
Introduction Verifiability property Rewinding lemma Conclusion

Proving e-voting mixnets in the CCSA model: zero-knowledge proofs and rewinding

Margot Catinaud * Caroline Fontaine * Guillaume Scerri *

*Université Paris-Saclay, CNRS, ENS Paris-Saclay,
Laboratoire Méthodes Formelles (LMF)

GT MFS, April 2024

Margot Catinaud (LMF) Proving rewinding lemma in CCSA GT MFS 2024 1 / 18

Introduction Verifiability property Rewinding lemma Conclusion

Electronic voting mixnets

Two kinds of tally

Homomorphic encryption Mix networks + Decrypt

Principle

Mix Mix ... Mix

−→
b (in) −→

b (out)

Network of mix-servers

Algorithm : Mixing

let mixing
−→
b (in) =

π
$← SN ;

[do some stuff...] ;

return
−→
b (out)

Mix-server in a nutshell

Margot Catinaud (LMF) Proving rewinding lemma in CCSA GT MFS 2024 2 / 18

Introduction Verifiability property Rewinding lemma Conclusion

Terelius & Wikström mixnet ([TW10], [Wik11])

Security properties for one mix-server

Permutation secrecy Verifiability

Key ingredients needed

Commitment scheme Zero-knowledge proofs

Margot Catinaud (LMF) Proving rewinding lemma in CCSA GT MFS 2024 3 / 18

Introduction Verifiability property Rewinding lemma Conclusion

Zero-knowledge proofs - case of Σ-protocols

Principle

Two agents: a prover P and a verifier V
Goal: prove that (x︸︷︷︸

statement

, w︸︷︷︸
witness

) ∈ R

Interactive proof: proof transcript

(p0︸︷︷︸
commit

, c︸︷︷︸
challenge

, p1︸︷︷︸
response

)
Sigma-protocol

Main security properties

Special-Soundness Zero-knowledge

Margot Catinaud (LMF) Proving rewinding lemma in CCSA GT MFS 2024 4 / 18

Introduction Verifiability property Rewinding lemma Conclusion

Verifiability game

Cryptographic game — Mix-server verifiability.

Context

Adversarial mix-server Honest verifier V

Game statement

Hypothesis

Proofs accepted by V

=⇒

Conclusion

Dec
−→
b (out) = Dec

(
Mπ ·

−→
b (in)

)
Output plaintexts is a permutation of input

Margot Catinaud (LMF) Proving rewinding lemma in CCSA GT MFS 2024 5 / 18

Introduction Verifiability property Rewinding lemma Conclusion

Computationally Complete Symbolic Attacker (CCSA) model

The Squirrel prover
([Bae+21])

First introduce by Bana & Comon ([BC14]), high-order logic by Baelde,
Koutsos & Lallemand ([BKL23])

Main predicates: ∼ (indistinguishability)
and [·] (globally (non-)negligible events)

Interpretation of terms for a fixed random tape ρ: [[t]]ρ.

In our case: work on trace properties

Formulas φ are terms of type bool.

Two kinds of logic

Global logic Local logic

[φ]→̃[ψ] means:

If Prρ∈Ω

(
[[φ]]ρ

)
is overwhelming

then Prρ∈Ω

(
[[ψ]]ρ

)
is overwhelming.

[φ→ ψ] means:

Prρ∈Ω

(
[[φ→ ψ]]ρ

)
is overwhelming.

Margot Catinaud (LMF) Proving rewinding lemma in CCSA GT MFS 2024 6 / 18

Introduction Verifiability property Rewinding lemma Conclusion

Sketch of proof

Extraction of sealed matrix M

Witness extractor

Collect enough witness

Reconstruction of sealed informations

Is M a permutation matrix?

Witness extractor

Witness consistency

Generalization of equations on witness to equations on matrix

Characterisation of permutation matrix

−→
b (out) = ReRand

(
M ·
−→
b (in)

)
?

