen randomly. We abuse notation and omit the

commitment parameter when it is clear from the context. An N×N -matrix M is
committed to column-wise, i.e., C (M, s) =

(
C
(
(mi,1)Ni=1, s1

)
, . . . , C

(
(mi,N )Ni=1, sN

))
,

where in this case s is chosen randomly in ZNq . By committing to a matrix M
column-wise we get the useful identity

C (M, s)e =
N∏

j=1

gsjej
N∏

i=1

g
mi,jej
i = g〈s,e〉

N∏

i=1

g
PN
j=1mi,jej

i = C (Me, 〈s, e〉) .

This feature plays a central role in our approach. It is easy to see that the
commitment scheme is perfectly hiding. The binding property is known to hold
under the discrete logarithm assumption in Gq, see [11] for a proof.

We construct protocols that are sound under the assumption that the binding
property of the above protocol is not violated. We define Rcom to be the relation
consisting of pairs ((ck , a), (M, s,M ′, s′)) such that a = Cck (M, s) = Cck (M ′, s′),
i.e., finding a witness corresponds to violating the binding property of the com-
mitment scheme.

Σ-proofs. Recall that a sigma proof is a three-message protocol that is both
special sound and special honest verifier zero-knowledge [6]. The first property
means that the view of the verifier can be simulated for a given challenge, and
the second property means that a witness can be computed from any pair of
accepting transcripts with identical first messages and distinct challenges. It is
well known that if a prover P∗ convinces the verifier with probability δ, there
exists an extractor running in expected time O

(
T/(δ − ε)

)
for some polynomial

T and some negligible knowledge error ε. Given a statement x, we denote the
execution of a sigma proof of knowledge of a witness w such that (x,w) ∈ R by
Σ-proof [w |(x,w) ∈ R ].

We need to prove knowledge of how to open commitments such that the
committed values satisfy a public polynomial relation, i.e. to construct a sigma
proof

Σ-proof
[
e ∈ ZNq , s ∈ Zq

∣∣a = C (e, s) ∧ f(e) = e′
]

5



given a commitment a = C (e, s), a polynomial f ∈ Zq[x1, . . . , xN ], and a value
e′ ∈ Zq. We remind the reader how this can be done.

The parties agree on an arithmetic circuit over Zq that evaluates the polyno-
mial f . The prover constructs new commitments ai to each individual value ei
hidden in a and proves that it knows how to open all commitments consistently
with a proof of the form

Σ-proof
[
e ∈ ZNq , s, s1, . . . , sN ∈ Zq

∣∣a = C (e, s) ∧ ∀Ni=1(ai = C (ei, si))
]
.

The resulting commitments a1, . . . , aN are considered the input of the arith-
metic circuit. For each summation gate, the two input commitments of the gate
are multiplied to form the output of the gate. For each product gate with in-
put commitments a1 = C (e1, s1) and a2 = C (e2, s2), the prover forms a new
commitment a3 = C (e3, s3) and proves that e3 = e1e2 with a sigma protocol

Σ-proof
[
e2, s2, s

′
3 ∈ Zq

∣∣∣a3 = gs
′
3ae21 ∧ a2 = C (e2, s2)

]
.

Finally, the output a of the entire circuit is shown to be a commitment of e′

using a protocol of the form

Σ-proof
[
s ∈ Zq

∣∣∣a/ge′1 = gs
]
.

Special soundness and special honest verifier zero-knowledge allow us to ex-
ecute all these protocols in parallel using a single challenge from the verifier,
thus forming a new sigma protocol. Together with the binding property of the
commitment scheme, this implies that the prover knows e ∈ ZNq and s ∈ Zq such
that C (e, s) = a ∧ f(e) = e′.

We remark that it is sometimes possible to do better than the general tech-
nique above. In particular when proving that a shuffle is a rotation, one has to
prove that a polynomial of the form

∑N
i=1 xiyi has a certain value. This can be

done efficiently by evaluating the polynomial as an inner product between the
vectors x and y using a linear algebra protocol from [14].

Polynomial Equivalence Testing. We use the Schwartz-Zippel lemma to analyze
the soundness of our protocols. The lemma gives an efficient, probabilistic test
of whether a polynomial is identically zero.

Lemma 1 (Schwartz-Zippel). Let f ∈ Zq[x1, . . . , xN ] be a non-zero multi-
variate polynomial of total degree d ≥ 0 over Zq, let S ⊆ Zq, and let e1, . . . , eN
be chosen randomly from S. Then

Pr [f(e1, . . . , eN ) = 0] ≤ d

|S| .

6



3 Proof of Knowledge of Permutation Matrix

We show how to prove knowledge of how to open a Pedersen commitment of a
matrix such that the matrix is a permutation matrix. Wikström [27] constructs
a commitment-consistent proof of a shuffle for any shuffle-friendly map, based on
the same permutation commitment we use here. Thus, it is trivial to construct
a proof of a shuffle by combining the protocol below with the online protocol in
[27].

Our protocol is based on a simple probabilistic test that accepts a non-
permutation matrix with negligible probability.

Theorem 1 (Permutation Matrix). Let M = (mi,j) be an N × N -matrix
over Zq and x = (x1, . . . , xN ) a vector of N independent variables. Then M is
a permutation matrix if and only if

∏N
i=1〈mi, x〉 =

∏N
i=1 xi and M1 = 1.

