Proving e-voting mixnets in the CCSA model:
zero-knowledge proofs and rewinding

Anonymous authors

Abstract—Mixnets are crucial components of electronic voting
protocols, used to mix the ballot box before the tally. Mixnets
should ensure two somewhat antithetic properties: preservation
of the list of ballots, and privacy. Unfortunately, proving that
mixnets ensure the desired properties requires both complex
cryptographic primitives (zero-knowledge proofs, commitments
schemes) and proof techniques (mainly rewinding). Hence, such
proofs are at the same time highly desirable but quite complex to
get. In order to achieve such complex formal proofs, we focus on
the quite recent Computationally Complete Symbolic Attacker
logics, which handles computational security proofs with first-
order logic, abstracting most probabilities and explicit reductions.
Said differently, it provides precise and subtle computational
reasoning, while not requiring too much expertise from the
user who setup the proof. In the present work, we enrich
the logic to be able to deal with zero-knowledge proofs and
rewinding techniques, and provide the first complete formal proof
of Terelius-Wikstrom mixnet protocol.

Index Terms—mixnet, zero-knowledge proof, rewinding, for-
mal proof, Computationally Complete Symbolic Attacker

I. INTRODUCTION

Electronic voting (e-voting) protocols are more and more
used for widespread applications, from professional to political
elections in direct democracy, as for example in Switzerland.
Therefore, depending on the criticality of the elections, we
need them to provide robust security guarantees. In broad
terms, such protocols should achieve two main properties:
verifiability and privacy. Roughly speaking, verifiability en-
sures that all the ballots in the ballot box have indeed been
counted during the tally (universal verifiability) and that each
voter can verify if his ballot is present in the ballot box
(individual verifiability). While specific definitions may vary,
privacy broadly ensures that no adversary can link ballots to
voters. This is why such protocols involve some permutation
step of the ballots, e.g. with the help of mixnets, which we
focus on in this work.

More generally, e-voting protocols are composed of three
main steps. They begin with a setup, where a server is prepared
(by an authority commitee) to host the election. Later, during
the voting phase, voters submit their votes into a public ballot
box. Finally, as soon as the voting delay expires, authorities
join together to perform the tally, which may lead to more or
less complex computations and issues. For simple tallies, e.g.
when only sums are involved, homomorphic encryption can
be enough to compute the result. However, for more complex
tallies, e.g. when voters are asked to rank candidates, we
need to mix the ballot box to safely decrypt the ballots and
then compute the tally without compromising ballots-voters
unlinkability. One solution to this issue is to use mixnets.

A mixnet is composed of several connected mix-servers act-
ing as authorities. Each mix-server takes as input the encrypted
list of ballots, and produces as output a permutation (going
with a re-encryption) of these ballots. Regarding the main
security properties we want e-voting protocols to guarantee,
we expect two security properties from mixnets:

o Verifiability: A dishonest mixnet should not be able to
convince an honest verifier that the output list is a re-
encrypted permutation of the input list when it is not the
case. In particular, as the output list is indeed a permu-
tation of the input list, no ballot can be dismissed nor
duplicated. This preserves both individual and universal
verifiability properties.

o Permutation secrecy: An honest mixnet should ensure that
no adversary can link votes from the output list with votes
from the input list.

To achieve these security properties, mixnets rely on advanced
cryptographic constructions, e.g. zero-knowledge proofs and
commitment schemes, with complex interactions between
them. Consequently, proof techniques required by these pro-
tocols are quite intricate. Indeed, they are based on complex
cryptographic reductions techniques (e.g. rewinding) and com-
plex interactions between cryptographic and algebraic results.

Formally proving security properties of e-voting protocols
is a huge task, and some results have already been achieved.
In particular, some protocols involving simple tallies have
been completely proved [1], whereas more complex ones
using mixnets still need efforts to be completely proved. For
some of them, partial proofs exist, assuming for example that
the involved mixnets are ideal [2]. Formally proving security
properties of real-life mixnets remains somewhat of a blind
spot in the overall proofs of complex e-voting protocols,
mainly because of the complexity of the underlying proofs.
In particular, we need to handle zero-knowledge proofs, which
implies to manage rewinding techniques to get the associated
witnesses (in our case, the witnesses will be the permutations
used to mix the ballot box). This means that we have to “get
back into the past of the adversary’s actions and make them
choose another way, a kind of fork paradigm”. This implies
that we have to manage very precisely adversary knowledge
and behaviour, and cannot consider them as a black box. Other
probabilistic aspects also lead to subtleties, and we need to be
able to manage them through formal models which need to be
precise, expressive and sound. Getting all this at the same time
is necessary to get comprehensive proofs that we can trust.

A. Related work

Terelius-Wikstrém mixnet protocol (a variant of mixnet
protocol that is used in the e-voting protocol Belenios [3])
has been originally proposed in [4], [5], with a sketch of
handmade cryptographic proof of the proposed constructions,
and a particular focus on algebraic properties, but without
formalizing the rewinding step linked to the zero-knowledge
proofs, and assuming that the adversary produces as many
proof transcripts as needed to extract a number of witnesses.

Our goal is to supplement this work by providing a for-
mal computational proof of this protocol security properties,
Formal security proofs of cryptographic protocols are usually
based on one among two main paradigms. The first one
is the symbolic model, Based on first-order logic, it has
led to several well-known tools and to successful protocols
analyses, even for mixnets, as in [6], [7]. However, sym-
bolic models consider cryptographic constructions as black-
boxes with perfect security, making them unsuitable to cap-
ture the subtleties of rewinding arguments. The second ap-
proach, known as computational model, takes into account
the ability for the attackers to break cryptographic primitives
with some probability of success, e.g. considering them as
Probabilistic Polynomial-Time Turing Machines. Several such
frameworks have been proposed and developed. The well-
known CryptoVerif tool [8] provides a mechanized way to
handle general reductions techniques, but for intrinsic reasons
is unfortunately not able to handle rewinding techniques. Other
approaches, based on probabilistic Hoare logic (e.g. leading to
the EasyCrypt tool [9]) could be more suitable for our purpose.
Unfortunately, even if recent advances allow rewinding in
EasyCrypt [10], performing complex proofs of protocols using
advanced cryptographic techniques remains very complex and
time consuming with this kind of tools, making them ill-suited
for our goal.

In the present work, we focus on a third paradigm, namely
the Computationally Complete Symbolic Attacker (CCSA)
model [11], [12]. This model aims to take benefits of both
previous paradigms: using a first-order logic, it abstracts
(and then ease) most probabilitic and complexity theoretic
reasoning, but provides at the same time strong cryptographic
guarantees by giving a probabilistic semantics to this logic.
These benefits rely on the central predicate u ~ v, encoding
the fact that the probability, for a probabilistic polynomial-time
adversary, to distinguish the computational interpretations of
the terms u and v is negligible. In order to perform a proof in
this model, one has to provide elementary axioms in this logic
to capture the properties of the cryptographic constructions
(their computational interpretation should be proven sound),
and perform the proof with the help of these axioms. A
correct proof then provides guarantees against a computational
attacker. This logic, which has been implemented in the
Squirrel proof assistant [13], allows relatively simple proofs
of complex protocols (for example key-management APIs
[14]), with very limited work on proving soundness of the
axioms. Notably, the soundness proofs are small and relatively

easy to check, and the remainder of the reasoning is pure
first-order reasoning. Today, neither CCSA nor Squirrel can
handle rewinding techniques, but it is precisely the goal of the
present work to supplement previous works by providing all
the material to be able to reason with rewinding techniques
and zero-knowledge proofs within the CCSA logic, hence
providing all the necessary reasoning techniques to prove
mixnets security formally.

Other efforts have already been made to formalize such
proofs with logics. In particular, [15], [16] propose a model of
Terelius-Wikstréom mixnet in Coq (now Rocq) using the Cer-
tiCrypt project [17]. These proofs focus on properly capturing
all the associated probabilistic arguments, but exclude rewind-
ing. More precisely, their models are low-level ones and, then,
more precise than ours when studying the algebraic properties
(which we mostly axiomatize), providing a lot of confidence in
the algebraic reasoning and justifying in particular the proof of
permutation. However, they do not model rewinding at all and,
thus, miss some adversarial selection argument, as discussed
later. These works are complementary to ours, and provide
us confidence that our axiomatization of algebraic properties
is correct, while our work ensures that the rewinding step of
the proof is correct A final remark is that their work provides
verified running code, which is not the case of our work.

Our work heavily relies on the properties of interactive zero-
knowledge protocols, and more precisely on X-protocols. A
number of works aim at proving that such interactive zero-
knowledge protocols or X-protocols precisely satisfy intended
properties [18], [19], [20], [21], [22], considering them at
the atomic primitive level. Among these works, some lead
to implementations into formal tools as CertiCrypt, ZKCrypt,
CryptHOL, EasyCrypt and SSProve. But, none of them ad-
dresses larger protocols using X-protocols at a macro level,
and we adopt here a complementary approach where we
assume that the zero-knowledge or X-protocols satisfy the
intended properties, formalize them as building blocks used to
build larger protocols, and then prove that the overall protocol
using them satisfies another set of properties. The aformen-
tioned works give a strong fondation for our hypotheses.

Finally, few works aim at formalizing rewinding for com-
putationally sound logics targeting cryptographic reasoning.
Notably, [10] aims at formalizing rewinding for EasyCrypt
logic’s. However, proofs in EasyCrypt are notoriously in-
tricated as soon as the reductions become complex, and
capturing the nested rewinding steps — which is necessary
here — would be a rather complex problem in this logic.
By contrast, we provide here a relatively simple proof thanks
to our formalization of adversarial success. Concerning our
choice of framework, we point out that in EasyCrypt all
reductions must be explicit, leading to heavier and less Human
readable long proofs (in terms of lines of code). In particular,
adversarial executions are explicit in the number of times the
rewinding has to be executed. Our CCSA formalization of
the rewinding technique abstracts it inside the semantics of
our axiom, making it much easier to handle for the user.
Besides, EasyCrypt provides concrete security analysis, but

makes computations on probabilities explicit. This makes it
more precise, but leads to heavier and less Human readable
proofs (in terms of lines of code).

B. Contributions

The goal of our work is twofold: firstly, to the best our our
knowledge, we provide the first complete and precise proof
of Terelius-Wikstrom mixnet protocol; secondly, we provide
a formalization of rewinding and other reasoning techniques
in the CCSA logic, which can be reused in any other formal
analysis involving it. More precisely:

« We provide (and prove) axioms for the algebraic proper-

ties needed for the proof.

e We provide the first CCSA axiomatization of zero-
knowledge proofs, commitment schemes and re-
encryption.

e« We provide a new construction that allows to capture
rewinding in the CCSA logic. Natively, the original
CCSA logic only allows reasoning on globally negligible
(or globally non-negligible) events, meaning that one can
only reason on probabilities on the whole sampling space,
but it cannot handle conditional probabilities. However,
rewinding requires reasoning on the probability of a
certain event knowing that an execution point has been
reached. Therefore, we introduce a new construction in
the CCSA logic that captures that a certain formula is
true with non-negligible probability knowing that an-
other formula is true. Additionally, we provide axioms
addressing interactions between this construction and the
usual global CCSA formulas. With this enrichment of
the CCSA logic, we are able to capture the rewinding
argument.

To our knowledge, our work is the first one to provide a

framework providing complete and precise formal proofs of
not-idealized mixnets.

C. Outline

Our paper is organized as follows. We first provide in
Section II an overview of Terelius-Wikstrom mixnet protocol,
to give a flavor of its intrinsic nature. Then, we introduce in
Section III some background on the CCSA logic, and show in
Section IV how we use it to formalize the cryptographic prim-
itives and properties involved in Terelius-Wikstrom protocol.
Then, Section V is dedicated to a more detailed presentation
of the protocol, which includes CCSA logic formalizations.
At this point, all the ingredients are set to expose our proofs
of verifiability in Section VI and permutation secrecy in Sec-
tion VII. The article ends in Section VIII with a summary of
our contributions and future work directions. We provide more
technical details on the proofs and supplementary material in
appendices.

II. TERELIUS-WIKSTROM MIXNET PROTOCOL IN A
NUTSHELL

We provide in this section an overview of Terelius-Wikstrom
protocol [5], [4]. A more precise description is provided

in Appendix B. Before presenting the protocol, we need to
introduce some notation. From now on, /N will denote a natural
number and p, € N* will be a prime number of size at
least 7, i.e. we have log, p, > 1. Moreover, G,, refers to
a cyclic group of order p,, and F(p,) refers to the Galois
field of order p,. We denote by (- | -) the standard scalar
product over F(pn)N: for all vectors x = (£1,...,ZN),y =
(W1, yn) € F(py)N, we have (x | y) = S, ziy;. We
denote by 1 the unit vector 1 = (1,...,1) € F(p,)" . Finally,
we define ® to be the following operator on vectors: for
two vectors X = (21,...,2N),yY = (Y1,.--,yn) € F(py)V,
X®y = Hivzl z!". In Terelius-Wikstrdm mixnet protocol,
permutations are represented as matrices. More precisely, if
m € G is a permutation of length NV, its representation in
the form of a matrix is M, = (m(ﬂ) where, for

i,)1§i7j§N
all i,5 € [1;N], mgg) = Oir(j) (Where d;r(;y) = 1 when
i =m(j)). We define the predicate perm M, to hold when
M is a permutation matrix.

Terelius-Wikstrom mixnet protocol is split into two parts,
an offline one and an online one. First, at the same time

as the election setup, during the offline phase, each mix-

server chooses a random permutation 7 & s ~ and pub-
lishes a commitment to the matrix M, representing this
permutation 7. In other words, each mix-server chooses a
random vector s & F(p,)" and publishes the value a «
Compar (#(p,)) (¢k, Mr ; s) where the commitment algorithm
Comppat (v (p,)) is based on Pedersen’s commitment scheme.
In doing so, each mix-server publicly promises to use the
permutation 7 without revealing it. Later, just before the tally
of the election, the online phase will consist of the ballot box
mixing procedure, which goal is to erase the link between
ballots and voters, ensuring ballot privacy. During this phase,
each mix-server takes on its turn the list of ballots in the ballot
box b(™, and outputs a permutted and re-randomized version
of this list of ballots b(°"), Besides, each phase of the protocol
comes with a zero-knowledge proof attesting that the target
property is satisfied.

Before going deeper into details, let us point out the
properties that any mix-server should satisfy:

o (Correctness) When both mix-server and verifier are
honest, a mix-server must keep the content of each
ballot untouched, and the proof transcripts produced by
the mix-server must be accepted by the verifier. More
precisely, the decryption of the input list of ballots and
the decryption of the output list of ballots are equal as
multisets. Actually, as this property has been shown in
[4] and [16], we will not linger on it.

o (Permutation secrecy) When the mix-server is honest
but the verifier is dishonest, i.e. is controlled by an
adversary A, the mix-server blurs the link between the
output list of ballots and the input one. That is, the
adversary A cannot link ballots to voters.

o (Verifiability) This property aims to verify that a mix-
server does not cheat, under the assumptions that the mix-
server is controlled by an adversary A and the verifier is

honest. More precisely, it is achieved if .4 cannot produce
any proof transcript accepted by the verifier while the
decryption of the output list of ballots is not a permutation
(up to re-encryption) of the input one.

