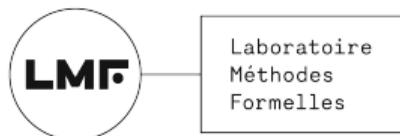


Proving e-voting mixnets in the CCSA model: zero-knowledge proofs and rewinding

Margot Catinaud * Caroline Fontaine * Guillaume Scerri *

*Université Paris-Saclay, CNRS, ENS Paris-Saclay,
Laboratoire Méthodes Formelles (LMF)

GT MFS, April 2024



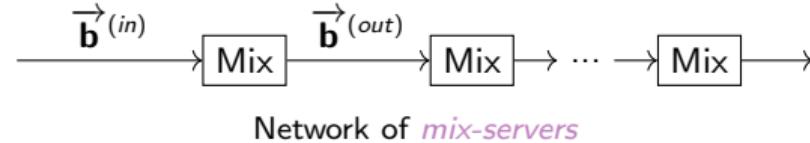
Electronic voting mixnets

Two kinds of tally

Homomorphic encryption

Mix networks + Decrypt

Principle



Algorithm : Mixing

```
let mixing  $\vec{b}^{(in)} =$ 
   $\pi \xleftarrow{\$} \mathfrak{S}_N$  ;
  [do some stuff...] ;
return  $\vec{b}^{(out)}$ 
```

Mix-server in a nutshell

Terelius & Wikström mixnet ([TW10], [Wik11])

Security properties for one mix-server

Permutation secrecy

Verifiability

Key ingredients needed

Commitment scheme

Zero-knowledge proofs

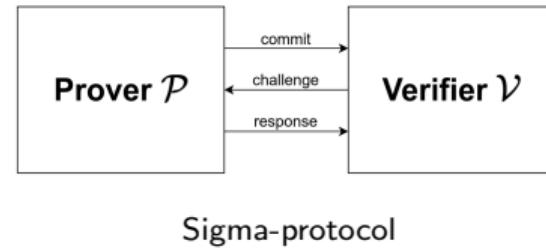
Zero-knowledge proofs - case of Σ -protocols

Principle

Two agents: a prover \mathcal{P} and a verifier \mathcal{V}

Goal: prove that $(\underbrace{x}_{\text{statement}}, \underbrace{w}_{\text{witness}}) \in \mathcal{R}$

Interactive proof: proof transcript

$$(\underbrace{p_0}_{\text{commit}}, \underbrace{c}_{\text{challenge}}, \underbrace{p_1}_{\text{response}})$$


Main security properties

Special-Soundness

Zero-knowledge

Verifiability game

Cryptographic game — Mix-server verifiability.

Context

Adversarial mix-server

Honest verifier \mathcal{V}

Game statement

*Hypothesis*Proofs accepted by \mathcal{V} *Conclusion*

$$\text{Dec} \xrightarrow{\text{ }} \mathbf{b}^{(out)} = \text{Dec} \left(M_\pi \cdot \xrightarrow{\text{ }} \mathbf{b}^{(in)} \right)$$

Output plaintexts is a permutation of input

Computationally Complete Symbolic Attacker (CCSA) model

The SQUIRREL prover ([Bae+21])

First introduce by Bana & Comon ([BC14]), high-order logic by Baelde, Koutsos & Lallemand ([BKL23])

Main predicates: \sim (indistinguishability) and $[\cdot]$ (globally (non-)negligible events)

Interpretation of terms for a *fixed* random tape ρ : $[t]_\rho$

In our case: work on trace properties

Formulas ϕ are terms of type **bool**.

Two kinds of logic

Global logic

$[\phi] \xrightarrow{} [\psi]$ means:

If $\Pr_{\rho \in \Omega}([\![\phi]\!]_{\rho})$ is overwhelming

then $\Pr_{\rho \in \Omega}([\psi]_\rho)$ is overwhelming.