Proof. Consider the polynomial f(x) =
∏N
i=1〈mi, x〉 in the multivariate poly-

nomial ring R = Zq[x1, . . . , xN ], where mi is the ith row of M . It is clear that
M1 = 1 and f(x) =

∏N
i=1 xi if M is a permutation matrix. Conversely, suppose

that M1 = 1 and f(x) =
∏N
i=1 xi. If any row mi were the zero vector, then f

would be the zero polynomial. If all rows of M were non-zero, but some row mi

contained more than one non-zero element, then f would contain a factor of the
form

∑
j∈J mi,jxj with |J | ≥ 2 and mi,j 6= 0 for j ∈ J . Since R is a unique

factorization domain, this contradicts the assumption that f(x) =
∏N
i=1 xi. If

the jth column contained more than one non-zero element, then degxj f ≥ 2,
again contradicting f =

∏N
j=1 xj . Thus there is exactly one non-zero element in

each row and column and since M1 = 1, the non-zero element must equal one.

Protocol 1 (Permutation Matrix).
Common Input: Matrix commitment a ∈ GNq and commitment parameters
g, g1, . . . , gN ∈ Gq.
Private Input: Permutation matrix M ∈ ZN×Nq and randomness s ∈ ZNq such
that a = C (M, s).

1. V chooses e ∈ SN ⊆ ZNq randomly and hands e to P.
2. P defines t = 〈1, s〉 and k = 〈s, e〉. Then V outputs the result of

Σ-proof

[
t, k ∈ Zq
e′ ∈ ZNq

∣∣∣∣∣C
(
1, t
)

= a1 ∧ C (e′, k) = ae ∧
N∏

i=1

e′i =
N∏

i=1

ei

]
.

We remark that V could instead hand a random seed to P and define e as the
output of a PRG invoked on the seed. This reduces the amount of randomness
needed by the verifier, which is important in applications where the role of V is
played by a multiparty coin-flipping protocol. Since this trick is well known (cf.
[27]) and complicates the exposition, we do not detail it here.

7



Proposition 1. Protocol 1 is a perfectly complete, 4-message honest verifier
zero-knowledge proof of knowledge of the relation Rπ ∨Rcom, where the relation
Rπ consists of pairs ((ck , a), (M, s)) such that M is a permutation matrix and
a = Cck (M, s).

Under the discrete logarithm assumption, it is infeasible to find a witness
of the relation Rcom for the commitment parameter (g, g1, . . . , gN ). Thus, for a
randomly chosen commitment parameter, the proposition may be interpreted as
a proof of knowledge of the relation Rπ.

3.1 Proof of Proposition 1

The completeness and zero-knowledge properties follows from the completeness
and zero-knowledge properties of the sigma protocol and the hiding property of
the commitment scheme. What remains is to show that the protocol is a proof of
knowledge by creating an extractor. We do this by extracting witnesses (e′, t, k)
from the sigma proof for N linearly independent vectors e and use them to
recover the matrix M . Finally, we show that if M is not a permutation matrix,
then we are able to extract a witness of the commitment relation Rcom.

Three-Message Protocol. We first make a conceptual change that allows us to
view our four-round prover as a particular three-round prover of a standard
sigma-protocol. Given a prover P∗, we denote by P+ the interactive machine
that chooses e ∈ ZNq randomly itself instead of letting V choose it, and then
simulates P∗. We denote by V+ the corresponding verifier that accepts e as part
of the first message in the sigma proof.

Basic Extractor. We augment the common input with a list of linearly indepen-
dent vectors e1, . . . , el ∈ ZNq where l < N , let P⊥ be identical to P+, and define
V⊥ to be identical to V+ except that it only accepts if e is linearly independent
of these. If P∗ convinces V with probability δ, then P⊥ clearly convinces V⊥ with
probability at least δ − 1

|S| , since the probability that e is linearly dependent of
e1, . . . , el ∈ ZNq is bounded by 1

|S| .
It is well known that the sigma proof has an extractor E⊥ running P⊥ as a

black-box that given linearly independent e1, . . . , el ∈ ZNq extracts an e that is
linearly independent of the former vectors and a corresponding witness (e′, t, k)
of the sigma proof. Furthermore, E⊥ runs in expected time T/(δ − 1

|S| − ε) for
some polynomial T (n) in the security parameter n, where ε is the knowledge
error of the sigma proof. Denote by EN the extractor that computes witnesses
(el, tl, e′l, kl) = E⊥(e1, . . . , el−1, a, g, g1, . . . , gN ) for l = 1, . . . , N . Then EN runs
in expected time O

(
NT/(δ − 1

|S| − ε)
)
.

Computation of Committed Matrix. From linear independence follows that there
exists αl,j ∈ Zq such that

∑N
j=1 αl,jej is the lth standard unit vector in ZNq . We

8



conclude that:

al =
N∏

j=1

aαl,jej =
N∏

j=1

C
(
e′j , kj

)αl,j = C




N∑

j=1

αl,je
′
j ,

N∑

j=1

αl,jkj


 .

Thus, we have a = C (M, s), where
∑N
j=1 αl,je

′
j is the lth column of a matrix

M ∈ ZN×Nq and s =
(∑N

j=1 α1,jkj , . . . ,
∑N
j=1 αN,jkj

)
∈ ZNq is the random

vector used to commit.

Product Inequality Extractor. We expect that the matrix M is a permutation
matrix, but if this is not the case we must argue that we can find a non-trivial
representation of 1 in Gq. We augment the original input with a non-permutation
matrix M which we assume satisfy M1 = 1. We will see that had M1 6= 1, we
would have been able to extract a witness of Rcom. Let Pπ be identical to P+,
and define Vπ to be identical to V+ except that it only accepts if

∏N

i=1
〈mi, e〉 6=

∏N

i=1
ei . (1)

From Theorem 1 and Schwartz-Zippel’s lemma follows that the probability that
the additional requirement is not satisfied is at most N/|S|. Thus, if P∗ convinces
V with probability δ, then Pπ convinces Vπ with probability at least δ −N/|S|.
Again, a standard argument implies that there exists an extractor Eπ with black-
box access to P∗ running in time O

(
T ′/(δ− N

|S| − ε)
)
, which extracts (e, t, e′, k)

such that C (e′, k) = ae and Equation (1) is satisfied.

