

Proof of a mixnet in the Computationally Complete Symbolic Attacker (CCSA) model

Margot Catinaud * Caroline Fontaine * Guillaume Scerri *

*Université Paris-Saclay, CNRS, ENS Paris-Saclay,
Laboratoire Méthodes Formelles (LMF)

SVP day, 6th February 2024

Electronic voting protocol

Election protocol

Step 1: Election setup

Step 2: Voting phase

Step 3: Tally

Electronic voting protocol

Election protocol

Step 1: Election setup

Step 2: Voting phase

Step 3: Tally

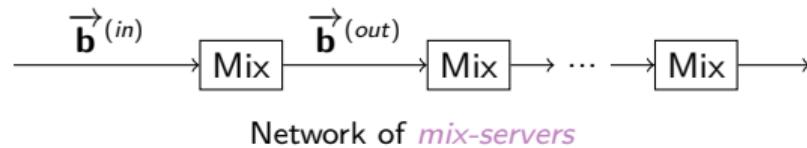
Two kinds of tally

Homomorphic encryption

Mix networks + Decrypt

Mix networks

Principle



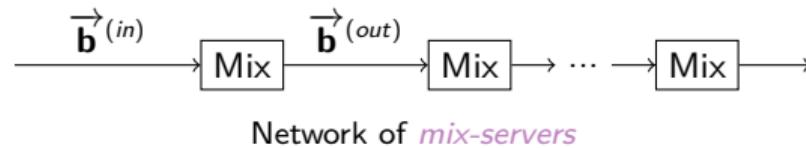
Algorithm : Mixing

```
let mixing  $\vec{b}^{(in)}$  =  
   $\pi \xleftarrow{\$} \mathfrak{S}_N$  ;  
  [do some stuff...] ;  
  return  $\vec{b}^{(out)}$ 
```

Mix-server in a nutshell

Mix networks

Principle



Algorithm : Mixing

```
let mixing  $\overrightarrow{\mathbf{b}}^{(in)} =$ 
   $\pi \xleftarrow{\$} \mathfrak{S}_N ;$ 
  [do some stuff...] ;
  return  $\overrightarrow{\mathbf{b}}^{(out)}$ 
```

Mix-server in a nutshell

Security properties for one router

Ballot privacy

Verifiability

Commitment schemes

Principle

$$\text{✉} + \text{⭐} = \text{✉}$$

Security properties

Hiding

Binding

Zero-knowledge proofs

Principle

- Two agents: a prover \mathcal{P} and a verifier \mathcal{V}
- Goal: prove that $(\underbrace{x}_{\text{statement}}, \underbrace{w}_{\text{witness}}) \in \mathcal{R}$

Interactive vs. Non Interactive protocols

- Sigma-protocol: proof transcript

$$(\underbrace{p_0}_{\text{first message}}, \underbrace{c}_{\text{challenge}}, \underbrace{p_1}_{\text{response}})$$

- NIZK proof

Main security properties

Soundness

Zero-knowledge

Additional property

Extractability

Terelius & Wikström protocol

Two parts ...

- *Offline phase:* Choose $\pi \xleftarrow{\$} \mathfrak{S}_N$ and output $\mathbf{a} = \text{Com}_{\mathbb{Z}_{q\eta}^{N \times N}}(ck, M_\pi; \mathbf{s})$.
- *Online phase:* Output $\overrightarrow{\mathbf{b}}^{(out)} = \text{ReRand}(M_\pi \cdot \overrightarrow{\mathbf{b}}^{(in)})$

Terelius & Wikström protocol

Two parts ...

- *Offline phase*: Choose $\pi \xleftarrow{\$} \mathfrak{S}_N$ and output $\mathbf{a} = \text{Com}_{\mathbb{Z}_{q\eta}^{N \times N}}(ck, M_\pi; \mathbf{s})$.
- *Online phase*: Output $\overrightarrow{\mathbf{b}}^{(out)} = \text{ReRand}(M_\pi \cdot \overrightarrow{\mathbf{b}}^{(in)})$

... with two distinct zero-knowledge proofs

- ZK proof of the offline phase

$$((ck, \mathbf{a}), (\pi, \mathbf{s})) \in \mathcal{R}_{\text{com}} \iff \mathbf{a} = \text{Com}_{\mathbb{Z}_{q\eta}^{N \times N}}(ck, M_\pi; \mathbf{s})$$

- ZK proof of the online phase

$$\left((ck, \mathbf{a}, \overrightarrow{\mathbf{b}}^{(in)}, \overrightarrow{\mathbf{b}}^{(out)}), (\pi, \mathbf{r}) \right) \in \mathcal{R}_{\text{mix}} \iff \overrightarrow{\mathbf{b}}^{(out)} = \text{ReRand}(M_\pi \cdot \overrightarrow{\mathbf{b}}^{(in)}; \mathbf{r})$$

- Almost sigma-protocols: there are 2 rounds.

Verifiability game

Cryptographic game - Mix-server verifiability.