Another witness extractor

Consistency between the witness and the extracted matrix

Generalization to the whole set of ciphertexts in/out pairs

Rewinding

Rewinding

Algebra

Rewinding

Cryptography

Algebra

Algebra

Rewinding

Cryptography

Algebra

Margot Catinaud (LMF) Proving rewinding lemma in CCSA GT MFS 2024 7 / 18

Introduction Verifiability property Rewinding lemma Conclusion

Special-Soundness

Statement

p1
R(c1) with c1

p1
R(c2) with c2

c1 6= c2

Extractor Witness

p0
R

Axiomatization in the CCSA logic

L.Σ-P:SpSound

∃̃zkp-extractR [ptime].[
∧

i∈{1,2}

zkp-verifR(x , (p0
R, ci , p

1,(i)
R)︸ ︷︷ ︸

p
(i)
R

) ∧ c1 6= c2 → (x , zkp-extractR(x , p
(1)
R , p

(2)
R)) ∈ R]

Margot Catinaud (LMF) Proving rewinding lemma in CCSA GT MFS 2024 8 / 18

Introduction Verifiability property Rewinding lemma Conclusion

Witness extraction algorithm

Algorithm : Witness extraction

Input: Adversary A producing sometimes a proof accepted by the verifier V.
Run p0 ← A(x) ;
repeat

Choose c1 ← V(x , p0) then run p1 ← A(x , p0, c1) ;
Rewind A ;
Choose c2 ← V(x , p0) then run p2 ← A(x , p0, c2) ;
Check if > ← V(x , p1) and > ← V(x , p2) ;

until p1 and p2 are accepted by V and c1 6= c2;
return w ← zkp-extractR(x , p1, p2) ;

where pi
def
=(p0, ci , pi) for i = 1, 2.

Margot Catinaud (LMF) Proving rewinding lemma in CCSA GT MFS 2024 9 / 18

Introduction Verifiability property Rewinding lemma Conclusion

First attempt

A first local hunch...

L.Extract
zkp-verifR(x , pR(r1))

(x , zkp-extractR(x , pR(r1), pR(r2))) ∈ R

where pR
def
=λr .(p

(0)
R , r , p

(1)
R (r)) for some fixed p

(0)
R .

Problem

zkp-verifR(x , pR(r1)) 6=⇒ zkp-verifR(x , pR(r2)) for r1 6= r2:

Margot Catinaud (LMF) Proving rewinding lemma in CCSA GT MFS 2024 10 / 18

Introduction Verifiability property Rewinding lemma Conclusion

First attempt

A first local hunch...

L.Extract
zkp-verifR(x , pR(r1))

(x , zkp-extractR(x , pR(r1), pR(r2))) ∈ R

where pR
def
=λr .(p

(0)
R , r , p

(1)
R (r)) for some fixed p

(0)
R .

Problem

zkp-verifR(x , pR(r1)) 6=⇒ zkp-verifR(x , pR(r2)) for r1 6= r2:

Margot Catinaud (LMF) Proving rewinding lemma in CCSA GT MFS 2024 10 / 18

Introduction Verifiability property Rewinding lemma Conclusion

First attempt

A first local hunch...

L.Extract
zkp-verifR(x , pR(r1))

(x , zkp-extractR(x , pR(resample(r1)), pR(resample(r1)))) ∈ R

where pR
def
=λr .(p

(0)
R , r , p

(1)
R (r)) for some fixed p

(0)
R .

Problem

zkp-verifR(x , pR(r1)) 6=⇒ zkp-verifR(x , pR(r2)) for r1 6= r2:

If φ is locally true, it says nothing about the distribution of
[
[[φ]]ρ

∣∣ ρ ∈ Ω
]
.

Thus, we need to characterize events which holds with non-negligible probability.

Margot Catinaud (LMF) Proving rewinding lemma in CCSA GT MFS 2024 10 / 18

Introduction Verifiability property Rewinding lemma Conclusion

First attempt

A first local hunch...

L.Extract
zkp-verifR(x , pR(r1))

(x , zkp-extractR(x , pR(resample(r1)), pR(resample(r1)))) ∈ R

where pR
def
=λr .(p

(0)
R , r , p

(1)
R (r)) for some fixed p

(0)
R .

Problem

zkp-verifR(x , pR(r1)) 6=⇒ zkp-verifR(x , pR(r2)) for r1 6= r2:

If φ is locally true, it says nothing about the distribution of
[
[[φ]]ρ

∣∣ ρ ∈ Ω
]
.

Thus, we need to characterize events which holds with non-negligible probability.