Main Extractor. Denote by E the extractor that proceeds as follows:

1. It invokes EN to find a matrix M and randomness s such that a = C (M, s).
If M is a permutation matrix, then E has found the witness (M, s) of relation
Rπ.

2. If M does not satisfy M1 = 1, then set e′′ = M1 and note that

e′′ 6= 1 and C
(
1, t1

)
= a1 = C

(
e′′, 〈s, 1〉

)
.

Then E has found the witness (a1, 1, t1, e′′, 〈s, 1〉) of the commitment relation
Rcom.

3. If M satisfies M1 = 1, but is not a permutation matrix, then E invokes Eπ
with the additional input M to find (e, t, e′, k) such that C (e′, k) = ae and
Equation (1) holds. Define e′′ = Me and note that

e′′ 6= e′ and C (e′, k) = ae = C (e′′, 〈s, e〉) .

The former holds, since
∏N
i=1 e

′
i =

∏N
i=1 ei 6=

∏N
i=1 e

′′
i . Then E has found the

witness (ae, e′, k, e′′, 〈s, e〉) of the commitment relation Rcom.

Note that the the expected running time of the extractor E is bounded by
O
(
(NT + T ′)/(δ − N

|S| − ε)
)

as required and that it always finds a witness of
either Rπ or Rcom. �

9



4 Proof of Knowledge of Restricted Permutation Matrix

We now detail how one can restrict π to the subset SF of permutations that sat-
isfies F (x′1, . . . , x

′
d) = F (x1, . . . , xd) for a multivariate polynomial F (x1, . . . , xd)

in Zq[x1, . . . , xd] where x′i = (xi,π(1), . . . , xi,π(N)) . We remark that d = 1 in
many instances, in which case the polynomial F will just depend on a single list
of N variables.

The protocol below is an extension of Protocol 1. Thus, to simplify the expo-
sition we denote by Pπ(a, t, e, e′, k) the predicate used to define the sigma proof
of Protocol 1, i.e. C

(
1, t
)

= a1 ∧ C (e′, k) = ae ∧∏N
i=1 e

′
i =

∏N
i=1 ei.

Protocol 2 (Restricted Permutation Matrix).
Common Input: Matrix commitment a ∈ GNq , commitment parameters g, g1, . . . , gN ∈
Gq, and a polynomial invariant F .
Private Input: Permutation matrix M ∈ ZN×Nq for a permutation π ∈ SF and
randomness s ∈ ZNq such that a = C (M, s).

1. V chooses e1, . . . , ed ∈ SN ⊆ ZNq randomly and hands e1, . . . , ed to P.
2. P defines t = 〈1, s〉 and kι = 〈s, eι〉 for ι = 1, . . . , d. Then V outputs the

result of

Σ-proof



e′1 ∈ ZNq , t, k1 ∈ Zq
e′2, . . . , e

′
d ∈ ZNq

k2, . . . , kd ∈ Zq

∣∣∣∣∣∣

Pπ(a, t, e1, e′1, k1) = 1∧d
j=1 C

(
e′j , kj

)
= aej∧

F (e′1, . . . , e
′
d) = F (e1, . . . , ed)


 .

Proposition 2. Protocol 2 is a perfectly complete 4-message honest verifier
zero-knowledge proof of knowledge of the relation RG ∨Rcom, where the relation
RG consists of pairs ((ck , a, F ), (M, s)) such that M is a permutation matrix of
π ∈ SF and a = Cck (M, s).

The proof, given in Appendix A.1, is a slight modification of the proof of Propo-
sition 1.

4.1 Encoding Graphs As Polynomials

So far, we have not discussed where the polynomials would come from. In this
section we describe how a graph can be encoded as a polynomial which is invari-
ant under automorphisms of the graph.

The edge set E of an undirected graph G with N vertices can be encoded
by the polynomial FG (x) =

∑
(i,j)∈E xixj where x is a list of N independent

variables. This encoding is generalized in the natural way to a hypergraph with
edge set E by defining FG (x) =

∑
e∈E

∏
i∈e xi. Both encodings allow multiple

edges and self-loops.
Notice that the encoding above does not preserve information about the

direction of the edges. For directed graphs, we instead introduce new variables
y1, . . . , yN and use the polynomial FG (x, y) =

∑
(i,j)∈E xiyj , where xi and yi

represent the origin and destination of a directed edge from and to vertex i

10



respectively. For example, the cyclic group CN of rotations of N elements arise
as the automorphism group of the directed cyclic graph on N vertices. This
graph can be encoded by the polynomial FG (x, y) =

∑
(i,j)∈E xiyj so we can use

a proof of a restricted shuffle to show that one list of ciphertexts is a rotation of
another.

This trick of adding more variables can be generalized to encode the order
of the vertices in the edges of a hypergraph.

Theorem 2. Let FG (x1, . . . , xd) be the encoding polynomial of a (directed or
undirected) graph or hypergraph G . A permutation π is an automorphism of G
if and only if

FG (x1, . . . , xd) = FG (x′1, . . . , x
′
d) ,

where x′i = (xi,π(1), . . . , xi,π(N)).

Proof. Recall that an automorphism is a permutation of the vertices which maps
edges to edges. Since FG is an encoding of the edge set and the edge sets are equal
if and only if the permutation is an automorphism, it follows that the encoding
polynomials are equal if and only if the permutation is an automorphism. �

5 Proofs of Restricted Shuffles

We immediately get an 8-message proof of a restricted shuffle for any shuffle-
friendly map and any homomorphic cryptosystem by combining our result with
the protocol in [27]. Here we give a 5-message proof of a restricted shuffle for
the important special case where each element in the groups of ciphertexts and
randomness have prime order q, e.g. El Gamal [8].