III. THE CCSA LOGIC

We briefly recall in this section the very key concepts of
the Computationally Complete Symbolic Attacker (CCSA)
logic [12]. This logic is a first-order logic built on (higher-
order) terms, using names to denote random samplings, and
a subset of functions to represent the adversarial computa-
tions. These terms are interpreted as random variables over
the randomness of both the protocol and the adversary, and
represent the interactions between the protocol and the ad-
versary. Formulas are built on top of two main predicates:
[¢] which denotes that a formula (a term of type bool) is
true with overwhelming probability, and u ~ v that states
that no probabilistic polynomial-time adversary can distinguish
between the distributions of the lists of terms u and v with
non-negligible probability.

A. Terms

Types in the CCSA logic are built on a set of base types T
using the usual type arrow —. Notably, we assume that base
types include at least bool, nat, real and msg (this latter to
model bitstrings). A type structure M defines an interpretation
[7]}; for each base type 7 € T and security parameter 7).
The interpretation of standard types is the standard one, and
function types are defined as usual. A type is said to be finite
if, for any 7, its interpretation is finite.

The terms considered in the CCSA logic are simply-typed
A-terms built upon a set of variables X

tuo=a|tt|MNz:7)t | V(r: 7).t

Variables represent function arguments, logical variables and
function symbols (e.g. cryptographic functions) declared in an
environment.

An environment consists in variable declarations (x : 7) and
variable definitions (x : 7 = t). We assume that environments
declare at least the standard boolean operations (e.g. A, V),
integer operations, real operations, and a number of standard
functions (in particular an if then construct). Note that
environments allow for well-founded recursive definitions.

A model M for a term structure £ consists, for every 7,
of two sets of random tapes: Th (the honest randomness)
and T, = (the adversarial randomness) It defines, for every
declared variable (x : 7) and every security parameter 7, a
[r]g; valued random variable p € Tf; , x T} , + [«]7};*. This
interpretation [-]{:” is naturally hfted to terms. We require that
usual functions are interpreted in the standard way.

Example 1. For all n € [1; N], for all i € [1;n], we define
term i to be the i-th canonical vector w; € F(p,)"™ where, for
all j € [1;n], (w;); = d;;. Therefore, we have [i]{; e = u;

for all security parameter 1 and all random tape p € T.

We call names a subset N/ C X of variables, which
represents honest random samplings. Names can only be
declared in an environment, and are of type 79 — 7, where
Tp 1S a base type. Names are interpreted as a sequence of
independent identically distributed random samplings from the
honest randomness Tgﬂm to 7. This means that we require
that two different names, or the same name used with two
different indices, do not “use” the same part of the random
tape. Contrary to [12], we do not require that 7y is a finite
type, however we require that all formulas involving names are
guarded by a condition ensuring that they only use, for every
7, a finite number of indices, which achieves the same effect.
This allows us to define a recursive term of type nat — msg
that returns a list of randomnesses of arbitrary size. It is then
only used under the assumption that its argument is bounded
for every 7.

B. Formulas

Formulas of the CCSA logic are standard first-order for-
mulas built on top of the first-order terms, with predi-
cates designed to capture cryptographic reasoning. We write
V,A,3,... for the usual global logical connectors, in order
to distinguish them from their local counterparts that appear
in terms. The semantics of the logic is the usual first-order
semantics, where M = F' means that F' holds in M.

We now recall the definition of the main predicates of the
CCSA logic given in [12]. To capture cryptographic properties,
we need to define what is a small enough success probability
for the adversary.

Definition 1. A function f : N — R is negligible if for all
polynomials P, we asymptotically have f(n) < P(n)

Predicate [¢] denotes the fact that the formula ¢ (i.e. a term
of type bool) is almost always true. Precisely, M = [¢] holds

[12"
Predicate ~ captures computational indistinguishability. If

u and v are lists of terms with matching types, u ~ v holds

if, for any probabilistic polynomial-time Turing machine A,

[P, [AW [l o) | = P, [A7 VI) |

is negligible in 7. Note that A is given access to the adversarial
randomness from the model.

Predicate adv(u) expresses that the term w can be computed
by the adversary in polynomial time. Predicate det states that
a term does not depend on randomness (i.e. is a constant for
each 7). Predicate pbound(u) states, for a term of type nat,
that [u]f;"” is bounded by a polynomial in 7.

The logic given in [12] is equiped with a proof system that
allows to reason at two levels: the local level (i.e. for a fixed
randomness), and global level (i.e. first-order reasoning on the
predicates given above). A global judgement £; 0 F F states
that F' is entailed by global hypotheses © in environment &£:

when 1 — Pr,] is negligible in 7).

= &0k Fif = (AO)SF

A local judgement £;0;I" - ¢ states that under global
hypotheses ©, I" almost always entails ¢ (a term of type bool):

=&0:TF¢if = (AO)S[(AT) — 4.

In order to ensure that terms never need to be evaluated on
unbounded randomnesses, and thus that all probabilities are
well defined, we ensure that all formulas appearing in our
proofs satisfy the following syntactic condition: for every term
k used as index for names in ¢ or F', we have pbound(k) as
a global hypothesis.

The proof system proposed in [12] also provides generic
reasoning rules for logical connectives, together with a number
of rules dealing with simple properties of the predicates which
we do not recall here.

IV. MODELLING CRYPTOGRAPHIC PROPERTIES

We provide axioms for cryptographic constructions needed
to model the protocol. First, we model commitment schemes
to reveal only a fingerprint of the permutation used. Then,
we model X-protocols, a kind of interactive zero-knowledge
proofs used to prove the good behavior of a mixnet. Finally,
we model an abstraction of the shuffle performed by a mix-
server, with so-called shuffle-friendly maps. In this section, we
focus only on how to model these cryptographic constructions
in the CCSA logics. For readers who are not familiar with
these advanced cryptographic objects, we provide detailed
definitions and security properties statements in Appendix A.

A. Commitment schemes

Commitment schemes are used to commit to an information
without revealing it directly; the committed information is
first sealed and can eventually be revealed later, but its value
cannot be modified between commitment and opening steps.
We denote by M the set of messages we commit to. More
formally, a commitment scheme for a set of messages M is a
pair of algorithms KS[M] = (gencomkey, com) where

o [gencomkey];”. defines an algorithm which outputs a
commitment key ck and defines the set RS" of randoms
used to commit, as well as the set Iy of commitment
messages.

e cOm : msg — msg — msg — msg is a deterministic
algorithm outputting commitment message a; it takes as
inputs a commitment key ck, a message m € M and a
randomness r € RS

A commitment scheme has two cryptographic properties: the
hiding property and the binding property. For both properties,
the commitment key ck is honestly computed by a setup
oracle.

o (Hiding property) The hiding property states that for
any given commitment message a, no polynomial-time
adversary can break a to obtain an opening information
(m,r) such that a« = com ck m r. The underlying
cryptographic game Hiding@s[M](n,p; ﬂ) is a classic
left-right game with some secret bit 5 € {0,1} and can
be found in Appendix A. An adversary against this game

is given by a pair of probabilistic polynomial-time adver-
saries A = (.Asetup,.Aguess) such that Agewp generates
a challenge consisting of two messages mg,m; € M
with mgy # mq, while Agess tries to guess [from the
output of the commitment oracle, which has committed
to message m. A wins the game Hidings v (1, 03 5)
when 3 is correctly guessed by Agyess. We formalize this
property by the rule G.COM:HIDE (see Fig. 1).

o (Binding property) The binding property states that a
commitment message a can only be opened to a single
message m, the one used to compute a. Identifying the
function com with a hash function, we see this property as
the collision resistance property usually set for hash func-
tions. Therefore, the idea behind the cryptographic game
Bindingﬁgg[M](n, p) is to leave the choice of challenge
messages to the adversary 4. They have to produce two
messages m1, mo € M with two randoms r1,ry € R,
and send these two pairs (my,r1) and (ma,r2) to the
commitment oracle, which produces honest commitments
c1,c2 € Kpa from these two pairs. The adversary
A wins the game BindingiéS[M](n,p) when ¢ = ¢
but (my,r1) # (ma,re). We formalize this rule by
L.CoM:BIND (see Fig. 1).

B. 3-protocols

Let R C PPr x Ar X Wx be a polynomial-time com-
putable relation. For triplets (o,z,w) € R, we denote by
o € PPr the public parameter, by x € X the statement,

and by w € Wy the witness. We define the set ER(a)déf{x €
Xr | Jw € Wg, (0,x,w) € R} to be the language set of the
binary relation R. Besides, given a security parameter n € N*
and a random tape p € T, the property [zkp-rel o x w];
holds for a public parameter o, a statement x and a witness w
when ([o]{; 5%, [zl fe. [wlip fe) € R. A Z-protocol for the
computable relation R is a 3-message protocol Xr between
two agents, a prover P and a verifier V. These agents and
the setup phase S are formalized as probabilistic polynomial-
time Turing machines. Note that the statement x is a public
input of both P and V, while the witness w is known only
by P. The prover P first sends a so-called commit message
to initiate the interaction. Then, the verifier VV sends back
a random challenge (chosen uniformly at random in the
challenge space), to which P responds. A X-protocol Xr
is then defined by three functions zkp-comy, zkp-res, and
zkp-verif,, corresponding to executions of honests prover P
and verifier V:

e zKkp-comy : msg — msg — msg — msg computes,
from an input (o, z,w) € R, a commit message «;

e zZKp-res; : msg — msg — msg — msg — msg com-
putes a response message z(c) from an input (o, z,w) €
R and a challenge c;

o zKkp-verif; : msg — msg — msg — bool takes as input
a public parameter o, a statement x and a proof transcript
(e, ¢, z(c)) and outputs a Boolean b : bool whether or not
the verifier is convinced by the proof transcript.

For ease of notation, we will use function zkp-provej :
msg — msg — msg — msg — msg as a macro for

zkp-prove, o z w (r 7) o

(zkp-comy, 0 = w, T i,ZKp-resy o x w (ri)).

We denote by (P(w) \:‘%)]Q(a, x) the X-protocol
interaction between the prover and the verifier V
as described above by the macro zkp-provey. Note
that functions zkp-prove, and zkp-verif, must satisfy
zkp-verify o x (zkp-prover o x w (r i)) = T. Besides, a
Y-protocol must satisfy the two following properties:

o (Special-soundness) ¥ is said to be special-sound
when there exists a polynomial-time extractor £ given
by the function zkp-extract; : msg — msg — msg —
msg — msg, such that the witness extraction is possible
when two proof transcripts p%)d:et@y, ciyz(e)), 1 € {1,2},
are accepted by the verifier for the same commitment
message « but for different challenges ¢; # co. Infor-
mally, X is special-sound when any prover producing
a proof accepted by the verifier for the witness-statement
pair (o, z,w) € R “knows” the witness w. We formalize
this rule by L.X-P:SPSOUND (see Fig. 1).

o (Honest-Verifier Zero-Knowledge) This property is
surely the trickiest one. The key idea is to state that
any proof accepted by an honest verifier V' leaks no
information about a witness w of a witness-statement
triplet (o, z,w) € R. More precisely, X% is said to be
honest-verifier zero-knowledge (HVZK) when there exists
a polynomial-time simulator Simg (given by the function
zkp-sim, : msg — msg — msg — msg) such that, on a
public parameter o, a statement z € L5 (o) and a random
challenge ¢, outputs an accepting interaction («, ¢, z) with
the same probability distribution as honest interactions
(P(w) :‘%) V(c))(a7 x) between the honest prover P
and the honest verifier V where w is the witness for the
statement z (i.e. (0, x,w) € R) and where the verifier V
must send the challenge c. We formalize this property by
the rule G.X-P:HVZK (see Fig. 1).

In the case of Terelius-Wikstrom protocol, we define a fam-
ily of Y-protocols (Xr(e))eer(p,)~ for a family of binary
relations (R(€))eer(p,)~ €ach X-protocol and relation being
associated to a specific vector e € F(p,,)"V. For a given vector
e, the corresponding X-protocol is defined by adding a first
challenge vector e sent by the verifier at the very beginning of
the X-protocol, the following steps being those of a standard
Y.-protocol, but for a relation depending on e.

C. Shuffle-friendly maps

In their works, Terelius-Wikstrém generalize the re-
randomization of the encryption and potential partial decryp-
tion performed by a mix-server, by a so-called shuffle-friendly
map ¢cs. Formally, each ballot in the ballot box is encrypted
using a cryptosystem CS allowing re-encryption (typically, an
homomorphic cryptosystem is well-suited to encrypt ballots).

To achieve semantic security, the encryption algorithm Enccg
is a (see Fig. 1) non-deterministic algorithm using some
random r as randomness: for a plaintext m € Mg the
encryption of m under the public key pk = pkeg(sk) is

¢ = Enccs(pk, m; r),where r & Reg is chosen uniformly
at random. From this ciphertext ¢, we re-encrypt the plaintext
m without decrypting the ciphertext, by multiplying ¢ by

the encryption of 1 using another random value ' < R .
That is, if ¢’ is the new ciphertext, then the re-encryption
algorithm ReEnccs computes: ¢ = ReEnc,i(c; r’)d:crc .
Enccs(pk,1; v'). A ciphertext c is said to be well-formed for
a secret key sk when c can be decrypted with the secret key

sk. We denote it wf_ctxt sk ¢, and this means:
[wk_ctxt sk iy =1 <= Deccs([skliy /e [clip) # L

We extend this predicate to ciphertexts lists ¢ of length n
as expected: wf ctxt, sk ¢ < Al (whetxt sk (c | i)).
A map (ﬁ(cg : PIC(CS X C(cg X RCS — C(CS is called a
shuffle-friendly map for a cryptosystem CS if it defines an
homomorphic map, i.e., for all public key pk € PKcs, for
all ciphertexts ¢,¢’ € (Ccs,-) using the public key pk, and
for all randomnesses r,7’ € (R, +), we have ¢cs(pk, ¢ -
s r+1') = ¢cs(pk,c;) - pes(pk, ¢). We model these
shuffle-friendly maps ¢cs in the CCSA model by supplying a
function shuf-map, . : msg — msg — msg — msg. Roughly
speaking, two different modes can be considered, separately
or together: re-encryption or partial decryption. In the CCSA
logic, we denote by deccs the decryption predicate of a single
ciphertext, and by dec-listgé) the decryption of a ciphertexts
list of length n.