Local logic

$[\phi \rightarrow \psi]$ means:

$\Pr_{\rho \in \Omega} ([\phi \rightarrow \psi]_{\rho})$ is overwhelming.

Sketch of proof

Extraction of sealed matrix M

Witness extractor

Collect enough witness

Reconstruction of sealed informations

 Rewinding

 Rewinding

 Algebra

 Rewinding

 Cryptography

 Algebra

 Algebra

Is M a permutation matrix?

Witness extractor

Witness consistency

Generalization of equations on witness to equations on matrix

Characterisation of permutation matrix

$$\vec{b}^{(out)} = \text{ReRand}(M \cdot \vec{b}^{(in)})?$$

Another witness extractor

Consistency between the witness and the extracted matrix

Generalization to the whole set of ciphertexts in/out pairs

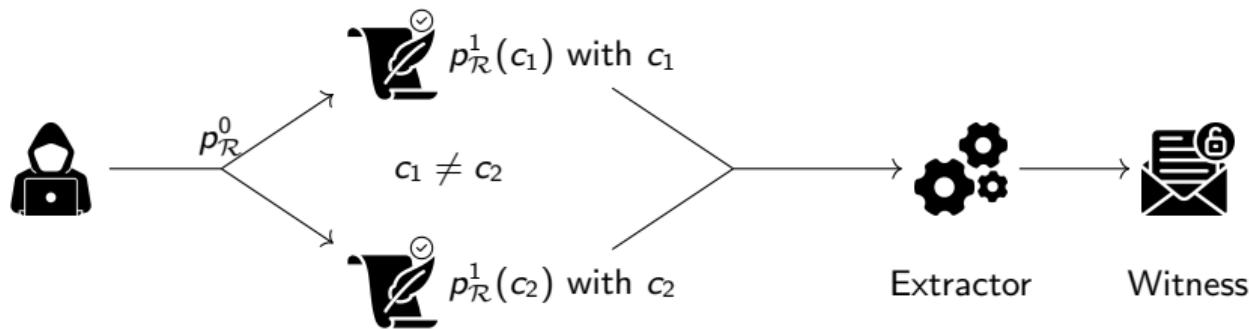
 Rewinding

 Cryptography

 Algebra

Special-Soundness

Statement



Axiomatization in the CCSA logic

L.Σ-P:SPSOUND

$\exists \text{zkp-extract}_{\mathcal{R}} \text{ [ptime].} [\bigwedge_{i \in \{1,2\}} \text{zkp-verif}_{\mathcal{R}}(x, \underbrace{(\text{p}_{\mathcal{R}}^0, c_i, p_{\mathcal{R}}^{1,(i)})}_{\text{p}_{\mathcal{R}}^{(i)}}) \wedge c_1 \neq c_2 \rightarrow (x, \text{zkp-extract}_{\mathcal{R}}(x, \text{p}_{\mathcal{R}}^{(1)}, \text{p}_{\mathcal{R}}^{(2)})) \in \mathcal{R}]$

Witness extraction algorithm

Algorithm : Witness extraction

Input: Adversary \mathcal{A} producing sometimes a proof accepted by the verifier \mathcal{V} .

Run $p_0 \leftarrow \mathcal{A}(x)$;

repeat

 Choose $c_1 \leftarrow \mathcal{V}(x, p_0)$ then run $p_1 \leftarrow \mathcal{A}(x, p_0, c_1)$;

 Rewind \mathcal{A} ;

 Choose $c_2 \leftarrow \mathcal{V}(x, p_0)$ then run $p_2 \leftarrow \mathcal{A}(x, p_0, c_2)$;

 Check if $\top \leftarrow \mathcal{V}(x, p_1)$ and $\top \leftarrow \mathcal{V}(x, p_2)$;

until p_1 and p_2 are accepted by \mathcal{V} and $c_1 \neq c_2$;

return $w \leftarrow \text{zkp-extract}_{\mathcal{R}}(x, p_1, p_2)$;

where $p_i \stackrel{\text{def}}{=} (p_0, c_i, p_i)$ for $i = 1, 2$.