Recall the definition of shuffle-friendly maps from [27], where we use Cpk and
Rpk to denote the groups of ciphertexts and randomness for a public key pk .

Definition 1. A map φpk is shuffle-friendly for a public key pk ∈ PK of a
homomorphic cryptosystem if it defines a homomorphic map φpk : Cpk ×Rpk →
Cpk .

For example, the shuffle-friendly map1 of a shuffle where the ciphertexts are
re-encrypted and permuted is defined by φpk (c, r) = c · Epk (1, r). All the known
shuffles of homomorphic ciphertexts or lists of ciphertexts can be expressed sim-
ilarly (see [27] for more examples). We let PF (a, t, {eι, kι, e′ι}dι=1) denote the
predicate Pπ(a, t, e1, e′1, k1) ∧ F (e′1, . . . , e

′
d) = F (e1, . . . , ed) ∧ C(e′j , kj) = aej for

all j, i.e the predicate that was used to define the sigma proof in Protocol 2.

Protocol 3 (Proof of Restricted Shuffle).
Common Input: Commitment parameters g, g1, . . . , gN ∈ Gq, a polynomial F ,
public key pk , and ciphertexts c1, . . . , cN , c′1, . . . , c

′
N ∈ Cpk .

1 We remark that nothing prevents proving a shuffle of other objects than ciphertexts,
i.e., any groups Cpk and Rpk of prime order q, and any homomorphic map φpk defined
by some public parameter pk can be used.

11



Private Input: A permutation π ∈ SF and randomness r ∈ RNpk such that
c′i = φpk

(
cπ(i), rπ(i)

)
.

1. Let M ∈ ZN×Nq be the permutation matrix representing π. P chooses s ∈ ZNq
randomly, computes a = C (M, s), and hands a to V.

2. V chooses e1, . . . , ed ∈ SN ⊆ ZNq randomly and hands e1, . . . , ed to P.
3. P defines e′ι = Meι, t = 〈1, s〉, kι = 〈s, eι〉 for ι = 1, . . . , d, and u = 〈r, e1〉.

Then V outputs the result of

Σ-proof

[
{e′ι ∈ ZNq , kι ∈ Zq}dι=1

t ∈ Zq, u ∈ Rpk

∣∣∣∣∣
PF (a, t, {eι, kι, e′ι}dι=1) = 1∏N

i=1(c′i)
e′1,i = φpk

(∏N
i=1 c

e1,i
i , u

)
]
.

In Appendix B we give a concrete instantiation of the above sigma proof
for an unrestricted shuffle which has efficiency comparable to some of the most
efficient proofs of a shuffle in the literature. We also explain how a shuffle of a
complete binary tree can be derived with essentially no additional computational
cost.

Proposition 3. Protocol 3 is a perfectly complete 5-message honest verifier
zero-knowledge proof of knowledge of the relation Rφpk

∨Rcom, where Rφpk
con-

sists of pairs ((ck , a, F, pk , c, c′), (M, s, r)) such that M is a permutation matrix
of π ∈ SF , a = Cck (M, s) and c′i = φpk

(
cπ(i), rπ(i)

)
.

A proof of the proposition is given in Appendix A.2

6 Variations and Generalizations

There are many natural variations and generalizations of our approach. Below
we briefly mention some of these.

An alternative encoding of a graph is found by switching the roles of multipli-
cation and addition in the encoding polynomial, e.g., the encoding polynomial of
an undirected graph G could be defined as FG (x1, . . . , xN ) =

∏
(i,j)∈E(xi + xj).

Direction of edges can also be represented in an alternative way using powers
to distinguish the ends of each edge, e.g, given a directed graph G the encoding
polynomial could be defined by FG (x1, . . . , xN ) =

∑
(i,j)∈E xix

2
j . We can com-

bine these ideas, turning exponentiation into multiplication by a scalar, and get
the encoding polynomial FG (x1, . . . , xN ) =

∏
(i,j)∈E(xi + 2xj + 1) for our di-

rected graph. The additive constant 1 is needed to fix the scalar multiple of each
factor since factorization in the ring Zq[x1, . . . , xN ] is only unique up to units.
The same ideas can be extended to hypergraphs and oriented hypergraphs, i.e.
hypergraphs where the edges are ordered tuples rather than sets of vertices.

It is easy to generalize the protocol to proving that f(xπ(1), . . . , xπ(N)) =
g(x1, . . . , xN ) for an arbitrary function g. In the body of the paper, we dealt
with the important special case where f = g, but by choosing g different from f ,

12



it is possible to prove that the permutation belong to a set that is not necessarily
a group. For example, one can prove that the permutation is odd by choosing

f(x1, . . . , xN ) =
∏

i<j

(xi − xj) and g(x1, . . . , xN ) = −
∏

i<j

(xi − xj) .

However, it will generally not be possible to create a chain of mix-servers unless
the permutation is restricted to a set that is closed under composition.

For utmost generality, one can easily modify the protocol to prove that
f(x1, . . . , xN , xπ(1), . . . , xπ(N)) = 0 or even f(x1, . . . , xN , xπ(1), . . . , xπ(N)) 6= 0
for any function f that can be computed verifiably. Given a commitment y =
C (b, s), the prover can demonstrate that b 6= 0 by computing t = 1/b, z = gs

′
yt

and running a sigma proof of the form

Σ-proof
[
r, t, s′

∣∣∣z = gs
′
yt ∧ z/g1 = gr

]
.