Margot Catinaud (LMF) Proving rewinding lemma in CCSA GT MFS 2024 10 / 18

Introduction Verifiability property Rewinding lemma Conclusion

An addition to the CCSA logic: e [] predicate

e [] predicate

For a formula φ : bool and a non-negligible term e : real [non-negl], we define:

e [φ] ⇐⇒ Prρ∈Ω

(
[[φ]]ρ

)
> e

We want the following equivalence:

¬̃[¬φ]↔̃∃̃e : real [non-negl]. e [φ]

and we want

e [φ(r)]→̃[φ(resample(r))]

e : real [non-negl] means that η 7−→ [[e]]η is non-negligible,

i.e. their exists a polynomial P such that: ∃ η0 ∈ N∗, ∀ η > η0, [[e]]η >
1

P(η)
.

Margot Catinaud (LMF) Proving rewinding lemma in CCSA GT MFS 2024 11 / 18

Introduction Verifiability property Rewinding lemma Conclusion

Are we done yet?

G.Extract

e [zkp-verifR(x , pR(r))]

[(x , zkp-extractR(x , pR(resample(r)), pR(resample(r)))) ∈ R]

where pR
def
=λr .(p

(0)
R , r , p

(1)
R (r)) for some fixed p

(0)
R .

No, not yet

xh

SR

xadv

A
p

(0)
R

A
r

VR
p

(1)
R (r)

A

Rewinding

Local (i.e. fixed) samplings Global samplings

Margot Catinaud (LMF) Proving rewinding lemma in CCSA GT MFS 2024 12 / 18

Introduction Verifiability property Rewinding lemma Conclusion

Are we done yet?

G.Extract

e [zkp-verifR(x , pR(r))]

[(x , zkp-extractR(x , pR(resample(r)), pR(resample(r)))) ∈ R]

where pR
def
=λr .(p

(0)
R , r , p

(1)
R (r)) for some fixed p

(0)
R .

No, not yet

xh

SR

xadv

A
p

(0)
R

A
r

VR
p

(1)
R (r)

A

Rewinding

Local (i.e. fixed) samplings Global samplings

Margot Catinaud (LMF) Proving rewinding lemma in CCSA GT MFS 2024 12 / 18

Introduction Verifiability property Rewinding lemma Conclusion

What is missing

Let φ : (rl , rg) 7−→ φ(rl , rg) where rg is the resampled value and rl refers to other fixed samples.

We want to study the set
{

rl φ(rl , rg) holds with non-negligible probability on rg
}

.

Let pl be the following function

pl
def
=rl 7−→ Prrg

(
φ(rl , rg)

)

pl(rl) < e pl(rl) > e

Sampling space (on rl)

Margot Catinaud (LMF) Proving rewinding lemma in CCSA GT MFS 2024 13 / 18

Introduction Verifiability property Rewinding lemma Conclusion

Another addition to the CCSA logic

Selection of sampling space predicate

Let φ : (rl , rg) 7−→ φ(rl , rg) be a function predicate.

Variable rg is the parameters we want to rewind in the predicate φ.

select-tape is a local predicate saying that locally we are in the ”good” case where φ holds.

select-tape predicate

[[select-tape(e, φ(rl))]]ρ
def
= Prrg

(
[[φ(rl)]]ρ(rg)

)
> e.

Margot Catinaud (LMF) Proving rewinding lemma in CCSA GT MFS 2024 14 / 18

Introduction Verifiability property Rewinding lemma Conclusion

Proof strategy - Step 1

Goal proof under select-tape guard - Axiomatization
The G.Extract rule becomes

G.Sel-Intro

[select-tape(e, ψR(rl))→
(
x(rl), zkp-extractR(x(rl), p

(1)
R (rl , resample(rg)), p

(2)
R (rl , resample(rg)))

)
]

Where ψR(rl)
def
=rg 7−→ zkp-verifR

(
x(rl), (p

0
R(rl), rg , p

1
R(rg))

)
.

Margot Catinaud (LMF) Proving rewinding lemma in CCSA GT MFS 2024 15 / 18

Introduction Verifiability property Rewinding lemma Conclusion

Rewinding lemma

Statement

resample predicate

Let φ : rg 7−→ φ(rg) be a predicate. If rg : nat→ τg then

∃̃ k : nat [poly]. ∃̃ resample : listn
(
τg
)
→ τg .