To be used in a mixnet protocol, a shuffle-friendly map ¢cs
must satisfy the following three properties.

o (Decryption preservation) Firstly, ¢cs must keep the
content of each ballot untouched. For this property, we
assume that the public key pk is honestly computed
from a secret key sk, i.e. we have pk = pkgg sk.
Therefore, we say that ¢cg preserves decryption when,
for all ciphertexts ¢, ¢’ € Ccs such that, if (i) ¢ is an
encryption of a message m € Mg under public key
pk, and (i7) there exists a random value 7’ € Rg such
that ¢/ = ¢cs(pk, ¢; '), then we have Deccs(sk, ') =
Deccs(sk,c) = m. This proves the soundness of rule
L.SFM:CORRECT (see Fig. 1). Notice that for each new
definition of a shuffle-friendly map, one has to prove
that this new map satisfies the decryption preservation
property.

¢ (Associated Zero-Knowledge Proof) Secondly, we want
to get a X-protocol Zg;p proving that a ciphertext
¢ € Ccs is computed with ¢cs from a ciphertext

¢ € Ccs and a random value 7’ € R . This property can

be characterized by an associated relation Rzip, called
shuffle-friendly map relation, which is given by
def,

(pk, (c,c),1") € REP <= ¢ = ¢es(pk, c; 1),

o (Indistinguishability of ¢cs output) Finally, we do not
want ¢cs to leak any information about the supplied
ciphertext ¢ € Ccs. Let ¢, € Ccs be two ciphertexts
such that ¢/ = ¢cs(pk, ¢; r') and ¢ = Ences(pk, m; r),
where m € Mcg is a message and 7,177 € Rig
are random values. We need to make sure that no ad-
versary can distinguish whether ¢’ has been computed
by ¢cs from a ciphertext ¢g € Cgs or some other
c¢1 € Cgs. Therefore, we define a new cryptographic
game Ind—CCAj;CS_’valid (77, IR ﬂ) to be a left-right game
with some secret 8 € {0,1}. An adversary against this
game is given by a pair of probabilistic polynomial-time
adversaries A = (Asetup, Aguess). The first sub-adversary
Asewp generates two ciphertexts cg, c; € Ces with ¢p #
c1 and a proof v that these ciphertexts satisfy the valid
predicate, which is an over-approximation property of the
well-formed predicate wf_ctxt: valid (pkgg sk) c v —
wf_ctxt sk c. We extend this predicate to ciphertexts list
c in the following way:

valid,, (pkeg sk) c v — wf_ctxt, sk c

AR

1<i<j<n

(len (c | i) =len {(c | j))

Then, the second sub-adversary Aguess tries to
guess 3 from the output of the oracle which applies
¢cs on mphertext cg. Adversary A wins the game
Ind- CCAW§ vatia (715 £ ﬂ) when f is correctly guessed
by Aguess- When A wins the game with negligible ad-
vantage, the rule G.SFM:INDCCA (see Fig. 1) is sound.

V. CCSA LOGIC TO PROVE TERELIUS-WIKSTROM MIXNET
PROTOCOL

Now we have given general background about the protocol
and some formalizations of the cryptographic primitives and
properties, we dive into this section in the core of our
contributions and show how to precisely formalize and prove
the security properties of the protocol with the CCSA logic.
Notice that we will not details proofs of soundness of CCSA
rules here. They can be found in Appendix D, alongside a
figure which recap all the rules we need.

A. Linking the protocol description with the CCSA logic

a) A more precise description: To define a commitment
scheme for a matrix, we first define a commitment scheme for
vectors in F(p,))" based on Pedersen’s commitment scheme.
Then, the commitment algorithm com-mat for a matrix in
Maty (F(p,,)) is based on this commitment scheme for vectors
com-vec with the exception that the randomness space is
F(p,)" and the commitment space is szx, . For a matrix M, a
commitment key ck and a random vector s, the commitment
message a = com-mat ck M s to matrix M is defined by
(a | i}d:etcom-vec ck (M -1i) (s | i). Both above-mentioned
commitment schemes are perfectly hiding and computationally
binding under the Discrete Logarithm assumption for the
group Gy, . During the offline phase, each mix-server must

produce a valid commitment message to the secret permu-
tation matrix it chose. The corresponding zero-knowledge
proof proving this step is based on an algebraic result of
characterization of a permutation matrix. Indeed, a matrix
M e Maty (F(p,,)) is a permutation matrix if and only if (¢)
M -1 =1 and (ii) for all vector e = (e1,...,en) € F(p,)",

[T, (M -e)i =TI, e

Definition 2 (Correct commitment relation). Let a € GN
be a vector. Let ck + Gengg, \v(1",N) € (GNJrl be a
commitment key of Pedersen commitment scheme KS[(pn)N].
Let e € F(p,)N be a vector. We define R°°™(e) to be the
relation of correct commitment for vector e:
((ck,e),a,(t,e k) € R®M(e)

a® 1= Comg, yv(ck,1;1)
ANa® e = Comg, \~(ck,€; k)

N
A Hz 1 z:szleL'

During the online phase, a mix-server has to use the same
permutation (than the one picked up and committed during
the offline phase) to permute the input list of ballots and
transform it thanks to the shuffle-friendly map ¢cs. We define
the following relation of correct shuffle.

d
PN

Definition 3 (Correct shuffle relation). Let a € (G;X7 be a
vector of size N. Let ck < Genygy, 5y,) (1", N) € Gg7+1
be a commitment key for the Pedersen commitment scheme
KS[Maty (F(py))]. Let (sk,pk) < KeyGengg(1") € F(py,) x
PKcs be a key pair and ¢cs be a shuffle-friendly map for the
cryptosystem CS. Let c,c’ € C& be two lists of ciphertexts.
Let e € F(p,)N be a vector. We define R;Z‘S’fﬂe(e) to be the
relation of correct shuffle for vector e:

((ck,pk,e), (a,c,c), (€, k,u)) € Rgcz:fﬂe()
e, { a®e= Com]F(pn)N(ck e k)

A (pk,(c® e,c’ ®€'),u) ERgip.
Again, if a is a commitment message to a matrix M, we
get M -e = €’ from the first equality and the binding property.
Hence, by an algebraic argument (that we will explain later),
we conclude the existency, with overwhelming probability,
of a vector of random values r = (r;)Y; € F(p,)" such
that we have, for all i € [L;N], ¢,y = ¢cs(pk, ;i)
For ease of notation, we denote by shuffle,.. pk ¢ 7w r
the function outputting the ciphertexts list term ¢’ with the
semantics defined above. Concrete definitions of X-protocols
for both relations of correct commitment R (e) and of
correct shuffle Rzzgfﬂe(e) can be found in [4].
b) Formalization and axiomatization in the CCSA logic:
We model the execution of Terelius-Wikstrom shuffle protocol
in the CCSA logic with the help of a macro mixy. /4,
considered as a function symbol of arity 4. More precisely,
for a permutation matrix term 7 : matrix,, for a commitment
key parameter term ck : comkey, for a public key term
(pkeg sk) : pkey, and a pair of ciphertexts list and bitstring

G.CoM:HIDE
&;0 F adv(u, mi,ma) (u,m1,ma2) A \I’g(];mkey

£0F [l

fresh

(u7 mi, mQH

L.CoM:BIND
E;0 Fadv(mi,ma,r1,72) E;0;T+ \Ilgfmﬁey(ml,mg)
E;0;T F com (ck n) mi r1 = com (ck n) ma r2

E;0 F u,com (ck n) my (ri) ~ u,com (ck n) ma (r1i)

L.X-P:SPSOUND
&;0 I adv(z, p%)(cl) p(2>(cg)) E;0;TFcy #co
E;60;T+ /\ zkp-verif; (0 s) z pgé)(ci)
ie{1,2}

E;0;'Fm; =ma

G.5-P:HVZK
g0+ (U

&;0 F adv(u,z,w) frosh (W, T, W)]

£;0;T b zkp-rel (o s) x (zkp-extracty (o s) x pa) (c1) p2 (c2))

L.SFM:CORRECT
E;0;T F wf_ctxt sk ¢
& 0;LF Jv. ¢’ = shuf-map . (pkcg sk) cv

G.SFM:INDCCA
&;0 F adv(u,c,v)

&;0 F u,zkp-provey (0 s) z w (r i) ~ u,zkp-simy (o s) =

(r)

E0 F [UEE0 (u, e, v) AUPE (u,¢,0)]

&;0;T + deccs sk ¢ = deccs sk ¢

&;0 F u,if valid (pkcg (sk to)) c v then shuf-map,, . (pkcg (sk to))

skey fres
c(ri)

~ u,if valid (pkcg (sk to0)) c v then shuf-map,, . (pkcs (sk to)) (0 (len c)) (r 7)

For the rule L.3-P:SPSOUND, notation p (cz) stands for the triplet term («, ¢;, z(¢;)). For definitions of \ijresh(u’ m1,ma)-like properties, see
Appendix C. Roughly, it is used to ensure that the adversary does not know secret values like private keys.

Fig. 1.

term (c,v) : CA x msg, the term mix,., 7 ck (pkeg sk) (c,v)
is a macro for the following sequence of terms:

mixy . 7 ck (pkeg sk) (c,v) def ar,er t1, (re 3), pr(m),
if validy (pkeg (sk k)) ¢ v then

((x 1), 7, (e t2), (1 p), o ()

where
a, £ com-mat ck = (s 1),
pr(m) o zkp-prove (ck,er t1) ar wx (rx j),
¢, < shuffles, (pkes sk) ¢ (r 1),

po(m) d:efzkp-prov% (ck, pkeg sk, e4 t2) (ar, ¢, c) wg (g D).

The (only) trace of the protocol is frame, defined as

(ck n), (pkeg (sk k)), 7, c,v,
(mixse, 7 (ck n) (pkeg (sk k) (c,v)).
B. Algebraic properties

Proofs of verifiability strongly rely on some algebraic
properties. Firstly, once enough witnesses have been extracted
and have given enough equations to fully determine a matrix
M and a vector s such that a = com-vec ck M s (if
M is of size N, we need N equations and therefore N
witnesses), we can solve the system of equations with a
function solve : msg — msg — msg — (msg x msg) that
outputs M and s. This function’s semantics corresponds to an
adaptation of the Gaussian elimination, which is polynomial-
time. For all ¢ € [[1; N], the witness (¢, €}, k;) € Wg for the
relation of correct commitment R°°™(e;) associated with the
vector e; € IF‘(p,,)N gives the following equation on matrix
M: a® e; = Comg, \~(ck,ej; k;).

Actually, we have enough equations, i.e. we have N equa-
tions, when the vectors family (e;)Y, defines a basis of the
vector space F(p,)Y, which is expressed by basisy (e;)Y,

New cryptographic rules in CCSA

in the CCSA logic. As dim(F(p,)") = N, we only need a
free family, which is achieved with overwhelming probability
for any family of vectors chosen uniformly and independently
at random. Therefore, we formalize the opening of the com-
mitment value a by the rule L.OPEN (see Fig. 2).

Secondly, once we get matrix M, we use the characteriza-
tion of a permutation matrix to show that this matrix indeed
represents a permutation. This characterization states that M is
a permutation matrix if and only if the two following equations
hold: (i) M -1 =1 and (ii) when e is chosen uniformly at
random in F(p,)Y, then Hf\il(M ce); = Hfil e;. In the
CCSA model, we denote this last product operation by the
function prod ;. Actually, to model this characterization result
in the CCSA model, the second condition (4¢) is a bit twisted,
and instead of Condition (i%), we use Equation

N
Sic
i=1

We characterize a permutation matrix in the CCSA logic by
the rule L.7m:CHARAC (see Fig. 2). Equations (é¢) and (4i’) are
equivalent thanks to the Schwartz-Zippel lemma [23], [24],
which states that, for fq € F(p,)[X1,...,Xn] a non-zero
multivariate polynomial of total degree d € N over F(p,,) and

N
(i) VeeF(p)"N,[[(M

i=1

for e & F(p,)™ a vector chosen uniformly at random in the
then Pr & E(p)N [fd() }gﬁ.
This result can be formalized by L. gz (see Fig. 2).

Finally, to show that matrix M has indeed been used to
shuffle the input list of ciphertexts, the second zero-knowledge
proof shows that for any e € F(p,)" chosen uniformly at
random we have: Ju € F(p,),c' ® (M - e) = ¢cs(pk,c ®

u). By studying the set H¢ o . given by

{e € F(p))" |
Jv eF(py),c ® (Mx-e) =

vector space F(p;,)",

Hc,c’,w =
dcs(pk,c® e; v)},

we show the equivalence between the two following properties

1) Hc,c’,ﬂ' = F(pn)N 5

2) When vectors e € IF(p,])N are chosen uniformly at
random, we have: Pr s

EFp)N |:e S Hc’clvﬂ— i| > E
We formalize it in rule L.SFM.CHARAC (see Fig. 2).

C. Security properties

Now, let us focus on security properties. In both following
properties, the commitment key parameter ck is honestly
computed by the setup algorithm gencomkey and is publicly
sent on the network to all agents. Details of corresponding
cryptographic games can be found in Appendix B.

o (Verifiability) This property is studied under the assump-
tion that the mix-server is controlled by an adversary A
and the verifier behaves honestly. Intuitively, the verifi-
ability property ensures that, as long as the mix-server
provides proofs that are accepted by the verifier, the
decryption of the output list of ballots is a permutation
of the decryption of the input one. We state this property
in the CCSA model as

zkp-verif . (ck n,er t1) a (o, (1 1), 22 (7))
A zkp-verify, (ck n,pkeg (sk k), ey t2) (a, ¢, c’)
(ag, (r¢ p), 24(re))
A wi_ctxty (sk k) c
H
wf_ctxty (sk k) ¢’

A eqmp (dec- llSt() (sk k) c) (dec-list((cg) (sk k))

E; o+

where eqm; is the predicate standing for equality of
lists as multisets.

o (Permutation secrecy) This property is studied under the
assumption that the mix-server behaves honestly while
the verifier is controlled by an adversary A. The idea of
the secrecy property is to show that there is no way for
A to identify the permutation used by the mix-server if
the mix-server behaves accordingly to the protocol. Let
frameji; denote the initial knowledge of the adversary
and let Oj,; be the initial global context of formulas
defined by

framein & (ck n), (pkeg (sk k)),m,id,c,v and

Ot & [Wekt,, (framein)], (25 (frameini)]

We formalize the permutation secrecy property in the
CCSA logic by the following property
&; Oinit - framejpn, mixg .o 7 (ck n) (pkeg (sk k)) (c,v)
~ frameinir, mixg.. id (ck n) (pkeg (sk k)) (c,v)

VI. PROOF OF VERIFIABILITY

Let us remind that in the case of the verifiability property,
the adversary 4 controls the mix-server while the verifier V
behaves honestly. This property is a trace property, i.e. at the
very end of the mix-server protocol, we check whether or
not the verifiability property holds for the obtained trace, by

considering all the messages exchanged between A and V.
More precisely, the full trace frameygis is given by
frameverif g (Ck n)7 a, (e7T t1)7 A, (7"71' l)7 Zr (7"71')7

sk, c, C/: v, (e¢ t2)’ Qg, (T¢ p)a Z¢(T¢)

where

o terms a, g, Zr(rx), (sk,c,c’,v), ay, and z4(ry) are
computed by A;

o while terms (ck n), (ex t1), (rz 1), (€4 t2), and (74 p)
are honestly computed by V.