As an example, one can prove that a permutation is a derangement, i.e. that
π(i) 6= i for all i by verifying

∏N
i=1

(
xπ(i) − xi

)
6= 0.

In our exposition we assume for clarity that q is prime, but this is not es-
sential. Composite q can be used, but this requires a more delicate analysis to
handle the possibility of non-invertible elements and zero-divisors in the ring Zq,
e.g., the random vectors are no longer vectors, but elements in a module. Even
the case where q is unknown can be handled using an approach similar to that
of [27].

7 Acknowledgements

We thank Johan H̊astad for helpful discussions.

References

1. M. Abe and H. Imai. Flaws in some robust optimistic mix-nets. In Australasian
Conference on Information Security and Privacy – ACISP 2003, volume 2727 of
Lecture Notes in Computer Science, pages 39–50. Springer Verlag, 2003.

2. B. Adida and D. Wikström. How to shuffle in public. In 4th Theory of Cryptography
Conference (TCC), volume 4392 of Lecture Notes in Computer Science, pages 555–
574. Springer Verlag, 2007.

3. B. Adida and D. Wikström. Offline/online mixing. In 34th International Collo-
quium on Automata, Languages and Programming (ICALP), volume 4596 of Lec-
ture Notes in Computer Science, pages 484–495. Springer Verlag, 2007.

4. R. Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In 42nd IEEE Symposium on Foundations of Computer Science (FOCS),
pages 136–145. IEEE Computer Society Press, 2001. (Full version at Cryptology
ePrint Archive, Report 2000/067, http://eprint.iacr.org, October, 2001.).

5. D. Chaum. Untraceable electronic mail, return addresses and digital pseudo-nyms.
Communications of the ACM, 24(2):84–88, 1981.

13



6. R. Cramer, R. Gennaro, and B. Schoenmakers. A secure and optimally efficient
multi-authority election scheme. In Advances in Cryptology – Eurocrypt ’97, vol-
ume 1233 of Lecture Notes in Computer Science, pages 103–118. Springer Verlag,
1997.

7. S. de Hoogh, B. Schoenmakers, B. Skoric, and J. Villegas. Verifiable rotation of
homomorphic encryptions. In Public Key Cryptography – PKC 2009, volume 5443
of Lecture Notes in Computer Science, pages 393–410. Springer Verlag, 2009.

8. T. El Gamal. A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Transactions on Information Theory, 31(4):469–472, 1985.

9. J. Furukawa. Efficient and verifiable shuffling and shuffle-decryption. IEICE Trans-
actions, 88-A(1):172–188, 2005.

10. J. Furukawa, H. Miyauchi, K. Mori, S. Obana, and K. Sako. An implementation
of a universally verifiable electronic voting scheme based on shuffling. In Financial
Cryptography 2002, volume 2357 of Lecture Notes in Computer Science, pages 16–
30. Springer Verlag, 2002.

11. J. Furukawa and K. Sako. An efficient scheme for proving a shuffle. In Advances
in Cryptology – Crypto 2001, volume 2139 of Lecture Notes in Computer Science,
pages 368–387. Springer Verlag, 2001.

12. J. Furukawa and K. Sako. An efficient publicly verifiable mix-net for long inputs. In
Financial Cryptography 2006, volume 4107 of Lecture Notes in Computer Science,
pages 111–125. Springer Verlag, 2006.

13. J. Groth. A verifiable secret shuffle of homomorphic encryptions. In Public Key
Cryptography – PKC 2003, volume 2567 of Lecture Notes in Computer Science,
pages 145–160. Springer Verlag, 2003.

14. J. Groth. Linear algebra with sub-linear zero-knowledge arguments. In Advances
in Cryptology – Crypto2009, volume 5677 of Lecture Notes in Computer Science,
pages 192–208. Springer Verlag, 2009.

15. J. Groth and Y. Ishai. Sub-linear zero-knowledge argument for correctness of a
shuffle. In Advances in Cryptology – Eurocrypt 2008, volume 4965 of Lecture Notes
in Computer Science, pages 379–396. Springer Verlag, 2008.

16. M. Jakobsson and A. Juels. Mix and match: Secure function evaluation via cipher-
texts. In Advances in Cryptology – Asiacrypt 2000, volume 1976 of Lecture Notes
in Computer Science, pages 162–177. Springer Verlag, 2000.

17. A. Neff. A verifiable secret shuffle and its application to e-voting. In 8th ACM
Conference on Computer and Communications Security (CCS), pages 116–125.
ACM Press, 2001.

18. C. Park, K. Itoh, and K. Kurosawa. Efficient anonymous channel and all/nothing
election scheme. In Advances in Cryptology – Eurocrypt ’93, volume 765 of Lecture
Notes in Computer Science, pages 248–259. Springer Verlag, 1994.

19. T. P. Pedersen. Non-interactive and information-theoretic secure verifiable secret
sharing. In Advances in Cryptology – Crypto ’91, volume 576 of Lecture Notes in
Computer Science, pages 129–140. Springer Verlag, 1992.

20. B. Pfitzmann. Breaking an efficient anonymous channel. In Advances in Cryptology
– Eurocrypt ’94, volume 950 of Lecture Notes in Computer Science, pages 332–340.
Springer Verlag, 1995.

21. T. I. Reistad and T. Toft. Secret sharing comparison by transformation and ro-
tation. In Information Theoretic Security (ICITS 2007), volume 4883 of Lecture
Notes in Computer Science, pages 169–180. Springer Verlag, 2009.

22. M. K. Reiter and X. Wang. Fragile mixing. In 11th ACM Conference on Computer
and Communications Security (CCS), pages 227–235. ACM Press, 2004.