First attempt

A first local hunch...

$$\frac{\text{L.EXTRACT} \quad \mathbf{zkp-verif}_{\mathcal{R}}(x, \mathbf{p}_{\mathcal{R}}(r_1))}{(x, \mathbf{zkp-extract}_{\mathcal{R}}(x, \mathbf{p}_{\mathcal{R}}(r_1), \mathbf{p}_{\mathcal{R}}(r_2))) \in \mathcal{R}}$$

where $\mathbf{p}_{\mathcal{R}} \stackrel{\text{def}}{=} \lambda r. (p_{\mathcal{R}}^{(0)}, r, p_{\mathcal{R}}^{(1)}(r))$ for some *fixed* $p_{\mathcal{R}}^{(0)}$.

First attempt

A first local hunch...

$$\frac{\text{L.EXTRACT} \quad \mathbf{zkp-verif}_{\mathcal{R}}(x, \mathbf{p}_{\mathcal{R}}(r_1))}{(x, \mathbf{zkp-extract}_{\mathcal{R}}(x, \mathbf{p}_{\mathcal{R}}(r_1), \mathbf{p}_{\mathcal{R}}(r_2))) \in \mathcal{R}}$$

where $\mathbf{p}_{\mathcal{R}} \stackrel{\text{def}}{=} \lambda r. (p_{\mathcal{R}}^{(0)}, r, p_{\mathcal{R}}^{(1)}(r))$ for some *fixed* $p_{\mathcal{R}}^{(0)}$.

Problem

$\mathbf{zkp-verif}_{\mathcal{R}}(x, \mathbf{p}_{\mathcal{R}}(r_1)) \not\Rightarrow \mathbf{zkp-verif}_{\mathcal{R}}(x, \mathbf{p}_{\mathcal{R}}(r_2))$ for $r_1 \neq r_2$:

First attempt

A first local hunch...

L.EXTRACT

$$\frac{\mathbf{zkp-verif}_{\mathcal{R}}(x, \mathbf{p}_{\mathcal{R}}(r_1))}{(x, \mathbf{zkp-extract}_{\mathcal{R}}(x, \mathbf{p}_{\mathcal{R}}(\mathbf{resample}(r_1)), \mathbf{p}_{\mathcal{R}}(\mathbf{resample}(r_1)))) \in \mathcal{R}}$$

where $\mathbf{p}_{\mathcal{R}} \stackrel{\text{def}}{=} \lambda r. (p_{\mathcal{R}}^{(0)}, r, p_{\mathcal{R}}^{(1)}(r))$ for some *fixed* $p_{\mathcal{R}}^{(0)}$.

Problem

$\mathbf{zkp-verif}_{\mathcal{R}}(x, \mathbf{p}_{\mathcal{R}}(r_1)) \not\Rightarrow \mathbf{zkp-verif}_{\mathcal{R}}(x, \mathbf{p}_{\mathcal{R}}(r_2))$ for $r_1 \neq r_2$:

First attempt

A first local hunch...

L.EXTRACT

$$\frac{\mathbf{zkp-verif}_{\mathcal{R}}(x, \mathbf{p}_{\mathcal{R}}(r_1))}{(x, \mathbf{zkp-extract}_{\mathcal{R}}(x, \mathbf{p}_{\mathcal{R}}(\mathbf{resample}(r_1)), \mathbf{p}_{\mathcal{R}}(\mathbf{resample}(r_1)))) \in \mathcal{R}}$$

where $\mathbf{p}_{\mathcal{R}} \stackrel{\text{def}}{=} \lambda r. (p_{\mathcal{R}}^{(0)}, r, p_{\mathcal{R}}^{(1)}(r))$ for some *fixed* $p_{\mathcal{R}}^{(0)}$.