A. Sketch of verifiability proof

To prove the verifiability property, we first need to extract
N witnesses for the commitment relation R%™(e;), for a
vector basis (e;))¥; sent by the verifier. These witnesses are
used to extract the matrix M contained in the commitment
message a € (GN Then, by extracting one last witness for the
commitment relatlon R%M(e), we use the binding property of
the commitment scheme KS[F(p,)"] to show that M satisfies
both (i) M-1 =1 and (i7) prod (M-X) = prod, X, hence
concluding that M is a permutation. Finally, we extract a wit-
ness for the shuffle relation beh““'e(e), concluding that both
ciphertexts lists ¢ and ¢’ are linked by the shuffle-friendly map
¢cs, meaning that for all ¢ € [1; N], we have the following
property: 37; € F(py,), CﬁVI(i) = ¢cs(pkeg(sk), ¢ ; 73). Those
last equations imply, by correctness of shuffle-friendly maps,
the equality of lists dec-list((cg)(sk, c) and dec-list((cg)(sk, c)
as multisets, which is the property we wanted to prove.

To be able to extract witnesses, rewinding is necessary.
Roughly speaking, this technique states that one can run the
adversary A twice: A is run a first time, then we rewind them
to a previous state, and finally run them a second time from
this state. The rewinding argument is used in two different
contexts. The first one is linked to the witness extraction
from a Y-protocol using the special-soundness property. As
a reminder, the idea behind the special-soundness property is
that: if we get two different proof transcripts for the same
commitment message, then we can extract the witness for
the associated relation. The second one is linked to the re-
building of the matrix committed in the vector a, where we
need N independent linear equations. Note that if the first use
of rewinding mentioned above can be abstracted as a black-
box, the second one cannot. Indeed, to be able to apply the
solver of linear equations system solve, the family of vectors
(e;), used to extract witnesses, and then to get the linear
equations system, has to be a free family. However, even if
the probability for a vector family to be free is overwhelming,
the verifier must generate more than N vectors, because the
adversary A may not give an accepted proof transcript for all
the vectors produced by V. As a matter of fact, 4 sort of
chooses which vectors they will answer to.

B. Rewinding in the CCSA logic

The main issue when formalizing the proof is precisely how
to properly formalize the rewinding argument. As mentioned

L.OPEN
N

E;6;TF /\(a@ e; = com-vec ck e k;)

=1

£;0;T F basisy (e;);

E;0;T Fprody (M-X)—prody X =0

E;0;T'Fa=com-matck M s

E;,0;T F permy M

L.SFM:CHARAC

L.Sz
E;0;,'FY

x,to

fresh () E;6;TFP(xtg) =0

e,t

EO;Tkpermy 1 &£6;T ¥ (c,c/,m)

E;TFIv.d/ @ (r-(et)) = shuf-map,, .. pk (c® (et)) v

O, 'FP=0

&, (x:msg); O;T - Jux. ¢’ ® (m - x) = shuf-mapy . pk (c ® x) vx

In L.OPEN rule terms M and s are defined as follows: (M, s)dgsolve a ()N, (e, k)N .

=

Fig. 2. New algebraic rules in CCSA

above, rewinding gets back to a past state of the adversary’s
computation, and run the attack process again from this state.
In our case, it is used to obtain a number of proof transcripts
in order to apply the special-soundness property.

Rewinding is neither a fully local construction (we need
the adversary to succeed with non-negligible probability), nor
a fully global one (we rewind from a state of the protocol
where a portion of the randomness is fixed). In order to capture
rewinding in the CCSA model, we therefore introduce two new
predicates, which precisely quantify the probability of success
of the adversary, globally and from a specific execution point.

First, we capture the fact that a formula is true with
probability at least g. This predicate offers a quantitative
version of what already exists in the CCSA framework, but
with explicit lower bounds for the adversary. For a formula
¢ : bool and a real parameter g : real with non-negl(g), we
define the global predicate ,[¢] with the following semantics:

[, (). e Vi € NP, [(61307 | > B, (Lol %)

Notice that, if g is non-negligible, we have:
G.=:CHARAC

E;0F = [-¢] & 3 (g : real). non-negl(g) A o9l

The proof is quite straightforward, as if —¢ is false with non-
negligible probability, then there exists a non-negligible g such
that ¢ is true with probability g.

In order to capture rewinding, we also need a local version
of this predicate, quantifying the success probability of the
adversary when part of the protocol state is fixed. Therefore,
given a property ¢ : 71 — --- — 7, — bool and parameter
¢ : real with non-negl(g), we define the low-bound predicate
with the following semantics:

x ,p def
VneN",VpeT,[low-bound g ¢/ =

Prrie[[n]]&, i€[1;p] |: [[(;SHI@[Y% (7“1, e ?TP)] 2 EP’ (Hg]]gﬂyl;})

This predicate captures the probability that a formula ¢ is
true with non-negligible probability when part of the random-
ness used (everything but ry,...,r,) is fixed.

These two predicates are linked by the following axiom:

G.LB:INTRO
&0k [pr]
&0+, ,llow-bound (g/2)]

10

This comes from the following fact: for a ¢(r, s) property
to be true with probability g, there needs to be enough values
of r where the probability over s that ¢(r, s) is true is large.

In fact, these axioms imply a nicer one that will be really
helpful in our proofs:

G.LB:ELIM
E;0 Vg : real. non-negl(g) A det(g) = [low-bound g ¢ — ¢ r — 2 r]

E;OF[pr = Y]

This axiom allows us to introduce low-bound conditions
when proving a security property of the form ¢ — 1. This is
crucial for using rewinding, as rewinding is only allowed for
properties that are true with non-negligible probabilities. We
can now state the rewinding axiom in the CCSA logic:

Axiom 1 (Rewinding). For all polynomial-time property
Y . (¢) : T — bool [ptime|, for all non-negligible
parameter g : real with non-negl(g), the following rule to
catch the rewinding argument ' is sound

") 3k, : nat. det(k,) A pbound(ky) =
vt kg x5) = 6 (s 1))

rand

kg rs — (I'S t) E{I‘S 1,...,1‘3 k'gH

£, 0 + Iselect
[low-bound g § — V (¢ : nat). (rs t € select
AV (t: nat). (rs t) € select"™

rand

To prove the soundness of this rewinding axiom, we define
an adversarial selection function selectr(;)Cl : nat — (nat —
7) — set,(7); studying its complexity provides a concrete
value for the natural number term k : nat which satisfies both
predicates det(k) and pbound(k). The complete proof can be
found in Appendix E.

But, to be able to derive a complete proof, a last ingredient is
still missing. Indeed, throughout their proof, Terelius and Wik-
strom assumed that the adversary is not able to influence the
distribution of challenges for which rewinding is performed.
But we need to address the fact that properties which are true
with overwhelming probability are preserved under adversarial

Notice that this axiom closely captures the rewinding argument: as long
as a formula is true with non-negligible probability, we have a polynomial-
time procedure that produces a given number of quasi-independent witnesses.
A crucial point here is that g is assumed to be non-negligible, ensuring
that our choice of k is, indeed, polynomial. If we drop that assumption, an
exponentially small g would yield an exponential £ breaking the reduction.

selection of randomness as defined previously. We address this
point with the following rule:
G.SEL ~

&; O F det(k) A pbound(k)
E;0F [V(t:nat). (rst) € selectr(‘,:f“)j

£;0F [n<k— ¢ (select™ K ry

rand

EOF[p(rsl) ... (rsn)]
krs — (rst) € {rs1,...,rs k}]

)]

This rule states that if a property ¢ holds with overwhelming
probability over a set of random samplings, then it still holds
even if the adversary is allowed to select the randomness
from a polynomial-size set. This comes from the fact that
in a polynomial-size set of randomness, the probability of
finding a subset that invalidates ¢ is negligible. As a short
example, [basisy (selectr(;)Cl k rs)] holds, meaning that even
if the adversary can select randomness in a polynomial-size
set, N random vectors still form a basis with overwhelming
probability. This is necessary, as the rewinding axiom does
not provide uniformly sampled random values. To the best of
our knowledge, this argument has been missed in all previous
proofs of Terelius-Wikstrom mixnet protocol.

C. Verifiability proof

In this subsection, we give a detailed sketch of the verifia-
bility. The complete proof is given in Appendix F.

Let frameyerit be the complete trace of Terelius-Wikstrom
protocol, defined as

frameyert = (ck n), a, (ex t1), am, (7 1), 22 (1),
sk,c,c,(eq t2), ag, (r¢), 26(re)

Verifiability property states that if the input is well-formed and
all zero-knoweldge proofs are successfully verified, then the
output list of votes produced by the mix-server is equal (as a
multiset) to the input one. In CCSA, we capture this as

[— eqm,, (dec-list((cg) sk c) (dec-listg) sk c')]
where ¢ is the verifiability condition:

¢ & zkp-verif_ (ck n,ex t1) a (x, (rx 1), 22 (1))
A zkp-verif, _ (ck n,pkes sk, ey t2) (a,c,c’)

(g, (16 p), 24(14))
A wf_ctxty sk c.

The CCSA proof sketch is similar to the computational
proof [4], but introduces low-bound predicates when needed
for rewinding steps, and removes them at the end to conclude.

1) Extraction of the committed matrix: The first step of the
proof is the extraction of the permutation matrix. This is per-
formed through the extraction of N witnesses (e, k;)X ; for
the relations of correct commitment R°™ (e;), where (e;)X,
is a free family of IF(p,])N ; then, for each of these witnesses we
build one linear equation involving the committed matrix, and
we finally solve the system composed of all these equations.

To do so, we have to handle two rewinding steps. The first
one provides a sequence of proofs for vectors (e;)XY ;. Then,
for each of these vectors, we perform a rewinding on the

11

challenge r € F(p,); doing so, we can apply the special-
soundness axiom and obtain one equation. Hence, to be able
to apply the rewinding axiom twice, we need two low-bound
assumptions: the first one states that there are enough random
vectors to rewind; and the second one states that for a chosen
vector, there are enough random challenges to rewind. More
formally, let us denote by 1, the formula

e < Ne. Ar. zkp-verif - (ck n,e) a (o, r, 2-(1)),

where both arguments on which we perform rewinding are
abstracted. We introduce the following condition allowing for
both, nested, rewinding steps

low-bound g (\e. low-bound ¢’ (¢ €))

for g, g’ : real.

Going deeper into the details, let us define e, : nat — vecty
and r, : nat — chall; to be names (i.e. semantically random
nonces) corresponding to sources of random vectors and public
random coins in F(p,)*. With two sequential rewinding axiom
applications, we prove the existence of two deterministic and
polynomially bounded natural number terms ke : nat and k. :
nat, with k. > N and k. > 2, and two selection functions,
such that for all ¢ € [1; N] and j € {1, 2}:

. selectgé\;) ke s = {es t;}N, with tq,...

pairwise distincts,

. selectgﬁgn k’r rs = {I‘s Ti1,Ts 7’7;72}, with Ti1 7é Ti,2,

o and Yy (es ti) (rs T'i,j)'

Therefore, for all ¢ € [1; N], we have ¢, (es t;) (rs ri1)
and ¢, (es t;) (rs r;2) with 7,1 # 7;2. Thus, by the
special-soundness axiom, we get N witnesses w, (), for all
i € [1; N], defined by

,In : nat

wy (1) &f zkp-extract, (ck n,e; t;) a

(9 (rs 71,1)) (08 (xs 7i2))

def

where pgf)(c) (ar (i), ¢, 22 (i,¢)). And each witness wy (%)
satisfies the property zkp-rel . (ck n,es t;) a (wx(7)).

Then, using G.SEL and L.BASIS followed by L.OPEN, we
get two terms M and s such that a is a commitment message
to the matrix M, i.e. under the low-bound described above
we have a = com-mat (ck n) M s.

2) M is a permutation: We now need to prove that matrix
M is indeed a permutation. To do so, we use our characteri-
zation of a permutation matrix: we extract a new witness for
the relation of correct commitment R°°™ (e,), where vector
e, and matrix M must be independent; then, we can apply
Schwartz-Zippel rule (L.SZ and G.SEL), and finally conclude
that prod,, (M - X) — prod,, X = 0. Once again, we need
enough random challenges to rewind with vector e,, which
implies to add the condition low-bound ¢’ (¢, e). Finally,
using L.m:CHARAC, we get perm, M, which concludes the
proof.

3) M has been used to shuffle the input ciphertexts list
with the shuffle-friendly map ¢cs: The last step of the proof
consist in proving that the permutation matrix M we have
extracted satisfies a com-mat (ck n) M s, for some
vector s. Indeed, we are left with proving that the output
ciphertexts list ¢’ is the shuffle of the input ciphertexts list ¢ for
the extracted permutation M. Once again, we need to apply
the rewinding axiom, this time to the second zero-knowledge
proof. We define 14 the formula used in the rewinding axiom

g & zkp-verif, (ck n,pkcg sk, ey t2) (

{ag,,24(r))

and add the corresponding lower bound condition
low-bound ¢” 1),. Using the extracted witness, it follows
from the properties of shuffle-friendly maps that M has been
used to shuffle the input ciphertexts list.

4) Putting everything together: We will now prove the
verifiability property. To do so, we denote by H the function
defined by

def

H =
A zkp-verif,, _ (ck n,pkeg sk, e t2) (a,c,c) (g, 1, 24 (1))

a,c,c)

Xe. Ar. M. zkp-verif (ck n,e) a (a7, z:(r))

A wf_ctxty sk c.
We want to prove the following formula

[H (ex t1) (r= 1) (ro p) =
eqm,, (dec-list'y) sk c) (dec-list) sk)]
AsH (ext1) (rx 1) 76 p = Yr (ex t1) (rx I) and
H (ex t1) (r= 1) (r¢ P) — oy (ry p), we use the
three previous results to prove the following property for all
deterministic non-negligible parameters g, ¢’ : real:
low-bound g (\e. low-bound ¢’ (H e)) —
low-bound ¢’ (H (er t1)) = H (ex t1) (rx 1) (r¢ p) —
eqm, (dec-list'Y’ sk c) (dec-list'y) sk c’)
Therefore, by two applications of the elimination rule
G.LB:ELIM of predicate low-bound (one with parameter
g, then another one with parameter ¢g’), we get the desired
verifiability property.
VII. PROOF OF PERMUTATION SECRECY
Let framejniy denote the initial knowledge of the adversary,
and let Oj,; be the initial global context of formulas:
frame; & (ck n), (pkeg (sk k)),m,id, c,v
\IICk’n \IlSk’k

comkey skey

def

Oinit = [(frameinit)], [(frameinit)]

For ease of notation, for a permutation o, we denote by x4(0)

the statement x4 (o) &f (ag,c,c)). By unfolding the definition
of the mix predicate mixg.;, one has to prove the following
indistinguishability property:
E; Oinit F frameinit, ar, (ex t1), (rx J), p=(7),
if validy (pkeg (sk k)) c v then {(r 1), c, (e t2), (7o D), Po (7))
~ frameinit, aia, (ex t1), (rx J), p=(id),
if validy (pkeg (sk k)) ¢ v then ((r 1), ciy, (€4 t2), (To P), Po(id))

12

where
a, < com-mat (ckn)o (si),
pr(o) o zkp-prove, (ck n,ex t1) a, ws (rx J),
c, < shuffle,.. (pkos (sk k) c o (r 1), and
ps(0) < zkp-prove, (ck n,pkcs (sk k), es t2) 24(0) wo (v p)-

To prove this security property, and because of dependencies
between adversarial computations, we have to use a backtrack-
ing strategy using the following order of terms:

Ps(0) ~ (1o P, €p ta) ~ €y ~ (T 1)
~ pﬂ'(g) ~ (rﬂ' j7 er tl) ~ Qg

More precisely, we use the following arguments.

o For proof transcript terms py(o) and pr(o), we
use the Honest-Verifier Zero-Knowledge hypothesis on
both X-protocols by applying the corresponding rule
G.X-P:HVZK. Therefore, we transform function sym-
bols zkp-provey /4 by simulated ones zkp-simg /3,
which are independent of the respective witnesses. Doing
so, the term we obtain only depends on public data, and
not on the permutation used o.