14



23. P. Y. A. Ryan and S. A. Schneider. Prêt à voter with re-encryption mixes. In
11th European Symposium on Research in Computer Security (ESORICS), volume
4189 of Lecture Notes in Computer Science, pages 313–326. Springer Verlag, 2006.

24. K. Sako and J. Killian. Reciept-free mix-type voting scheme. In Advances in
Cryptology – Eurocrypt ’95, volume 921 of Lecture Notes in Computer Science,
pages 393–403. Springer Verlag, 1995.

25. D. Wikström. A universally composable mix-net. In 1st Theory of Cryptography
Conference (TCC), volume 2951 of Lecture Notes in Computer Science, pages 315–
335. Springer Verlag, 2004.

26. D. Wikström. A sender verifiable mix-net and a new proof of a shuffle. In Advances
in Cryptology – Asiacrypt 2005, volume 3788 of Lecture Notes in Computer Science,
pages 273–292. Springer Verlag, 2005.

27. D. Wikström. A commitment-consistent proof of a shuffle. In ACISP, volume 5594
of Lecture Notes in Computer Science, pages 407–421. Springer Verlag, 2009.

A Omitted Proofs

A.1 Proof of Proposition 2

The completeness and zero-knowledge properties follows immediately from the
completeness and zero-knowledge property of the sigma proof and the hiding
property of the commitment scheme.

The soundness and proof of knowledge properties follows by modifications of
the proof of Proposition 1. We first replace the basic extractor. Then we consider
an additional extractor for finding polynomial inequalities in the case where the
extracted matrix M does not belong to the required set of permutation matrices.
Finally, we add an additional step to the original main extractor.

Three-Message Protocol. We redefine the prover P+ such that it chooses all of
e1, . . . , ed ∈ SN (instead of letting the verifier choose them), and redefine V+ to
accept e1, . . . , ed as part of the first message from the prover. We may then view
the prover Pπ and verifier Vπ from the proof of Proposition 1 as modifications to
the new P+ and V+ in the obvious way (where they use the components of the
protocol already present in Protocol 1), and correspondingly for the extractor
Eπ which has the same properties as the original one (possibly by changing the
polynomial T (n) and the negligible error ε).

Basic Extractor. We augment the original input with several lists of linearly
independent vectors eι,1, . . . , eι,l ∈ ZNq , for ι = 1, . . . , d and l < N . Then we
redefine V⊥ to only accept if the ιth random vector eι chosen in an execution
of the protocol is linearly independent of the vectors eι,1, . . . , eι,l. We argue
similarly as in the proof of Proposition 1. If P∗ convinces V with probability δ,
then by the union bound P⊥ convinces V⊥ with probability at least δ− d+1

|S| , and
there exists an extractor E⊥ that given the lists of linearly independent vectors
extracts:

1. vectors e1, . . . , ed such that every eι is linearly independent of eι,1, . . . , eι,l

15



2. a witness (t, e′1, k1) and (e′ι, kι) for ι = 1, . . . , d of the corresponding sigma
proof.

Moreover, the extractor E⊥ runs in expected time T/(δ− d+1
|S| −ε) for a polynomial

T (n). Then we redefine EN such that it computes

({eι,l}dι=1, tl, {e′ι,l, kι,l}dι=1) = E⊥({eι,1, . . . , eι,l−1}dι=1, a, g, g1, . . . , gN )

for l = 1, . . . , N . Clearly, EN runs in expected time O
(
NT/(δ − d+1

|S| − ε)
)
.

Polynomial Inequality Extractor. Suppose that M ∈ ZN×Nq is a permutation
matrix, but the permutation does not leave F invariant. We augment the com-
mon input with a permutation matrix M with this property, let PF be identical
to P+, and define a new verifier VF to be identical to V+ except that it only
accepts if

F (Me1, . . . ,Med) 6= F (e1, . . . , ed) . (2)

From Schwartz-Zippel’s lemma, we know that the probability that the additional
requirement is not satisfied is at most ∆F = deg(F )/|S|. Thus, if P∗ convinces
V with probability δ, then PF convinces VF with probability δ−∆F . Again, this
implies that there exists an extractor EF running in expected time T ′′/(δ−∆F−ε)
for some polynomial T ′′ that outputs a witness ({eι}dι=1, t, {e′ι, kι}dι=1) satisfying
Equation (2).

Main Extractor. The new main extractor E is syntactically defined as the original
main extractor in the proof of Proposition 1, except that it invokes the redefined
extractors E⊥ and Eπ described above, and the following step is added.

4. If M is a permutation matrix, but the permutation does not leave F invari-
ant, then E invokes EF with the additional inputM to find ({eι}dι=1, t, {e′ι, kι}dι=1)
satisfying Equation (2). Define e′′ι = Me′ι and note that there exist a 1 ≤
ι ≤ d such that

e′′ι 6= e′ι and C (e′ι, kι) = aeι = C (e′′ι , 〈s, e′ι〉) .

The former holds, since
∏N
i=1 e

′
ι,i =

∏N
i=1 eι,i 6=

∏N
i=1 e

′′
ι,i. Then E has found

the witness (aeι , e′ι, kι, e
′′
ι , 〈s, e′ι〉) of the commitment relation Rcom.

Note that the extractor always finds a witness of either RG or Rcom and that the
expected running time of E is bounded by O

(
(NT +T ′+T ′′)/(δ−∆F − N

|S| −ε)
)

as required.