[select-tape(e, φ)→ φ(resample(rg 1, . . . , rg k))]

Margot Catinaud (LMF) Proving rewinding lemma in CCSA GT MFS 2024 16 / 18

Introduction Verifiability property Rewinding lemma Conclusion

Proof strategy - Step 2

Glue splitted parts back together
H : r 7−→ H r (Hypothesis predicate); Goal : r 7−→ Goal r (Goal predicate).

G.Sel-Elim

∀̃e : real [non-negl].[select-tape(e,H)→ H r → Goal r]

[H r → Goal r]

Why does it work?

Proof by contraposition: we want to prove

e [H r ∧ ¬Goal r]

e/2
[select-tape

(e
2
,H
)
∧H r ∧ ¬Goal r] size α, weight a size β, weight b

Prr
(
H r
)
< e/2 Prr

(
H r
)
> e/2

We have a 6 e/2 and b 6 β.
Therefore, as a + b > e, β > e/2

Margot Catinaud (LMF) Proving rewinding lemma in CCSA GT MFS 2024 17 / 18

Introduction Verifiability property Rewinding lemma Conclusion

Proof strategy - Step 2

Glue splitted parts back together
H : r 7−→ H r (Hypothesis predicate); Goal : r 7−→ Goal r (Goal predicate).

G.Sel-Elim

∀̃e : real [non-negl].[select-tape(e,H)→ H r → Goal r]

[H r → Goal r]

Why does it work?

Proof by contraposition: we want to prove

e [H r ∧ ¬Goal r]

e/2
[select-tape

(e
2
,H
)
∧H r ∧ ¬Goal r] size α, weight a size β, weight b

Prr
(
H r
)
< e/2 Prr

(
H r
)
> e/2

We have a 6 e/2 and b 6 β.
Therefore, as a + b > e, β > e/2

Margot Catinaud (LMF) Proving rewinding lemma in CCSA GT MFS 2024 17 / 18

Introduction Verifiability property Rewinding lemma Conclusion

Conclusion

Take aways

To axiomatize rewinding argument, we have to resample only a part of the random tape;

We need to talk about formulas sometimes true;

High-order logic was needed for the rewinding lemma!

Other works done

Complete formal proof of the permutation secrecy property;

First complete proof of Terelius & Wikström mixnet protocol.

What next?
Reprogrammable Random Oracle Model

Sigma-protocols → NIZK proof (Fiat-Shamir transform) ...

... Towards proof of in practice used mixnet protocols (CHVote
and Belenios).

Margot Catinaud (LMF) Proving rewinding lemma in CCSA GT MFS 2024 18 / 18

Introduction Verifiability property Rewinding lemma Conclusion

Conclusion

Take aways

To axiomatize rewinding argument, we have to resample only a part of the random tape;

We need to talk about formulas sometimes true;

High-order logic was needed for the rewinding lemma!

Other works done

Complete formal proof of the permutation secrecy property;

First complete proof of Terelius & Wikström mixnet protocol.

What next?
Reprogrammable Random Oracle Model

Sigma-protocols → NIZK proof (Fiat-Shamir transform) ...

... Towards proof of in practice used mixnet protocols (CHVote
and Belenios).

Margot Catinaud (LMF) Proving rewinding lemma in CCSA GT MFS 2024 18 / 18

Introduction Verifiability property Rewinding lemma Conclusion

Conclusion

Take aways

To axiomatize rewinding argument, we have to resample only a part of the random tape;

We need to talk about formulas sometimes true;

High-order logic was needed for the rewinding lemma!

Other works done

Complete formal proof of the permutation secrecy property;

First complete proof of Terelius & Wikström mixnet protocol.

What next?
Reprogrammable Random Oracle Model

Sigma-protocols → NIZK proof (Fiat-Shamir transform) ...

... Towards proof of in practice used mixnet protocols (CHVote
and Belenios).

Thank you for your attention!1

1Icons comes from the Flaticons website (https://www.flaticon.com/)

Margot Catinaud (LMF) Proving rewinding lemma in CCSA GT MFS 2024 18 / 18

	Introduction
	Verifiability property
	Rewinding lemma
	Conclusion