For fresh names computed by the honest verifier (i.e.
terms er t1, r j, r [, 4 to, and ry4 p), we use the fresh
rule G.~:FRESH and, then, can simplify the resulting
term with rule G.~:SIMPL.

For the list of ciphertexts term c/, which is computed
by applying function symbol shuf-map_ /3, we use the
indistinguishability of ¢cs output hypothesis by applying
corresponding rule G.SFM:INDCCA.

Finally, for the commitment value a,, we use the hiding
hypothesis for commit function symbol com-mat/3, by
applying corresponding rule G.COM:HIDE.

More details on this proof can be found in Appendix A.

VIII. CONCLUSION

Many e-voting protocols use mixnets, which are critical to
achieve security properties but unfortunately really hard to
handle in automatic formal proofs frameworks. In this paper,
we propose a complete proof of Terelius-Wikstrom mixnet
protocol in the CCSA logic. To do so, we introduce new
predicates, rules and axioms in the logic to be able to handle
zero-knowledge proofs and rewinding. To our knowledge, it
is the first time that this protocol can be proved in a logical
framework, and the first fully precise cryptographic proof of
the Terelius-Wikstrom mixnet.

As future work, we plan to include this new material in
Squirrel, the tool implementing the CCSA logic. This will
open the way to complete mechanized proofs of e-voting
protocols using mixnets. In parallel, since our axiomatization
of rewinding is not tailored to our case study, this will also
open the way to proofs of other kinds of protocols needing
to handle zero-knowledge or rewinding. Our additions to the
CCSA logic also open the way for other types of proofs. For
example proofs involving the programmable Random Oracle

Model (e.g. the Fiat-Shamir transform) are now attainable as
they involve probabilistic arguments which are similar to those
needed to catch the rewinding lemma in the CCSA logic.

While the present paper focuses on proving properties of
one mix-server, in an e-voting protocol several such mix-
servers are run sequentially. The goal is to ensure that privacy
holds if at least one is honest, while maintaining verifiability
through a chain of mix sevrers. While this is left as further
work, we took particular care to ensure that our secrecy and
verifiability properties are amenable to sequential composition
by guarding the conditions of the input list by an arbitrary
valid predicate that is also satisfied by the output of a
mixserver. Formally integrating mix servers in a larger proof
of e-voting protocols will be a significant further work.

REFERENCES

[1] V. Cortier, C. C. Dragan, F. Dupressoir, and B. Warinschi, “Machine-
checked proofs for electronic voting: Privacy and verifiability for bele-
nios,” in CSF. 1EEE Computer Society, 2018, pp. 298-312.

G. Bana, R. Chadha, and A. K. Eeralla, “Formal analysis of vote privacy
using computationally complete symbolic attacker,” in ESORICS (2), ser.
Lecture Notes in Computer Science, vol. 11099. Springer, 2018, pp.
350-372.

V. Cortier, P. Gaudry, and S. Glondu, “Belenios: A simple private
and verifiable electronic voting system,” in Foundations of Security,
Protocols, and Equational Reasoning, ser. Lecture Notes in Computer
Science, vol. 11565. Springer, 2019, pp. 214-238.

B. Terelius and D. Wikstrom, “Proofs of restricted shuffles,” in
AFRICACRYPT, ser. Lecture Notes in Computer Science, vol. 6055.
Springer, 2010, pp. 100-113.

D. Wikstrom, “A commitment-consistent proof of a shuffle,” in ACISP,
ser. Lecture Notes in Computer Science, vol. 5594. Springer, 2009, pp.
407-421.

J. Dreier, P. Lafourcade, and D. Mahmoud, “Shaken, not stirred -
automated discovery of subtle attacks on protocols using mix-nets,” in
USENIX Security Symposium. USENIX Association, 2024.

[2]

[3]

[4]

[5]

[6]

[71 S. Post. (2019) Gitlab repository of sym-
bolic proofs for the swisspost e-voting protocol.
[Online]. Available: https:/gitlab.com/swisspost-evoting/e-voting/

e-voting-documentation/-/tree/master/Symbolic-models

B. Blanchet, “A computationally sound mechanized prover for security
protocols,” IEEE Trans. Dependable Secur. Comput., vol. 5, no. 4, pp.
193-207, 2008.

G. Barthe, B. Grégoire, S. Heraud, and S. Z. Béguelin, “Computer-aided
security proofs for the working cryptographer,” in CRYPTO, ser. Lecture
Notes in Computer Science, vol. 6841. Springer, 2011, pp. 71-90.

D. Firsov and D. Unruh, “Reflection, rewinding, and coin-toss in
easycrypt,” in CPP. ACM, 2022, pp. 166-179.

G. Bana and H. Comon-Lundh, “A computationally complete symbolic
attacker for equivalence properties,” in CCS. ACM, 2014, pp. 609-620.
D. Baelde, A. Koutsos, and J. Lallemand, “A higher-order indistinguisha-
bility logic for cryptographic reasoning,” in LICS, 2023, pp. 1-13.

D. Baelde, S. Delaune, C. Jacomme, A. Koutsos, and S. Moreau, “An
interactive prover for protocol verification in the computational model,”
in SP. IEEE, 2021, pp. 537-554.

G. Scerri and R. Stanley-Oakes, “Analysis of key wrapping apis: Generic
policies, computational security,” in CSF. IEEE Computer Society,
2016, pp. 281-295.

T. Haines, R. Goré, and B. Sharma, “Did you mix me? formally verifying
verifiable mix nets in electronic voting,” in SP. IEEE, 2021, pp. 1748-
1765.

T. Haines, R. Goré, and M. Tiwari, “Machine-checking multi-round
proofs of shuffle: Terelius-wikstrom and bayer-groth,” in USENIX Se-
curity Symposium. USENIX Association, 2023, pp. 6471-6488.

G. Barthe, B. Grégoire, and S. Z. Béguelin, “Formal certification of
code-based cryptographic proofs,” in POPL. ACM, 2009, pp. 90-101.
G. Barthe, D. Hedin, S. Zanella-Béguelin, B. Grégoire, and S. Heraud,
“A machine-checked formalization of sigma-protocols,” in CSF. IEEE
Computer Society, 2010, pp. 246-260.

[8]

[9]

[10]
(1]
[12]

[13]

[14]

[15]

[16]

[17]

[18]

13

[19] J. B. Almeida, M. Barbosa, E. Bangerter, G. Barthe, S. Krenn, and
S. Zanella-Béguelin, “Full proof cryptography: verifiable compilation
of efficient zero-knowledge protocols,” in CCS. ACM, 2012, pp. 488-
500.

D. Butler, A. Lochbihler, D. Aspinall, and A. Gascén, “Formalising
ς-protocols and commitment schemes using crypthol,” J.
Autom. Reason., vol. 65, no. 4, pp. 521-567, 2021.

D. Firsov and D. Unruh, “Zero-knowledge in easycrypt,” in CSF. IEEE,
2023, pp. 1-16.

P. G. Haselwarter, E. Rivas, A. Van Muylder, T. Winterhalter, C. Abate,
N. Sidorenco, C. Hritcu, K. Maillard, and B. Spitters, “Ssprove: A
foundational framework for modular cryptographic proofs in coq,” ACM
Trans. Program. Lang. Syst., vol. 45, no. 3, pp. 15:1-15:61, 2023.

R. Zippel, “Probabilistic algorithms for sparse polynomials,” in EU-
ROSAM, ser. Lecture Notes in Computer Science, vol. 72. Springer,
1979, pp. 216-226.

J. T. Schwartz, “Fast probabilistic algorithms for verification of polyno-
mial identities,” J. ACM, vol. 27, no. 4, pp. 701-717, 1980.

V. Shoup, “Sequences of games: a tool for taming complexity in security
proofs,” IACR Cryptol. ePrint Arch., p. 332, 2004.

M. Manulis and J. Nguyen, “Fully homomorphic encryption beyond
IND-CCAL security: Integrity through verifiability,” in EUROCRYPT
(2), ser. Lecture Notes in Computer Science, vol. 14652. Springer,
2024, pp. 63-93.

R. Kiisters, T. Truderung, and A. Vogt, “Formal analysis of chaumian
mix nets with randomized partial checking,” in IEEE Symposium on
Security and Privacy. 1EEE Computer Society, 2014, pp. 343-358.
A. Lysyanskaya and L. N. Rosenbloom, “Universally composable o-
protocols in the global random-oracle model,” in TCC (1), ser. Lecture
Notes in Computer Science, vol. 13747. Springer, 2022, pp. 203-233.
T. Attema, S. Fehr, and M. KlooB, “Fiat-shamir transformation of multi-
round interactive proofs (extended version),” J. Cryptol., vol. 36, no. 4,
p. 36, 2023.

D. Baelde, C. Fontaine, A. Koutsos, G. Scerri, and T. Vignon, “A
probabilistic logic for concrete security,” in CSF. IEEE, 2024, pp.
324-339.

[20]

[21]

[22]

(23]

[24]
[25]

[26]

[27]
(28]

[29]

APPENDIX

In Appendix A we recall and precise all cryptographic def-
initions and games this paper is based on. In Appendix B, we
recall the specification of Terelius-Wikstrom shuffle protocol
as given in [5], [4]. Finally, our details proofs of security
properties for Terelius-Wikstrom shuffle protocol, and proofs
of soundness for the CCSA rules we have added, can be found
in the other appendices (Appendices D and F). Appendix E
presents details of the rewinding technique and Appendix C
presents subterms mechanics and freshness properties used in
cryptographic rules.

APPENDIX A
CRYPTOGRAPHIC DEFINITIONS
In this section, we recall usual definitions of the crypto-
graphic security properties for all the cryptographic construc-
tions we need in this paper.

A. Useful usual cryptographic definitions

Firstly, we recall usual definition of cryptosystems from
[25]. A cryptosystem CS is a tuple

CS = (PKcs, Mcs, Res, Ces, KeyGengg, Ences, Deccs)

where

o The sets PKcs, Mcs, Res, and Ces are respectively
called the public key space, the plaintext space, the
randomness space, and the ciphertext space for the cryp-
tosystem CS ;

https://gitlab.com/swisspost-evoting/e-voting/e-voting-documentation/-/tree/master/Symbolic-models
https://gitlab.com/swisspost-evoting/e-voting/e-voting-documentation/-/tree/master/Symbolic-models

o KeyGengg : N* — F(p,,) x PKcs is an algorithm takes
as input a security parameter € N* and outputs a key
pair (sk,pk) < KeyGengg(n) where sk € F(p,) is the
randomly chosen private key of bit-size at least 1 and
pk € PKcs is the corresponding public encryption key
defined by some function pkcg : F(p,;) — PKcs ;
Enc((C"S) : ’PIC(E:"S) X M((C"S) X Reg — Ces is a deterministic
algorithm taking as inputs a public key pk € PKcs,
a message m € Mcs, and a randomness 7 € Rgg
and outputs a ciphertext ¢ < Ench"S) (pk,m;r) € Ccs
encrgq;ted with the public key pk ;

Dec : F(p,) x C —s MU U {1} is a deterministic
algorithm taking as input a secret key sk € F(p,)
and a ciphertext ¢ € Ccs and try to decrypt it with
some secret key sk € F(p,). If ¢ was not encrypted
with the corresponding public key pk = pkgg(sk), the
decryption algorithm fails and outputs in this case a
special symbol L supposed to not belong to the mes-
sage space Mcs. Otherwise, the decryption algorithm
succeeds and outputs the message m € Mg such that
¢ = Enccs(pkeg(sk), m; r) where r € Rg.

For a cryptosystem CS, and for all natural number n €
N*, we define the function ngé) 1 F(py) x Cgs — {0, 1},
called the well-founded ciphertexts list predicate, such that the
following property holds

Vsk € F(py), V(ci)iz1 € Cés,

wfgé) (sk, (ci)?:l) =1 vic [1;n], Deccs(sk, ¢i) # L.

Definition 4 (Homomorphic cryptosystem). A cryptosystem
CS is called homomorphic when

o The sets (Mcs,®), (Res, ®) and (Ces, ®) are Abelian
groups ;

o For all security parameter n € N*, for all honest key pair
(sk,pk) «+ KeyGengg(n), the following property holds

Vmi,ma € M, Vri,rs € Res,
Enccs(pk, m1 @ ma; r1 @ r2) =
Enccs(pk, m1 ; 71) © Ences(pk, ma ;5 72).

Besides, we recall two usual cryptographic properties, the
Indistinguishability under Chosen Plaintexts Attack (Ind-CPA)
[26] security property and the Discrete Logarithm assumption
[25].

1) Indistinguishability under Chosen Plaintexts Attack
(Ind-CPA): For an adversary A = (.Asetup, Aguess), a security
parameter 7 € N*, a random tape p € T, and a secret bit
B € {0,1}, we define the cryptographic Indistinguishability
under Chosen Plaintexts Attack game Ind-CPAéS (77, 0; 6) to
be the cryptographic game defined in Game 3.

We define the advantage of the adversary A against the
indistinguishability under chosen plaintexts attack game to be

14

Ind—CPA((C“g”'“" +Aguess) (1, (pn, pa) ; B) — Ind-CPA property
3$

(sk,pk) < KeyGengg(n; pn) 3 7 Reg

(mo, m1) < Asetup(1, Pk 5 pa) 3

cp < Ences(pk,mg; 1) ;

b+ -Aguess(cﬁ) Pa))

return (b =).