A.2 Proof of Proposition 3

The completeness follows from the completeness of the sigma proof. The zero-
knowledge property follows from the perfect hiding property of the commitment

16



scheme and from the zero-knowledge property of the sigma proof. We consider
a prover P∗ which convinces V with probability δ. First note that Step 2-3 is an
execution of Protocol 2, except that there is an additional requirement involving
the ciphertexts. It turns out that, when a witness of Rπ is found, all of the
extracted values used to compute the matrix M are useful and not only the
matrix M and the randomness s. To simplify notation in the next section we
write w = e1 and w′ = e′1. Thus, we assume that there is an extended extractor
Eext with some negligible knowledge error ε that outputs linearly independent
vectors w1, . . . , wN in ZNq along with the matrix M and the randomness s. We
may also assume that w′j = Mwj , i.e., that w′j,i = wj,π(i), where M is the
permutation matrix of π. Let Text be a polynomial such that Text

δ(a)−ε bounds
the expected running time of Eext, when the prover convinces the verifier with
probability δ(a) depending on the commitment a. Let δ be the probability that
the prover P∗ convinces V in the full protocol.

Extractor. The extractor E of Protocol 3 proceeds as follows:

1. Sample at most 2
δ interactions between P∗ and V and halt if no accepting

transcript is found. Otherwise let a denote the commitment used in Step 1
of the accepting interaction.

2. Fix the commitment a and run the extractor Eext for at most 4Text
δ−2ε time

steps, or until it outputs:
(a) a permutation matrix M leaving the polynomial F invariant,
(b) randomness s such that a = C (M, s), and
(c) linearly independent vectors w1, . . . , wN in ZNq such that for j = 1, . . . , N

∏N

i=1
(c′i)

wj,π(i) = φpk

(∏N

i=1
c
wj,i
i , uj

)
.

If the extractor Eext succeeds, we know from linear independence that there
exist αl,j such that

∑N
j=1 αl,jwj is the lth standard unit vector in ZNq . We

conclude that

c′π−1(l) =
N∏

j=1

(
N∏

i=1

(c′i)
wj,π(i)

)αl,j
=

N∏

j=1

(
φpk

(
N∏

i=1

c
wj,i
i , uj

))αl,j

= φpk




N∏

j=1

(
N∏

i=1

c
wj,i
i

)αl,j
,

N∑

j=1

αl,juj


 = φpk


cl,

N∑

j=1

αl,juj


 ,

where we use the homomorphic property of φpk in the third equality. Thus, the
extractor has found a permutation π satisfying the required polynomial identity,
and randomness rl =

∑N
j=1 αl,juj such that c′l = φpk

(
cπ(l), rπ(l)

)
.

Analysis of the extractor. It is clear that the extractor runs in time

2Tprot
δ

+
4Text
δ − 2ε

≤ 2Tprot + 4Text
δ − 2ε

17



where Tprot is the time it takes to run the protocol once.
We must now investigate the probability with which the extractor succeeds.

Observe that the expected number of interactions to find the first accepting
transcript is δ−1. By Markov’s inequality, one will be found with probability 1

2
in 2

δ interactions.
Let Accept denote the event that the verifier accepts, and define a set S of

good first messages by

S = {a : Pr [Accept |a ] ≥ δ/2}

Note that Pr [a ∈ S |Accept ] ≥ 1
2 , so if an accepting transcript is found in Step

1 we get a good a with probability at least 1
2 . If we obtain a good first message,

then the extractor Eext will find the desired accepting inputs in expected time
at most Text

δ/2−ε , so by Markov’s inequality, it succeeds with probability 1
2 in time

4Text
δ−2ε . To summarize, the extractor runs in time 2Tprot+4Text

δ−2ε and extracts the
desired quantities with probability 1

8 . This can be converted to an extractor that
finds the permutation and randomness in expected time

16Tprot + 32Text
δ − 2ε

by repeating until it succeeds.

B A Concrete Proof of a Shuffle

To make our proof of a shuffle concrete and allow us to estimate its complexity
we instantiate the Sigma-proof we need. We first consider the Sigma-proof we
need in Protocol 1.

B.1 Concrete Proof of Knowledge of Permutation Matrix

For concreteness we let nv, nc, and nr denote the bitsize of components in ran-
dom vectors, challenges, and random paddings respectively. For these additional
security parameters 2−nv , 2−nc , and 2−nr must be negligible in n. In practice, nv
and nc govern the soundness of the protocols below and nr govern the statistical
zero-knowledge property. Given are a = C (M, s), s ∈ ZNq , and e ∈ SN and we
instantiate the needed sigma-proof below.

18



Protocol 4. An instantiation of the following sigma-proof.

Σ-proof

[
e′ ∈ ZNq
t, k, z ∈ Zq

∣∣∣∣∣

(
C
(
1, t
)

= a1 ∧ C (e′, k) = ae ∧∏N
i=1 e

′
i =

∏N
i=1 ei

)

∨g1 = gz

]

1. P chooses r, s ∈ ZNq , sα ∈ Zq, s′ ∈ [0, 2nv+nr+nc − 1]N , sγ , sδ ∈ Zq and
hands the following values to V, where we set B0 = g1,

Bi = griB
e′i
i−1 , α = gsα

N∏

i=1

g
s′i
i , βi = gsiB

s′i
i−1 , γ = gsγ , δ = gsδ .

2. V chooses a challenge c ∈ [0, 2nc − 1] at random and sends it to P.
3. P responds with

dα = ck + sα mod q , d′i = ce′i + s′i , di = cri + si mod q ,

dγ = c〈s, 1〉+ sγ mod q , and dδ = ce′′N + sδ mod q ,

where e′′1 = s1 and e′′i = e′′i−1e
′
i + si mod q for i > 1.

4. V accepts if and only if

(ae)cα = gdα
N∏

i=1

g
d′i
i , Bci βi = gdiB

d′i
i−1 , (3)

(
a1

/ N∏

i=1

gi

)c
γ = gdγ , and

(
BN

/
g

QN
i=1 ei

1

)c
δ = gdδ . (4)

Proposition 4. Protocol 4 is perfectly complete, special sound, and statistical
special zero-knowledge.