Problem

$\mathbf{zkp-verif}_{\mathcal{R}}(x, \mathbf{p}_{\mathcal{R}}(r_1)) \not\Rightarrow \mathbf{zkp-verif}_{\mathcal{R}}(x, \mathbf{p}_{\mathcal{R}}(r_2))$ for $r_1 \neq r_2$:

If ϕ is locally true, it says nothing about the distribution of $[\llbracket \phi \rrbracket_{\rho} \mid \rho \in \Omega]$.

Thus, we need to characterize events which holds with non-negligible probability.

An addition to the CCSA logic: ${}_e[-]$ predicate **${}_e[-]$ predicate**

For a formula $\phi : \mathbf{bool}$ and a non-negligible term $e : \mathbf{real}$ [non-negl], we define:

$${}_e[\phi] \iff \Pr_{\rho \in \Omega} (\llbracket \phi \rrbracket_\rho) \geq e$$

We want the following equivalence:

$$\tilde{\neg}[\neg \phi] \tilde{\leftrightarrow} \tilde{\exists} e : \mathbf{real} \text{ [non-negl]. } {}_e[\phi]$$

and we want

$${}_e[\phi(r)] \tilde{\rightarrow} [\phi(\mathbf{resample}(r))]$$

$e : \mathbf{real}$ [non-negl] means that $\eta \mapsto \llbracket e \rrbracket^\eta$ is non-negligible,

i.e. there exists a polynomial P such that: $\exists \eta_0 \in \mathbb{N}^*, \forall \eta > \eta_0, \llbracket e \rrbracket^\eta \geq \frac{1}{P(\eta)}$.

Are we done yet?

G.EXTRACT

$$\frac{e[\mathbf{zkp-verif}_{\mathcal{R}}(x, \mathbf{p}_{\mathcal{R}}(r))]}{[(x, \mathbf{zkp-extract}_{\mathcal{R}}(x, \mathbf{p}_{\mathcal{R}}(\mathbf{resample}(r)), \mathbf{p}_{\mathcal{R}}(\mathbf{resample}(r)))) \in \mathcal{R}]}$$

where $\mathbf{p}_{\mathcal{R}} \stackrel{\text{def}}{=} \lambda r. (p_{\mathcal{R}}^{(0)}, r, p_{\mathcal{R}}^{(1)}(r))$ for some *fixed* $p_{\mathcal{R}}^{(0)}$.

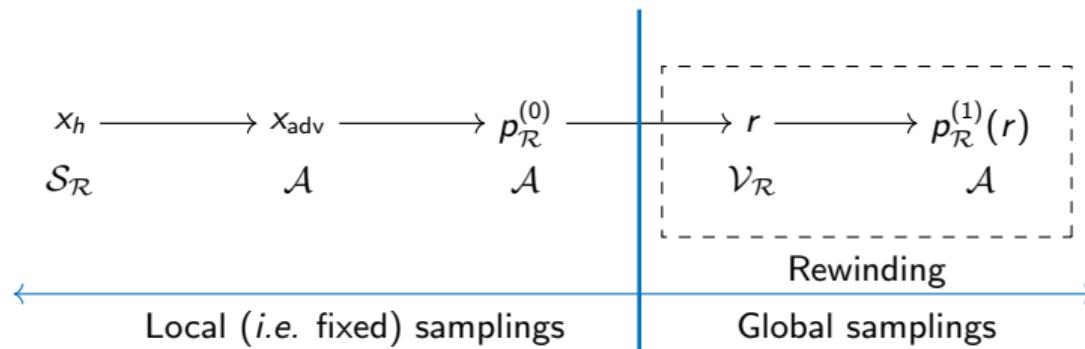
Are we done yet?