Context

Adversarial mix-server

Honest verifier \mathcal{V}

Game statement

Hypothesis

Proofs accepted by \mathcal{V}

Conclusion

\Rightarrow

$$\left\{ \text{Dec } \overrightarrow{\mathbf{b}}^{(in)} \right\} = \left\{ \text{Dec } \overrightarrow{\mathbf{b}}^{(out)} \right\}$$

Equality of plaintexts lists as multisets

Sketch of proof

Extraction of sealed matrix M

- Witness extractor
- Collect enough witness
- Reconstruction of sealed informations

Special-Soundness + Rewinding
Rewinding
Linear algebra

Is M a permutation matrix?

$$\vec{\mathbf{b}}^{(out)} = \text{ReRand}(M \cdot \vec{\mathbf{b}}^{(in)})?$$

Sketch of proof

Extraction of sealed matrix M

- Witness extractor
- Collect enough witness
- Reconstruction of sealed informations

Special-Soundness + Rewinding
Rewinding
Linear algebra

Is M a permutation matrix?

- Witness extractor
- Witness consistency
- Generalization of equations on witness to equations on matrix
- Characterization of permutation matrix

Special-Soundness + Rewinding
Binding
Schwartz-Zippel lemma
Algebra

$$\vec{\mathbf{b}}^{(out)} = \text{ReRand}(M \cdot \vec{\mathbf{b}}^{(in)})?$$

Sketch of proof

Extraction of sealed matrix M

- Witness extractor
- Collect enough witness
- Reconstruction of sealed informations

Special-Soundness + Rewinding
Rewinding
Linear algebra

Is M a permutation matrix?

- Witness extractor
- Witness consistency
- Generalization of equations on witness to equations on matrix
- Characterization of permutation matrix

Special-Soundness + Rewinding
Binding
Schwartz-Zippel lemma
Algebra

$$\vec{\mathbf{b}}^{(out)} = \text{ReRand}(M \cdot \vec{\mathbf{b}}^{(in)})?$$

- Another witness extractor
- Consistency between the witness and the extracted matrix
- Generalization to the whole set of ciphertexts in/out pairs

Special-Soundness + Rewinding
Binding
Group theory algebra

Sketch of proof

Extraction of sealed matrix M

- Witness extractor
- Collect enough witness
- Reconstruction of sealed informations

Special-Soundness + Rewinding
Rewinding
Linear algebra

Is M a permutation matrix?

- Witness extractor
- Witness consistency
- Generalization of equations on witness to equations on matrix
- Characterization of permutation matrix

Special-Soundness + Rewinding
Binding
Schwartz-Zippel lemma
Algebra

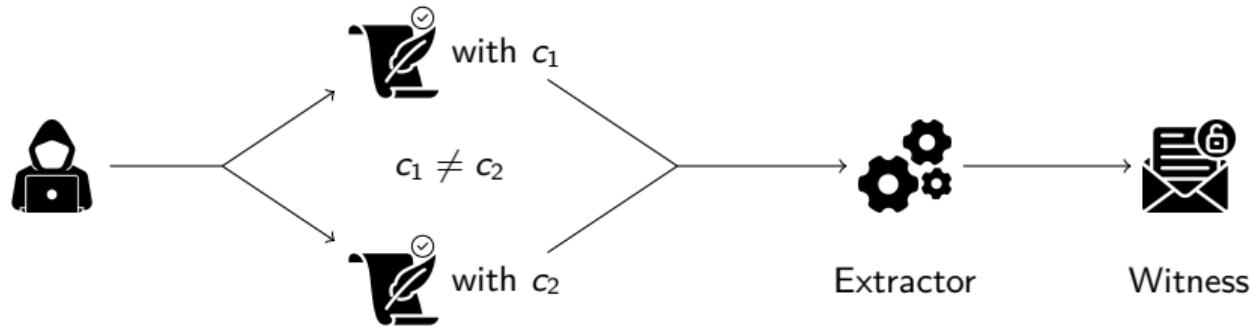
$$\vec{\mathbf{b}}^{(out)} = \text{ReRand}(M \cdot \vec{\mathbf{b}}^{(in)})?$$

- Another witness extractor
- Consistency between the witness and the extracted matrix
- Generalization to the whole set of ciphertexts in/out pairs

Special-Soundness + Rewinding
Binding
Group theory algebra

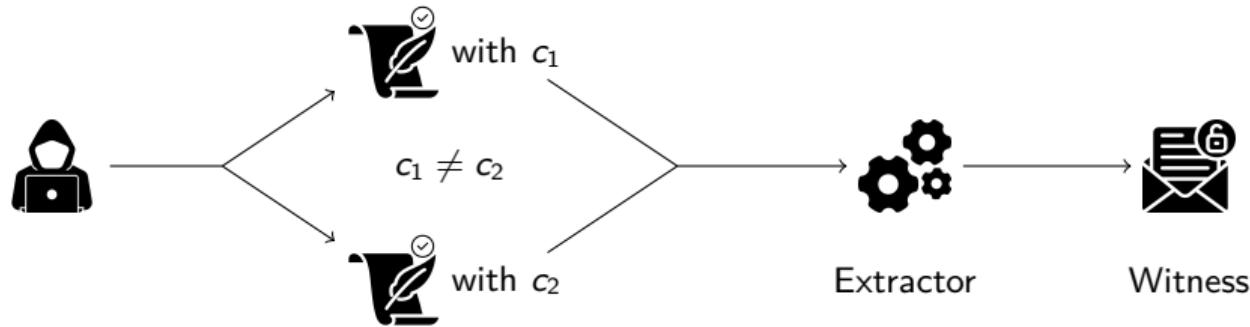
Zoom on the proof: Witness extraction

What we want to use: *Special-Soundness*



Zoom on the proof: Witness extraction

What we want to use: *Special-Soundness*



What we have

Only one proof!