Proof. The proof is standard. The special zero-knowledge simulator chooses
B1, . . . , BN ∈ Gq, and d, d

′ ∈ ZNq , and dα, dγ , dδ ∈ Zq randomly and define
α, βi, γ, and δ by Equation (3) and (4). The statistical distance between a sim-
ulated transcript and a real transcript is O(2−nr ), which is small if nr is chosen
appropriately. From two accepting transcripts

(
(Bi)Ni=1, α, (βi)

N
i=1, γ, δ, c, d, d

′
, dα, dγ , dδ

)
and

(
(Bi)Ni=1, α, (βi)

N
i=1, γ, δ, c

∗, d
∗
, d
′∗
, d∗α, d

∗
γ , d
∗
δ

)
and

with c 6= c∗ we define e′ = (d
′ − d

′∗
)/(c − c∗), r = (d − d

∗
)/(c − c∗), k =

(dα − d∗α)/(c− c∗), t = (dγ − d∗γ)/(c− c∗), kδ = (dδ − d∗δ)/(c− c∗), and conclude
that

C (e′, k) = ae , Bi = griB
e′i
i−1 , C

(
1, t
)

= a1 , and BN = gkδg
QN
i=1 ei

1 .

By solving the recursive equation involving Bi, we conclude that either
∏N
i=1 e

′
i =∏N

i=1 ei, or we have found the discrete logarithm z such that g1 = gz.

19



The prover computes roughly 2N exponentiations with exponents in Zq, but
they all use the same basis element g. Fixed base exponentiation techniques can
be applied directly to reduce this by a fairly large constant factor compared to
square-and-multiply exponentiation, say a factor 1/8, provided that N > 1000.
The prover also computes N exponentiations with exponents of bitsize nv and
2N exponentiations with bitsize nv + nc + nr respectively. This corresponds to
3nv+2nc+2nr

n exponentiations with exponents in Zq. If we use nv = nc = nr = 80
and n = 1024, this corresponds to computing roughly N/2 exponentiations. This
can be further reduced at least by a factor of 3 using simultaneous exponentia-
tion. Thus, we estimate the complexity of the prover to correspond to at most
1
6N square-and-multiply exponentiations for practical parameters. The complex-
ity of the verifier is estimated to 1

6N as well, by noting that, provided nc = nv,
we may match exponentiations by s′i, si, and e′i performed by the prover by
exponentiations by d′i, di, and c performed by the verifier.

B.2 Concrete Proof of a Shuffle

To turn Protocol 4 into a complete proof of a shuffle, we can apply the protocol
of [27] directly or interlace it with Protocol 4 to avoid increasing the number of
rounds. From special statistical zero-knowledge, it is easy to see that we may also
reuse the random vector and challenge. The complexity of the prover and verifier
in the protocol in [27] amounts to N exponentiations by (nv +nr +nc)-bit expo-
nents in the group Gq and Mpk respectively. Thus, the complexity depends on
the underlying cryptosystem. For El Gamal over Gq, with the parameters above,
and using simultaneous exponentiation, this amounts to roughly 1

4N square-and-
multiply exponentiations. Thus, the total complexity with these parameters is
roughly 2

5N square-and-multiply exponentiations, which is almost as fast as the
protocol in [27] which requires precomputation. Below we sketch the protocol
given in [27]. Let {h1, . . . , ht} be a generator set of the ciphertext space Cpk ,
e.g., for El Gamal over Gq, this would be {(1, g), (g, 1)}. The prover hands

C0 = C (l1, . . . , lt, l) and C1 =
t∏

j=1

h
lj
j

N∏

i=1

(c′i)
e′i

and proves that these were formed correctly using e′. This is done using a stan-
dard proof of knowledge of multi-logarithms. Then it also proves that it knows
some u such that C1 =

∏t
j=1 h

lj
j φpk

(∏N
i=1 c

e1,i
i , u

)
. From this we may conclude

that
∏N
i=1(c′i)

e′1,i = φpk

(∏N
i=1 c

e1,i
i , u

)
, or a witness of the relation Rcom can be

extracted.

B.3 Proof of Tree Shuffle Without Additional Cost

Note that Bi is a commitment of
∏i
j=1 e

′
j in Protocol 4. In other words, the roles

of the Bi’s is to aggregate the product
∏N
j=1 e

′
j . When proving restricted shuffles

20



it may be advantageous to aggregate the product in a different order, since the
partial results can then be reused. Consider the following. Let T = (V,ET ) be
a (rooted) complete binary tree on N = 2N0 leaves L = {1, . . . , N} and let S
denote the the set of permutations of the leaves L that are consistent with some
automorphism of T . Suppose that we wish to shuffle a list of N ciphertexts using
a permutation from S. One way to do this is to consider the alternative encoding
of S as the automorphism group of a hypergraph G = (L,EG) with

EG = {e ⊆ 2L : e = L(T ′) for a complete subtree T ′ of T} ,

where L(T ′) denotes the set of leaves of T ′. Recall that the encoding polynomial
of G is then simply FG (x) =

∑
f∈EG mf (x), where we write mf (x) =

∏
i∈f xi

for the monomial encoding of an edge f . Suppose now that we aggregate the
product

∏N
i=1 e

′
i in a tree-like fashion by forming commitments of mf (e) for all

mf with degmf = 2i for i = 1, . . . , N0. Then we have commitments of mf (e)
for all monomials of FG (x) for free, and we can easily compute a commitment of
FG (e) by simply multiplying these commitments. Thus, proving such a shuffle
can be done essentially without additional cost.

21