G.EXTRACT

$$\frac{e[\mathbf{zkp-verif}_{\mathcal{R}}(x, \mathbf{p}_{\mathcal{R}}(r))]}{[(x, \mathbf{zkp-extract}_{\mathcal{R}}(x, \mathbf{p}_{\mathcal{R}}(\mathbf{resample}(r)), \mathbf{p}_{\mathcal{R}}(\mathbf{resample}(r)))) \in \mathcal{R}]}$$

where $\mathbf{p}_{\mathcal{R}} \stackrel{\text{def}}{=} \lambda r. (p_{\mathcal{R}}^{(0)}, r, p_{\mathcal{R}}^{(1)}(r))$ for some *fixed* $p_{\mathcal{R}}^{(0)}$.

No, not yet



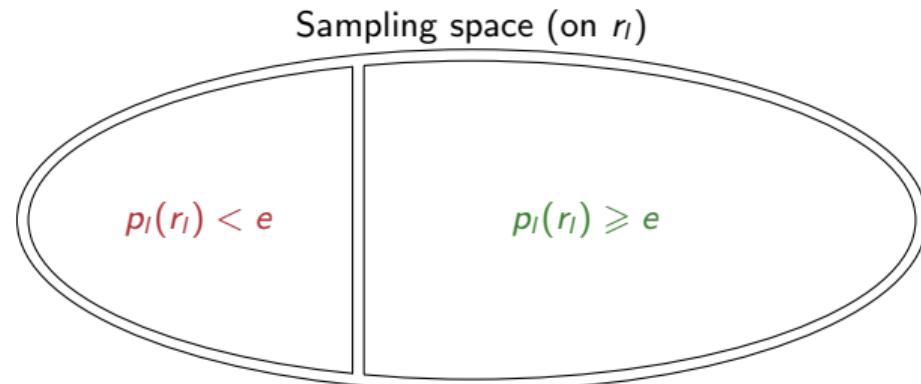
What is missing

Let $\phi : (r_l, r_g) \mapsto \phi(r_l, r_g)$ where r_g is the resampled value and r_l refers to other fixed samples.

We want to study the set $\{ r_l \mid \phi(r_l, r_g) \text{ holds with non-negligible probability on } r_g \}$.

Let p_l be the following function

$$p_l \stackrel{\text{def}}{=} r_l \mapsto \Pr_{r_g} (\phi(r_l, r_g))$$



Another addition to the CCSA logic

Selection of sampling space predicate

Let $\phi : (r_l, r_g) \mapsto \phi(r_l, r_g)$ be a function predicate.

Variable r_g is the parameters we want to rewind in the predicate ϕ .

select-tape is a local predicate saying that locally we are in the "good" case where ϕ holds.

select-tape predicate

$$\llbracket \text{select-tape}(e, \phi(r_l)) \rrbracket_{\rho} \stackrel{\text{def}}{=} \Pr_{r_g} \left(\llbracket \phi(r_l) \rrbracket_{\rho}(r_g) \geq e \right).$$

Proof strategy - Step 1

Goal proof under select-tape guard - Axiomatization

The G.EXTRACT rule becomes

G.SEL-INTRO

[**select-tape**($e, \psi_{\mathcal{R}}(r_l)$) \rightarrow ($x(r_l)$, **zkp-extract** _{\mathcal{R}} ($x(r_l)$, $\mathfrak{p}_{\mathcal{R}}^{(1)}(r_l, \text{resample}(r_g))$, $\mathfrak{p}_{\mathcal{R}}^{(2)}(r_l, \text{resample}(r_g))$))]

Where $\psi_{\mathcal{R}}(r_l) \stackrel{\text{def}}{=} r_g \longmapsto \mathbf{zkp-verif}_{\mathcal{R}}(x(r_l), (p_{\mathcal{R}}^0(r_l), r_g, p_{\mathcal{R}}^1(r_g)))$.