Game 3. Cryptographic game of indistinguishability under chosen plaintexts
attack for cryptosystems

the following function

def

Vne N*, Advid.cpa [.A ’ (Cg] (7])
Procr [1 < Ind-CPAZ (n, p; B)] € [0,1].

A cryptosystem CS is said to be secure against the in-
distinguishability under chosen plaintexts attack when, for
all adversary A against the Ind-CPA game, the function
Adviacea[A | CS] is negligible in the security parameter
n € N*.

2) Discrete Logarithm assumption: Let & = (G, , gp)pen-
be a sequence of pairs of cyclic group and generator where, for
a security parameter) € N*, g, € G, is a generator of the
cyclic group Gy, of prime order p;, such that log, p, > 7. For
an adversary 4, a security parameter 7 € N*, and a random
tape p € T, we define the Discrete Logarithm Attack game
DLPZ (1, p) to be the cryptographic game defined in Game 4.

DLPQ (n, (ph, pa)) — Discrete Logarithm problem

r&F(pH;h(—gZEGM ;
v+ Algn, b5 pa) s
return (r = 7).

Game 4. Cryptographic game of discrete logarithm attack for a sequence of
cyclic groups & = (Gyp,,, gn)nen+

We define the advantage of the adversary A against the
discrete logarithm game to be the following function

Vn e N*, Advpre [A | 6] (n) def
Proer [1 < DLPZ (n, p)] e [0,1].

We say that the sequence of cyclic groups ®
(Gyp,)» gn)nen- is secure against the Discrete Logarithm Attack
when the function Advpp [.A | (’5] is negligible in the security
parameter 7 € N*.

B. Commitment schemes

In this subsection, we recall definitions of cryptographic
security properties for zero-knowledge proofs as described
in [27]. Let M be an infinite countable set. A commitment
scheme KS[M] for the set of messages M is a tuple

KS[IM] = (PKam, R K, Gen g, Compy)

such that

o The sets PKnq, RYY", and K are respectively called
the commitment key parameter space, the randomness
space, and the commit value space ;

The algorithm Gen,, : N* — PK is a probabilistic
polynomial-time algorithm which outputs a commitment
key ck < Geny (n) € PKap on input a security
parameter 7 € N*. This algorithm is called the generator
of commitment parameters for the commitment scheme
KS[M] ;

Finally, the algorithm Com , : PKy x M X RY" —
KCaq is a deterministic polynomial-time (in the security
parameter € N*) algorithm which outputs a commit-
ment value Com%[)(ck,m; r) on input a commitment
key parameter ck € P, a message m € M and a
randomness r € R

Moreover, a commitment scheme KS[M)] has to satisfies two
security properties: the hiding and the binding properties as
defined below. Notice that these two properties cannot be
perfectly verified at the same time.

1) Hiding property for commitment schemes: For an ad-
versary A = (Asetup, Aguess), a security parameter 7 € N*,
a random tape p = (pp,pa) € T (where p, € T" is the
honest random tape and p, € T? is the adversarial random
tape), and a secret bit 5 € {0, 1}, we define the cryptographic
hiding game Hidingﬂés[(1, p; B) to be the cryptographic
game defined in Game 5.

Asetups Aguess
I(KS[./{;] g)(77’ (piupa);

ek < Geny (n; pn) o 7 & R
(m(); ml) — ASetUp(n, Ck; pa) :
cg < Com (ck,mg; 1) ;

b <= Aguess(¢s; pa)

return (b = 3).

Game 5. Cryptographic game of hiding for commitment schemes

Hidin 8) — Hiding propert
g g property

We define the advantage of the adversary A against the
hiding game to be the following function

V€ N*, Adviding [A | KSIM]] () £
Proer [L HidingHéS[M] (n,p; B)] € [0,1].

o (Perfectly hiding) A commitment scheme KS[M)] for
the message set M is said to be perfectly hiding when,
for all adversary A against the hiding game, we have

Vn € N*, Advaidging[A | KSIM]] (1) = 0.

(Computationally hiding) A commitment scheme
KS[M] for the message set M is said to be computation-
ally hiding when, for all adversary A against the hiding
game, the function Adviiging [A | KS[M]] is negligible
in the security parameter € N*.

15

2) Binding property for commitment schemes: For an ad-
versary A, a security parameter € N*, and a random
tape p € T, we define the cryptographic binding game
Bindingﬁég[M (77, p) to be the cryptographic game defined in
Game 6.

BindingﬁS[M] (777 (pn, pa)) — Binding property

ck < Geny(n; pn) ;

(m,r1) < A, ck; pa) 5 (m2,72) < A1, ck; pa) ;
ay < Com(ck,mq; r1) 5 ag < Comy,(ck,ma; 12) ;
if (mq #maAas =as) thenb+ 1lelseb<«0;
return b.

Game 6. Cryptographic game of binding for commitment schemes

We define the advantage of the adversary A against the
binding game to be the following function

def

Vn € N*, Adveindging[A | KS[M]] (n)
Pryer [1+ BindingHéS[M] (n,p) } € [0,1]

o (Perfectly binding) A commitment scheme KS[M] for
the message set M is said to be perfectly biding when,
for all adversary A against the biding game, we have

Vne N*, AdVBjnding [.A | KS[M” (’f]) =0.

(Computationally binding) A commitment scheme
KS[M] for the message set M is said to be computation-
ally binding when, for all adversary .4 against the binding
game, the function Advginding [.A | KS [MH is negligible
in the security parameter 1 € N*.

C. Zero-knowledge proofs and ¥-protocols

In this subsection, we recall definitions of cryptographic
security properties for zero-knowledge proofs as described in
[28].

1) General case: Let R C PPr x Xr X Wgr be a
computable relation, i.e. a relation which can be verified
by a Polynomial-time Turing Machine. The sets PPr, Xr
and Wy are respectively called the public parameters space,
the statements space and the witnesses space. We denote
by pr : PPr x Xr x Wgr — {0,1} the polynomially
decidable function such that, for a public parameter o € PP,
a statement x € Xp, and a witness w € Wpg, we have
¢r ((0,z,w)) =1 if and only if (0,z,w) € R.

Let 11 € N. A zero-knowledge proof ZK"W[R] for the rela-
tion R with (2p1+ 1) moves is a triplet ZK™W[R] = (S, P,V)
such that

e Algorithm S is a special probabilistic polynomial-time

algorithm which outputs on a public channel a public
parameter 0 € PPx and a statement x € Xz (x is a
public data) and outputs on a private channel directly to
the algorithm P a witness w € Wgx (w is a private data).
This algorithm takes as input a security parameter n € N*

and is called the setup algorithm for the zero-knowledge
protocol ZKMW[R].

Both probabilistic polynomial-time algorithms P, called
the prover, and V, called the verifier define a (2u + 1)-
move protocol, where 2u + 1 messages are exchanged
between the both on a public channel. Let n € N* be a
security parameter. Let (o, z; w) < S(n) be an output of
the setup algorithm S. An interaction between P and V is

given by the sequence of 24 + 1 messages (P(w) ﬁg’{)

V) (n,0,z) = (m;)**+*. All even messages (my;)", are
sent by the verifier V), are called the challenge messages
and live respectively in the sets (C h%))le. All odd
messages (ma;+1)5, are sent by the prover P, are called
the commitment messages and live respectively in the sets
(IC%);:; except the last one mo, 1 which is called the
response message and lives in the set Z,. We denote by
Tr = (szl (K%ﬁl) xCh%))) x Z4, the proof transcripts
space of the zero-knowledge protocol ZK W [R].

At the very end of the (2u+1)-move protocol, the verifier
V outputs a bit b € {0,1} either they are convinced by
the messages sent by the prover P or not. More formally,
we define a set Eq, [ZKW[R]] = {fi : PPr x Xg x
Tr — {0, 1}};\;11 of equations with A\r € N* defined
by the zero-knowledge protocol ZK ") [R]. Let n € N* be
a security parameter. Let (o, z; w) < S(n) be an output
of the setup algorithm S. We denote by v * : Tr —
{0,1} the function defined by the following equation.

We define the advantage of the adversary A against the
completeness game to be the following function

def

V’I7 S N*, AdVCompleteness |:-/4 | ZK(H) [R]:| (77)

Prper [1+ CompletenessZ\K(m[R] (n,p)] € [0,1].

o (Perfectly complete) A zero-knowledge protocol
ZKW[R] for the relation R and with (24 + 1)-move is
said to be perfectly complete when, for all adversary A
against the completeness game, we have

V1 € N*, AdVcompleences [,4 \ ZKW[R}] (n) = 0.

(Computationally complete) A zero-knowledge proto-
col ZKM[R] for the relation R with (2i + 1)-move
is said to be computationally complete when, for all
adversary A against the completeness game, the function
Advcompleteness [A ‘ ZK® [Rﬂ is negligible in the secu-
rity parameter 77 € N*.

b) Computational soundness property for zero-
knowledge protocols: This property describes the case where
the prover P is dishonest and the verifier V is honest. For an
adversary A = (Asetup; Aprove), @ security parameter 7 € N*,
and a random tape p € T, we define the cryptographic sound-
ness game Soundness“Z“K(#)[R] (77, p) to be the cryptographic
game defined in Game 8.

(-Asetup 7-Apmve)

Soundness, 777, (1, (ph+ pa)) — Soundness property
V (m;)2HH! Plw) =® L0,z)) € Tr, o< 80;pn);
(ma)ft e (Pw) = V) ((.0,2)) € Tr IO
o, def .
oR T ((ma)i) =15 9 € DL filow (madiZ) = 1 (ma) 21 (Agove(pa) =) Vipn)) (,2) ;

Hence, at the very end of the (24414 1)-move protocol, the
verifier V outputs the bit b = vy “ ((m;)7*1") € {0,1}.

i=1
Besides, a zero-knowledge protocol ZK*)[R] has to satistfy
at least three security properties defined below whether or not
the prover or the verifier is honest or not.

a) Completeness property for zero-knowledge proto-
cols: This property describes the case where both prover P
and verifier VV are honest. For an adversary A, a security
parameter n € N*, and a random tape p € T, we define the
cryptographic completeness game CompletenessZ‘K(“) R (77, p)
to be the cryptographic game defined in Game 7.

Completeness“ZAK(m{R] (1, (pn, pa)) — Completeness property

b " ((mi)i21")
return (z € Lg(c) A —b).

Game 8. Cryptographic game of soundness for zero-knowledge protocols

Then, we define the advantage of the adversary A against
the soundness game to be the following function

def

V’f] S N*7 AdVSound |:A | ZK(H) [R]] (n)
Proer [1<+ SoundnessZ‘K(u)[R] (77» P)]

A zero-knowledge protocol ZKW[R] for the relation R
with (2u 4 1)-move is said to be computationally sound
when, for all adversary .4 against the soundness game, the
function Advsound {A ‘ ZK® [Rﬂ is negligible in the security
parameter) € N*.

o< S0;pn);

(z,w) < A, pa) ;

)"« (Pw) =) V) (.23 pr) :
b v ((ma) i)
return (QDR((O’,QE7’(U)) A ﬁb),

Game 7. Cryptographic game of completeness for zero-knowledge protocols

c) Perfect Honest-Verifier Zero-Knowledge property
Jor zero-knowledge protocols: This last property describes
the case where the verifier V is honest but the prover P
is dishonest. For an adversary A, a special probabilistic
polynomial-time algorithm Simy called simulator, a security
parameter n € N*, a random tape p € T, and a secret
bit 5 € {0,1}, we define the cryptographic Honest-Verifier

16

Zero-Knowledge game HVZKZ‘K(,L)[R] Simg (77, 0; 6) to be the 1) Cryptographic definition: A shuffle-friendly map ¢cs :

cryptographic game defined in Game 9 PKcs x Ces X Reg — Ccs for the cryptosystem CS is an
Then, we define the advantage of the adversary A against homomorphic map, i.e. the following property holds.

the Honest-Verifier Zero-Knowledge game to be the following , ,
function Vpk € PKcs,Ve, ¢ € Ces,Vr,r" € Res,
) et ¢es(pk,c- v +1") = des(pk, ¢ 1) - pes(pk, 5).
Vne N, Ad A | ZKW[R], Sim = _ .
K VHVZK[| [R] R} () Besides, a shuffle-friendly map ¢cs has to satisfy the three

‘ Pryer [1< HVZKZ\K(“)[R],SimR (n,p; B=0)] following security properties.
o (Decryption preservation) This property states that the
— Prper [1« HVZKZ\K(N)[R] sime (05 B=1) } l application of a shuffle-friendly map have no effect on
R the decryption of a valid ciphertext c, i.e. a ciphertext
(1)) honestly computed. Formally, we say that a shuffle-
A zer o-knowledge [.)roto.col ZK[R] for the relatlon. R friendly map ¢cs achieves the decryption preservation
with (2p + 1)-move is said to be perfectly Honest-Verifier security property when the following property holds.
Zero-Knowledge when, there exists a probabilistic polynomial-
time simulator Simz such that, for all adversary 4 against the Vn € N*,V (sk, pk) + KeyGengg(n),V e € Ces, V7' € Res,
HVZK game, we have the following identity [3 (m,r) € Mes x Res, ¢ = Ences(pk,m; r)]
Vn € N*, Advavzk [-A ! ZK® [R], SimR} (n) =0. = Deccs(sk, pcs(pk,c; r')) = Deces(sk, c).
2) Special case of p = 1 — X-protocols: In the spe- o (Associated zero-knowledge proof) We define
cial case of zero-knowledge 3-move (u = 1) protocols, we R’;‘zs C PKes x Cds X TRes
first define a new cryptographic property stronger than the Public parameter st Statement set Witnses set
soundness property, called the k-special-soundness [29], for to be the relation of correctness for shuffle-friendly maps
a natural number £ € N, k£ > 2, defined by the relation RMP {ofined by
R. This property implies the §oundness property but a}lso des (P, (¢,), 1) € Rgfp JEN dbes(pk, e).
give a “way” to recover the witness from proof transcripts s
with some additional information. Hence, for an adversary A, We say that a shuffle-friendly map ¢cs achieves the
a special deterministic polynomial-time algorithm £x called associated zero-knowledge proof security property when
extractor, a security parameter 7 € N*, and a random tape there exists a zero-knowledge proof ZK'* [R32P] for the
peT, we ieﬁne the cryptographic k-special-soundngss game re}ation of correctness for shuffle-friendly maps stsp
k-SpSoundZKm[R]_gR (n,p) to be the cryptographic game with (2p + 1) moves.
defined in Game 10. o (Indistinguishability of ¢cs output) First, we define a
Then, we define the advantage of the adversary A against decidable function vgy : PKes x Clg x {0,1} —
the k-special-soundness game to be the following function {0,1}, where n € N*, such that, for all public key
. o o pk € PKcs, for all list of n ciphertexts (c;)i; € Cl,
Vn € N7, Advispsound [A | ZKV[R], 57%} (n) = for all additional information v € {0,1}*, the following
Proer [1+ k-SpSoundZ 1)y e (.) } property holds
Uég) (pkv (Ci)?:h U) =1 g
A zero-knowledge 3-move protocol ZK(l)[R] for the re- sk € F(py) { pk = pkeg(sk) @)
lation R is said to be k-special sound when there exists T A Vie [1n], Deces(sk, i) # L.

a deterministic polynomial-time extractor £z such that, for
all adversary A against the k-special-soundness game, the

function Advi-spsound [A ZKW[R], 572} is negligible in the

We call this function Ugé) to be the function of valid

ciphertexts for the cryptosystem CS.