Solution

Rewinding

Zoom on the proof: Extraction of sealed matrix M

- Witness extraction algorithm:

Algorithm : Witness extraction

Input: Adversary \mathcal{A} producing sometimes a proof accepted by the verifier \mathcal{V} .

\mathcal{V} chooses a vector $\mathbf{e} \xleftarrow{\$} \mathbb{Z}_{q_\eta}^N$ and then sends it to \mathcal{A} ;

repeat

 Run $\mathbf{p}_1 := (p_0, c_1, p_1) \leftarrow \mathcal{A}(x, \mathbf{e}, c_1)$;

 Rewind \mathcal{A} ;

 Run $\mathbf{p}_2 := (p_0, c_2, p_2) \leftarrow \mathcal{A}(x, \mathbf{e}, c_2)$;

 Check if **true** $\leftarrow \mathcal{V}(x, \mathbf{p}_1)$ and **true** $\leftarrow \mathcal{V}(x, \mathbf{p}_2)$;

until \mathbf{p}_1 and \mathbf{p}_2 are accepted by \mathcal{V} and $c_1 \neq c_2$;

return $w \leftarrow \text{extract}_{\mathcal{R}}(x, \mathbf{p}_1, \mathbf{p}_2)$;

- Next, **collect witnesses for enough vectors** to have $(\mathbf{e}_1, \dots, \mathbf{e}_N)$ a free family of $\mathbb{Z}_{q_\eta}^N$.
- Finally, **use linear algebra** (Gaussian elimination) to rebuild the matrix M

Why use the CCSA logic?

We need automatic tools...

- Proofs of mix-servers security are long and tough
- Existing pen-and-paper proofs are unsatisfying
- Need of computational guarantees

Why use the CCSA logic?

We need automatic tools...

- Proofs of mix-servers security are long and tough
- Existing pen-and-paper proofs are unsatisfying
- Need of computational guarantees

... But which ones?

- Hard to model rewinding technique in CryptoVerif
- Proofs in EasyCrypt too complicated

Why use the CCSA logic?

We need automatic tools...

- Proofs of mix-servers security are long and tough
- Existing pen-and-paper proofs are unsatisfying
- Need of computational guarantees

... But which ones?

- Hard to model rewinding technique in CryptoVerif
- Proofs in EasyCrypt too complicated

Solution! The *Computationally Complete Symbolic Attacker (CCSA) logic*

- Axioms model arguments of the proof
- Lemmas model steps of the proof
- Axioms quite easy to write and to handle

Rebuild the sealed matrix step in the CCSA logic

Lemmas

- Existence of a witness extractor

If we have an adversary \mathcal{A} which gives sometimes a proof accepted by the verifier \mathcal{V} then we can construct an extractor computing witnesses from this adversary \mathcal{A} .

- Rebuild the sealed matrix M

If we have collected enough witnesses for a vector basis $(\mathbf{e}_1, \dots, \mathbf{e}_N)$ then we can rebuild the sealed matrix M

Axioms

- Special-soundness

There exists $\text{extract}_{\mathcal{R}}$ (ptime) such that

$$\frac{\bigwedge_{i \in \{1,2\}} \text{verify}_{\mathcal{R}}(x, \underbrace{(p_0, c_i, p_i)}_{\mathbf{p}_i}) \quad c_1 \neq c_2}{(x, \text{extract}_{\mathcal{R}}(x, \mathbf{p}_1, \mathbf{p}_2)) \in \mathcal{R}}$$

- Basis axiom

$$\frac{\text{indep}(\mathbf{e}_1, \dots, \mathbf{e}_N)}{\text{basis}_{\mathbb{Z}_{q_N}^N}(\mathbf{e}_1, \dots, \mathbf{e}_N)}$$

Prospectives

Modularity ...

- Zero-knowledge proofs
- Commitment schemes
- ...

Prospectives

Modularity ...

- Zero-knowledge proofs
- Commitment schemes
- ...

... Towards formal proofs of e-voting protocols

- Sigma-protocols → NIZK proof
- Compose mix-servers security to obtain mixnets security
- Implement the proof in SQUIRREL

Prospectives

Modularity ...

- Zero-knowledge proofs
- Commitment schemes
- ...

... Towards formal proofs of e-voting protocols

- Sigma-protocols → NIZK proof
- Compose mix-servers security to obtain mixnets security
- Implement the proof in SQUIRREL

Thank you for your attention!¹

¹Icons comes from the Flaticons website (<https://www.flaticon.com/>)