Rewinding lemma

Statement

resample predicate

Let $\phi : r_g \longmapsto \phi(r_g)$ be a predicate. If $r_g : \mathbf{nat} \rightarrow \tau_g$ then

$$\begin{aligned} & \exists k : \mathbf{nat} \text{ [poly]}. \exists \text{resample} : \mathbf{list}_n(\tau_g) \rightarrow \tau_g. \\ & [\mathbf{select-tape}(e, \phi) \rightarrow \phi(\text{resample}(r_g 1, \dots, r_g k))] \end{aligned}$$

Proof strategy - Step 2

Glue splitted parts back together

 $\mathcal{H} : r \mapsto \mathcal{H} r$ (Hypothesis predicate); Goal : $r \mapsto \text{Goal } r$ (Goal predicate).

$$\frac{\text{G. SEL-ELIM} \quad \tilde{\forall} e : \mathbf{real} \text{ [non-negl]}. [\text{select-tape}(e, \mathcal{H}) \rightarrow \mathcal{H} r \rightarrow \text{Goal } r]}{[\mathcal{H} r \rightarrow \text{Goal } r]}$$

Proof strategy - Step 2

Glue splitted parts back together

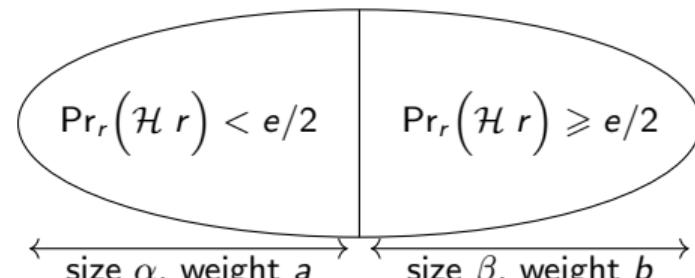
 $\mathcal{H} : r \mapsto \mathcal{H} r$ (Hypothesis predicate); $\text{Goal} : r \mapsto \text{Goal} r$ (Goal predicate).

$$\frac{\text{G. SEL-ELIM} \quad \tilde{\forall} e : \mathbf{real} \text{ [non-negl]}. [\text{select-tape}(e, \mathcal{H}) \rightarrow \mathcal{H} r \rightarrow \text{Goal} r]}{[\mathcal{H} r \rightarrow \text{Goal} r]}$$

Why does it work?

Proof by contraposition: we want to prove

$$\frac{}{\frac{e}{2} [\text{select-tape}\left(\frac{e}{2}, \mathcal{H}\right) \wedge \mathcal{H} r \wedge \neg \text{Goal} r]}$$



We have $a \leq e/2$ and $b \leq \beta$.
 Therefore, as $a + b \geq e$, $\beta \geq e/2$

Conclusion

Take aways

To axiomatize rewinding argument, we have to resample only a part of the random tape;
We need to talk about formulas sometimes true;
High-order logic was needed for the rewinding lemma!

Other works done

Complete formal proof of the permutation secrecy property;
First complete proof of Terelius & Wikström mixnet protocol.

Conclusion

Take aways

To axiomatize rewinding argument, we have to resample only a part of the random tape;
We need to talk about formulas sometimes true;
High-order logic was needed for the rewinding lemma!

Other works done

Complete formal proof of the permutation secrecy property;
First complete proof of Terelius & Wikström mixnet protocol.

What next?

Reprogrammable Random Oracle Model

Sigma-protocols \rightarrow NIZK proof (Fiat-Shamir transform) ...

... Towards proof of in practice used mixnet protocols (CHVote and Belenios).

Conclusion

Take aways

To axiomatize rewinding argument, we have to resample only a part of the random tape;
We need to talk about formulas sometimes true;
High-order logic was needed for the rewinding lemma!

Other works done

Complete formal proof of the permutation secrecy property;
First complete proof of Terelius & Wikström mixnet protocol.

What next?

Reprogrammable Random Oracle Model

Sigma-protocols \rightarrow NIZK proof (Fiat-Shamir transform) ...

... Towards proof of in practice used mixnet protocols (CHVote and Belenios).

Thank you for your attention!¹

¹Icons comes from the Flaticons website (<https://www.flaticon.com/>)