. ! For an adversary A = (Asetupa Aguess), a security
security parameter 7 € N*. parameter 7 € N*, and a random tape p € T,
Definition 5 (X-protocol). A 3-protocol X for a computable we deﬁni\ the indistinguishability of ¢cs OWPW game
relation R is a 3-move zero-knowledge protocol satisfying (i) Ind—CCA%S, e (n,p; B) to be the cryptographic game
the perfect (or computational) completeness property, (i) the defined in Game 11. Then, we define the advantage of
perfect Honest-Verifier Zero-Knowledge property, and (iii) the adversary A against the indistinguishability game to
the k-special-soundness property for some k € N, k > 2. be the following function
D. Shuffle-friendly maps Vn € N*, Advina-cca [A | dcs, vé?} () =

In this subsection, we recall the notion of shuffle-friendly

, Pr [1 « Ind-CCA*
map from [5] and extend it. peT éc

(n,p; B) }

2
S “és)

17

HVZKZKW[1, simg (> (Ph; pa) 3 B) — HVZK property

Case =0

Case f =1

o« Sn; pn) s
(z,w,p) < A(n,0; pa)

b+ v%z((mi)?ﬁfl) ;

return (o ((o,z,w)) A b).

o815 pn) ;

(z,w, p) <= A(1,05 pa) ;

DT Simp (o, @, p5 pr)
b v " ((my)?")

return (g ((o,z,w)) A b).

(m;

Game 9. Cryptographic game of Honest-Verifier Zero-Knowledge for zero-knowledge protocols

k—SpSound“Z“Ku)[RL e (11, (Pns pa)) — k-special-soundness

oS0 pa)

(l’, (<avcivzi>)i‘€:1) — A(U»Uma) 5)

bt < /\ ci # ¢ — /\ U%’I«a,ci,zi)) ;
1<i<j<k i=1

if (= (bxAb,)) then return0 ;
U 573(0', Z, (<O‘7 Ci, ZZ>)§:1) >
return ¢g ((o,z,w)).

Game 10. Cryptographic game of k-special-soundness for zero-knowledge
protocols

Ind-CCA;“““’“*;;;“g“m) (n, (pn, pa) ; B) — Indistinguishability
CSy VUpg

(sk,pk) « KeyGengg(n; pp) 5 r & Res s
((co,c1),v) < Asetup(n, Pk ; pa) 3

if (—| v<(c2s) (pk, (co,c1), v)) then return 0 ;
cly <= des(pk,ca;7)

b+« -Aguess(cfg i Pa) s

return (b =).

Game 11. Cryptographic game of output indistinguishability for shuffle-
friendly maps

We say that a shuffle-friendly map ¢cs achieves the
indistinguishability of its output secun? property when,
for all function of valid ciphertext vCS satisfying the
property given by Eq. (®), for all adversary A, the
function Adviyg.cca | A ‘ ocs, v((czs)} is negligible in the
security parameter n € N*.

2) A full example — ’re-encryption only” mode: As an
example of shuffle-friendly map, we present the case of “re-
encryption only” for the El-Gamal cryptosystem discussed in
[5]. The El-Gamal cryptosystem EG is defined as follows. Let
n € N* be a security parameter. Let g € G, be a generator
of the cyclic group of prime order p,,.

o The set of plaintexts is Mgg = Gpn, the set of public
keys is PKrg = Gf)n, the set of randomness is Ryg =
F(py), and the set of ciphertexts is Crg = G;, x Gy, ;

o The key generation algorithm KeyGengpg : N* —
F(p,) x Gin is a probabilistic polynomial-time algorithm

which outputs a random secret key sk & F(p,) and the
associated public key pk = (g, g°F) € ng on input a

security parameter 7 € N* ;
o The encryption algorithm Encgg is given by the follow-
ing function

— G?

Pn
— (9" y"m);

Enc{l : G2, x Gy, x F(py)

((g9:y),m,)

o The decryption algorithm Decgg is given by the follow-
ing function
Decfpjé) ¢ F(py) % ng — Gy,
(sk, (w,v)) +— v-u"*F

Notice that the El-Gamal cryptosystem EG is an homomor-
phic cryptosystem and verifies the Ind-CPA security property,
because the cyclic group G, verifies the discrete logarithm
assumption. Then, the “re-encryption only” shuffle-friendly
map @ie© for the El-Gamal cryptosystem EG is defined by
the following function

— Gj,

¢ Gy, x Gy, x F(py)
— (g

((9.9). (u,v).7)

Then, we verify all three mandatory security properties for
shuffle-friendly maps.

o (Decryption preservation) Let » € N* be a security
parameter. Let (sk, (g, g°*)) < KeyGengg(n) be an El-
Gamal key pair. Let (u,v) € Gf,n be a ciphertext and
r" € F(p,) be a random value. We suppose the following
property

I(m,7) € Gy, x F(py), (u,v) =

cu,y”).

EHCEG((.Q; y)7 m T)' (H)

Then, we have

Decgg (sk, 6 (9, y), (w,v) ; 1))
Decgg (sk, (9’" u,y" v))
Decm(sk‘ (gr q’, yr "
— ('r+7‘ (gT+'r) sk
(yr+'r)/(y'r+'r)

m = Decgg (sk, (u,v)).

(by definition of ¢Eg™)
(by hypothesis Eq. (H))
(by definition of Decgg)

m))

Hence, the decryption preservation security property is
verified by the shuffle-friendly map ¢pc"°.

o (Associated zero-knowledge proof) Let X" reenc be the
protocol defined as follows in Protocol 1. fifence this
3-move protocol EZE?(;C defines a X-protocol for the
computable relation for shuffle-friendly maps RZ]E;,C.
Consequently, the shuffle-friendly map ¢3¢ verifies the
associated zero-knowledge proof security property.

Protocol 1: X-protocol Egﬁfm — Correct output for the
reenc EG

shuffle-friendly map ¢y

Public Input : A security parameter 7 € N*. A public
key pk = (g9,y) € ng. Two ciphertexts
c=(u,v),d =(,v)e ng.

Private Input: A random value r & F(p,) such that
= g (pk,c;).
Begin protocol
1) (Commitment message) The prover Ppmap chooses
a random value s & F(py). Then, Pmap computes
(o, B) = (¢9°,v°), and hands it to the verifier Vingp.
2) (Challenge message) The verifier Vmap chooses
uniformly at random a challenge ~y & F(p,)* and
sends it t0 Prap.
(Response message) Prnap computes the value
d=7v-r+seF(p,) and sends back to Vngp the
response 6.
(Conclusion’s bit) The verifier Vinap accepts if and
only if the gollowqiﬁngwequations hold.

g and ¢°

3)

4)

v

f)”gl

/U/

(%

u/

End

reenc

. (Indist2inguishability of PfEE"° output) Let U]I(;G)j : ng X
(G;,)” x {0,1}* — {0,1} be a function of valid
ciphertext satisfying the property Eq. (®), i.e. such that

Vpk = (g,y) € Gzn,Vco,m € GZWVU € {o, 1}*’
v (pk, (co,c1),0) = 1 = sk € Fpy),

y=g" A\ (Decrc(sk,c;)#L). (H)
i€{0,1}

Let A = (Asetup, Aguess) be an adversary. Let 7 € N*
be a security parameter. Let p = (pp,p,) € T be an
adversarial-honest random tapes pair. Let (sk,pk)
KeyGengg(n; pr) be an honest pair of keys for the
El-Gamal cryptosystem EG where pk = (g,y) with

y = ¢°%. Let r & F(p,) be an honest random value
(meaning that r is computed by using the honest ran-
dom tape pp). Let ((co,c1),v) < Asetwp(n,Pk; pa)
be an adversarial setup material. Let suppose that we
have indeed v](E?G? (pk, (co, c1),v) = 1. Therefore, by the
hypothesis Eq. (#) on the valid ciphertext function v](E?G?,
there exists a secret key sk’ € F(p,,) such that y = gk
However, by definition of y, we have also y = g°*.
Thus, we have ¢°F = gSk/. By the discrete logarithm
assumption for the cyclic group G, , we conclude,
with overwhelming probability, that sk = sk’. Hence,
by the hypothesis Eq. (#), we conclude that, for all
b € {0,1}, Decgg(sk,cp) # L. Said differently, we
have, for all b € {0,1}, the existency of a plaintext
my, € G, and a random value r, € F(p,) such that
ey = Encgg(pk,myp; 7). For b € {0,1}, let ¢, € Gf,n

19

be the ciphertext defined by ¢; = ¢ (pk, cp; 7). As
EG is an homomorphic cryptosystem, and by definitions
of ¢, and ¢}, the following property holds

Vb€ {0,1}, ¢, = Encrg(pk, ms; 7 + 7).

Because the El-Gamal cryptosystem EG verifies the
Ind-CPA security property, we conclude that the follow-
ing quantity is negligible in the security parameter € N*

‘ Pr,,era [0+« Aguess(d) ; Pa)]

— PrPaETa [1« Aguess(Cll 3 pa) :| '

Consequently, the function Advyyg.cca [A ’ gleenc, v&g}

is negligible in the security parameter 7 € N*, ie. the
shuffle-friendly map ¢f5"¢ verifies the indistinguishability
of its output security property.

APPENDIX B
SPECIFICATION OF THE TERELIUS-WIKSTROM PROTOCOL

Let ¢cs be a shuffle-friendly map for the cryptosystem CS
with ciphertext set denoted by Ccs. Let NV € N* be a constant
natural number. Let) € N* be a security parameter and p,, €
N* be a n-bits size prime, i.e. log, p,, = 1. We suppose that
the randomness set used by the cryptosystem CS is the finite
field F(p,,) of cardinality p,,.

We define

RV C (@1 xPKes) % (G

Pn

)

N N
X X C(CS X ch)

Statement set

(Maty (F(py)) x F(py)" x F(py)™)

Witness set

Public parameter set

X

to be the relation of the Terelius-Wikstrom protocol defined
by

((ck, pk), (a,c,c’), (m,r,8)) € ’Rx,s

def
{

To prove this relation with zero-knowledge proofs, we define

two families of X-protocols, one occuring as a preliminary
work, called this way the offline proof, and the other one
occuring only when the election is closed and the result is
about to be computed, called this way the online proof. Each
of these two families have an extra dependency in a random
public vector honestly output by the verifier with the honest
random tape.

a= ComMa,N(]F(pn))(ck, T r)
Vi€ [1; N, crpy = des(pk,cis i)

A. Y-protocols family for the offline phase (Eo”(e))eeﬂp)N
We define

R C (Gé\;JrlvF(pn)N) X szyn X (F(pn) X F(pn)N X F(pn))
—_—

Witness set

Public parameter set Statement set

to be the offline relation of the Terelius-Wikstrom protocol
defined by

((ck.e),a,(t. ¢ k) € R™
a® 1= Comg, |~ (ck,1;t)
AN a®e= Com]F(pﬂ)/N (ck,e’; k)

=
N vazl €i = Hf\le
A Y-protocol family proving this relation is given by the

Protocol 2, according to Terelius-Wikstrom papers [4].
As shown in the paper [4], we have the following property.

€;

Proposition 1. On the hypothesis of perfectly hiding and
computationally binding commitment schemes KS[F(p,)"]
and KS[Maty (F(p,))], and on the hypothesis of discrete loga-
rithm assumption on the set of group ((C{rp,”)?7 J— the following
property holds. The offline proofs family (Eof,(e))e F(py)™
given by the Protocol 2 is a family of computationally com-
plete X-protocols for the relation RO,

B. XY-protocols family for the online phase (Zon(e))eewp Y
n

By the property of associated zero-knowledge proof verified
map

by the shuffle-friendly map, there exists a X-protocol X7
proving the relation for shuffle-friendly map R7%°. We denote

by ozr(n¢§§) the probabilistic function outputting a commitment
map

message according to the specification of the ¥-protocol ¥ °7

on input a public key pk € PKcs, a statement (¢, ') € Cgé,
and a witness u € F(p,). Besides, we denote by zr(nqzﬁf) the
probabilistic function outputting a response message according
to Zg;p on input a public key pk € PKcs, a statement
(c,c) € C, a witness u € F(p,), a commitment message

« and a challenge v € F(p,)*. We define

R3 € (G, x

Pn

X PKcs X F(pn)N)

Public parameter set

N N N
(Gpﬂ X C(CS X CCS)
Statement set

(]F(pn)N x F(py) x]F(pn))

Witness set

X

to be the online relation of the Terelius-Wikstrom protocol
defined by

((Ck7pk’ e)7 (a7 C7 cl)? (e,7 k’ u)) E
&,
A

A ¥-protocol family proving this relation is given by the
Protocol 3, according to Terelius-Wikstrom papers [4].
As shown in the paper [4], we have the following property.

?ﬁn
a® e = Comg, \~ (ck,€e'; k)

(pk, (c®e,c’ ®e'),u) € Rgi\s

Proposition 2. We suppose the zero-knowledge proof E(’;;p to

be a Y-protocol for the relation Rg’;p . Then, the online proofs
family (Z?ﬁs (e))eeF(p)N given by the Protocol 3 is a family
n

ROn

of X-protocols for the relation Ry .

20

Protocol 2: X-protocol Y(e) — offline proof — Correct
commitment Y-protocol using a vector e € F(p,)

Public Input : A natural number N € N*. A security
parameter 7 € N*. A commitment key
ck = (g,8) € G}/*! for the commitment
schemes KS[F(p,)"] and
KS[Maty (F(p,))]. Two vectors a € G,
and e € F(p,)".

Private Input: A permutation 7 € IIy(F(p,)) and a

vector of random values s <- F(p,)™ such
that a = COmMatN (F(py)) (Ck, 5 S).
Begin protocol
1) (Commitment message) The prover Pyg(e) defines
e =r-ecF(p,)N,t=(1]s) €F(p,) and
k= (s|e) € F(p,). Then, Put(e) chooses two
vectors of random values r, s’ & F(p,)" and three

random values s, S, Se & F(p,). We set By = g1
and Pogr(e) computes the following values

Vie[I;N], Bi=g"B%,, and B =g%B,
N

v=9¢"]9 6=9", and =g
i=1

Finally, Por(e) hands to the verifier Vygr(e) the
commitment message o = ((B;)1,7, (8:)X,,0,¢€).
2) (Challenge message) V,(e) chooses uniformly at
random a challenge ¢ & F(p,)* and sends it to
Poff(e).
(Response message) We set ¢ = s; and, for all
i € [2;N], e/ = e} ye; + s;. Then, Pog(e)
computes the following values in F(p,):
Vi€ [1;N], d; = cej + s, and i = cr; + i
dy=ck+ 5y, ds =ct+5ss, and de=cey + sc

3)

Finally, Pogr(e) sends to Voge(€) the response
message z(c) = ((d;)f;l,dm (di)fvzl,dg,de).
(Conclusion’s bit) The verifier Vor(e) accepts if

and only if the following equations hold:
N c
(a@ 1/Hg¢> 5:gd‘5,
=1

N
(a®e)y =g" []o",
i=1

Vie [L;N], BB = g% B,

Noe\©
(Bz\r/g}_[’/:1) e=g%.

4)

End

Protocol 3: X-protocol ydes (e) — online proof — Correct

shuffle zero-knowledge proof using a shuffle-friendly

map ¢cs and a vector e € F(p,)V

Public Input :

Private Input:

parameter € N*. A public key

pk € PKcs of a cryptosystem CS. A

A natural number N € N*. A security

commitment key ck = (¢,g) € G/*" for
the commitment schemes KS[F (p,,)] and
KS[Maty (F(py))]. Two vectors a € GI Py
and e € F(p,)"V. Two lists of ciphertexts

c=(a)iLy ¢ = (

vector of random values s <- F(p,)N
that a = Compyg;, (5 (p,)) (ck, 75 8). A

vector of random values r <- F(p,)N

)il € Cls
A permutation 7 € Iy (F(p,)) and a

that, for all 7 € [1; NJ,

C;(i) = ¢C5(pk7 Ci s

Begin protocol

End

TZ‘).

such

such

1) (Commitment message) The prover P(d)“)()
k= <S | e> € F(pn),
and u = (r | s) € F(p,). Then, 7’0¢CS)() chooses

2)

3)

4)

defines e = - e € F(p,)",

$
a vector of random values s’ < F(p,)"

and a

random value s, & F(p,). At this step, (¢w)()
computes the following values

A= a“;%“ (b, (c® e,c' ®€),

and p=g°* Hgf;.

i=1

"

Finally, P2 (e) hands to the verifier V, e (e)

the commitment message

a=(\pu).

(Challenge message) Vc(,fcg)(e) chooses uniformly

at random a challenge ~y & F(p,)* and sends it to

on (e)-

(Response message) Péf CS)(e) computes the
following values in F(p,):

dy = 355" (k. (e e, ® &), u, A, 7),
dy =k +su, and Vi€ [1;N], di = e

/
z+sz

Finally, (¢m)() sends to V(¢”S)() the response

Z = (dkﬂ(dz)iv 1’d)

(Conclusion’s bit) The verifier Véfm(e) accepts

if and only if the following equations hold:

pk (c®e, c
Umap

and (a®e

o) (<A 7,dy) =

=g ng

21

C. 9-move protocol of the Terelius-Wikstrom shuffle
Based on the two X-protocols families (Eoﬁ(e))e F(p)N?
n

proving the relation R°f, and (E‘ms() R (p,)N° proving the
relation Rg”g we define a 9-move shuffle protocol (Protocol 4)
following the definition given in [4].

This 9-move protocol achieves both of security properties
we expect from a shuffle protocol used by mix-servers of a
mixnet protocol’, namely the permutation secrecy and the ver-
ifiability properties. Now, we give the complete cryptographic
definition of both security properties for a shuffle protocol.

1) Permutation secrecy property: Informally, we ask A to
generate two permutations mp and m; in G and send them
to the mix-server. Then, the mix-server secretely chooses one
of them, depending on a secret random bit 3 € {0,1}, and
mixes the ballots with the permutation mz. At this step, A
takes all the mix-server outputs and tries to guess the secret
bit 5. A wins the permutation secrecy game Secrecy"l (1” ; 6)
if they correctly guess the secret bit 8. If they cannot win the
game with significant probability, then we consider that the
permutation secrecy is guaranteed.

Let v((cg) : PKes x C85 x {0,1}* — {0,1} a function
of valid ciphertexts for the cryptosystem CS (i.e. verifying
the property given in Eq. (®)). For an adversary A =
(Asetup, Aguess) @ security parameter € N*, a random tape
p € T, and a secret bit 8 € {0, 1}, we define the cryptographic
permutation secrecy game Secrecy“Z‘le (RIY J, 02 (7] P; B) to

be the cryptographic game defined in Game 12
We define the advantage of the adversary A against the
permutation secrecy game to be the following function

V) € N', AdVsecrey | A | ZKORRY] ()
A . j—
‘ Prjer [1« SecrecyZK(@[RLw R (77, p; B= 0) }
cs?’ €S

A B =
— Pryer [1+ SecrecyZK(@[ng},vég) (7%/), B = 1) } ‘

Hence, we say that the Terelius-Wikstrom shuffle protocol
achieves permutation secrecy when, for all function of valid
ciphertexts vg;) 1 PKes x C& x {0,1}* — {0,1}, for
a(ﬂ)adversary A, the function Advsecrecy |A | ZK® [RTRW]] is
negligible in the security parameter 7 €

2) Verifiability property: Roughly speaking, the verifiabil-
ity property means that A first outputs a vector a € F(p,)"
along with a proof transcript poft(e,) showing the relation
R®™M(e,) for some vector e, € F(p,)" computed by the
verifier V. Then, A outputs two ciphertexts lists ¢, ¢’ € C(Jc\é
of length N and a secret key sk € F(p,)) along with a proof
transcript pon(es) showing the relation Rihclgfﬂe(egﬁ) for some
other vector e, € F(p,)™. A wins the verifiability game

2While we do not prove it here for reasons of conciseness, it follows
from the proof that the 9-move protocol ZK®) [RL‘(’C\’S] actually satisfies the
computational completeness, the knowledge soundness [29] and the perfect
Honest-Verifier Zero-Knowledge properties. It is therefore an argument of
knowledge of the computable relation RL\Q’S

)

Asetup, Aguess
(e Aguess) N) (777 (p}wpa)

Secrec
Yok R 1,00

B3) — Permutation secrecy property

ck < Gelyay (p,)) (15 Pr) 5 (sk,pk) < KeyGengg(n; pr)
((C7 U)7 (7T07 71-1)7 p) A AsetUp(Uv (Ckapk) ; Pa))
if <—| (v((cg) (pk,c,v))) then return O ;

e, o (PR

b« Aguess(awlg i Pa)
return (1 —b® f).

s

(pn| (m € Maty(F(py))) — 75])

_
T RTW
R‘Ms

Vﬁf@)) ((ck, pk),c) ;

Game 12. Cryptographic game of permutation secrecy for the Terelius-Wikstrom shuffle protocol

Verif (1) when the proofs are accepted by the verifier, but
the decryption of the output ciphertexts list ¢’ leads to a
different decryption than the decryption of the input cipher-
texts list c. For an adversary A = (Asetup, Aprove)7 a security
parameter 7 € N*, and a random tape p € T, we define the
cryptographic verifiability game Verifiability7\, 1, (RTW](n,p)
to be the cryptographic game defined in Game 13. re

(-Asetup a-Aprove)

Verifiability /. %) RV |

(1, (pn, pa)) — Verifiability property

ck < Genyary (r(p,)) (15 P1)
(Skﬁ C) — Asetup(m ck; pa)
if (_‘ (ngcg) (Sk,C))> then return 0 ;

7 (Aprove(pa) =fohe Vi (0n)) (ck, Piecs (k))

T Ries
(av eOff) aoff» ’Yoffa (Zoffa Cl)v eOI’l? OéOI’h ’70n, ZOI’]) — H 5
bott < Ugﬁf’%”)’a«aoff, Yot Zoff))
bon U%‘i’j‘fkw(smyem)y (avc’c,)(<aon7'7on7 Zon)) 5
if (= (bot 7\&bon)) then return 0 ;
if equal_multisets (decrypt_list sk c) >
(decrypt_list skc')

Game 13. Cryptographic game of verifiability for the Terelius-Wikstrom
shuffle protocol

then return 0 ;
else return 1 ;

We define the advantage of the adversary A against the
verifiability game to be the following function

Vn € N*, AdVverifiability {«4 | ZK® [REQQ]} (<

Pr e [1 VerifiabilityZl o ew | (0.) }

Hence, we say that the Terelius-Wikstrom shuffle
protocol achieves verifiability = when the function
AdVverifiability {.A | ZK® [R;‘f{]} is negligible in the security
parameter 7 € N*.

APPENDIX C
GENERALISED SUBTERMS AND FRESHNESS PROPERTIES

In this section, we recall definition of generalised subterms
from [12]. Let £ be an environment. We define the generalised
subterms set ST ¢(t) of a term t with respect to the environ-
ment £ to be a set of triples (3,¢,t’), called occurrences,

22

where @ is a sequence of typed variables that are freshly

bounded, i.e. variables bounded in @ are not bounded in .
Hence, we define the new environment &, = (£,). Then,
terms ¢ : bool and ¢’ : T of occurrences in the set ST ¢ () are
well-typed terms in the new environment &,. For a set S of
occurrences, we define

GISE{(@ 0 A 6.1) | (T,9,1) €S}
(x:7).SE{(@,x:7),0,8) | (T,9,t) €S}

Set of generalised subterms ST ¢(¢) is then defined as the
smallest set satisfying equations given in Fig. 14.

To give cryptographic or freshness rules in the CCSA logic,
we define several special generalised subterms set.

o (Freshness) Let n : 7o — 7 be a name and let ¢y : 7 be
a term. Informally, the term n ¢y : 7 is said to be fresh
in the sequence of terms u when if for all occurrences of
the form (@, ¢,n t) € ST¢(u) then ¢ # to. Formally,
we first define the set of formulas in the freshness case

@;;éts% (S) for any set of occurrences S to be the set defined
by
n, def
O (S)={(VA. ¢ —t#£to) | (d,4,nt) €S}

Hence, for any sequence of terms u, we denote by
TPl (u,t0) : bool, to be any well-fyped bool formula
in & implying the freshness of the term n ty. Formally,
for all model M : &£ for the environment &, all security

parameter 7 € N* and all random tape p € T, we have
(w Ol =15
Vo € D (STe(u,to)), [oliyfe = 1.

fresh

n,to
fresh

[w

(Good use of secret keys) Let sk : 79 — skey be a
name which generates secret key terms. Let £y : 79 be a
term. Informally, the secret key term sk t : skey is said
to be well-used when the adversary only has access to
the corresponding public key and the decryption oracle.
More precisely, the secret key sk ty may only appear in
terms pkeg (sk to) or deccs (sk to) ¢. Then, we define
the set ST?T?I;to (u) of generalised subterms for secret
keys for a term u recursively as the classic definition of

ST ¢(x) = {(e,T,2)}
STe(z) £ STe(t)
STe(tt) { STeltoly = 1))
STeWa:7).t) = {(e, T, Mz :7)
ST ¢ (if ¢ then ¢, else () &ef {(
ﬂdSTAh)
STe((w)ie) = |JSTe(w)

{(e, T,)} UST(t)USTe(t)
O} U(z:7).STel(t)
e, T lf¢then t1 else to) } UST¢(9)
(= ¢]S8Te(to)

when (z:7)€forax ¢ &

when (x:7=1) €&
when t =x and (z: 7= Ay.) € €
otherwise

where x is taken fresh

Fig. 14. Generalised subterms

ST ¢(u) with the two following exceptions when u is a
function application

ST, . (Pkes (sk 1))

def

= {(e. T, pheg (s 1)), (e, T, pheg) } U STE,,, (¢
Ult # to]STES, , (sk t), and

ST .. (deccs (sk t) u)

def

{(e, T,deccs (sk t) u), (e, T,deccs) }
USTEL, () USTE,, ()
Ut # to]S 7-$k§kt (skt).

Hence, for any sequence of terms u, we denote by
\Ilzfé;" (u,t) : bool to be any well-typed bool formula
in £ implying the good use of the secret key term sk .
Formally, for all model M : £ for the environment &, all
security parameter 77 € N*, and all random tape p € T,

we have

[

\I/ék to

, def,
skey)]]K/JI pE =l1==

), skt') € STEY, (Wt
V. =t #tolfpfe = 1.

(u,
v(d

e (Good use of commitment key parameters) Let ck :

To — comkey be a name which generates commitment
key parameter terms. Let n : 7y be a term. Informally,
the commitment key parameter term ck n : comkey is
said to be well-used when the adversary only has access
to the commit oracle. More precisely, the commitment
key parameter term ck n may only appear in the term
com (ck n) m r. To do so, we define the set ST;?Z:?’ (u)
of generalised subterms for commitment key parameters
for a term wu recursively as the classic definition of

ST ¢(u) with the following exception

fo?kk?(com (ckn')m 7’)d§f
{(e, T,m), (e, T, 1), (e, T,n) JUl' # n]STEM (ck '

Hence, for any sequence of terms u, we denote by
\Ifglgnﬁ(ey(,t) : bool to be any well-typed bool formula
in £ implying the good use of the commitment key

parameter ck n. Formally, for all model M : £ for the

)

).

23

environment &, all security parameter n € N*, and all
random tape p € T, we have

(D) =15
mkey

(s, ck nO) € STcockn(
[Va. ¥ — ng#n]

APPENDIX D
PROOF SYSTEM

ck,n
comkey

[

1),

n,P __
M:& ™

Global and local judgements about logical reasoning (and in
particular proofs of soundness for these rules) can be mostly
found in [12], or in [30] for concrete security variants. More
precisely, the rule G.~:FRESH comes from [30] in the case
where the term ¢ of the concrete security version of the rule is
a negligible function. Besides, the rule G.=:CHARAC is a new
rule we add in our case, which is immediately sound by the
semantics of the predicate non-negl/1. All other rules come
from the paper [12]. Nevertheless, we remind several useful
rules used in this paper in Fig. 15.

A. Soundness of low-bound rules

In this subsection, we prove the soundness of rules about
low-bound predicate. Let £ be an environment and © be
a context of global formulas. Let ¢ : real with £;0 F
non-negl(g) A det(g) be a non-negligible parameter. Let
¢:1 — -+ — 7, — bool be a formula with n parameters.

¢ (G.LB:ELIM) We proceed by contraposition, i.e. we

suppose £;0 F 5 [¢ r — ¢ r|. Hence, by classi-

cal logic operations, we have £;0 F = [- (¢ r A
(¢ r))]. Therefore, by characterization of non-
negligibility, we conclude by the rule G.=:CHARAC the
existency of a non-negligible parameter g : real such that
40"+ [(¢ A=) x| where &' e u {(g : real)} and

o’ déf@, non-negl(g). Actually, without loss of generality,
we suppose that parameter g is deterministic, i.e. we add

-

Global judgements: equivalence rules

G.~:CS G.~:FA
G.~:REFL EOFu,by, s ~ur,br,sr 0, byt ~ur, by, sy E;OFu,t; ~urt, &0OFadv(f)
E;OFu,t~u,t E; 0O F uy,if b; then s; else t; ~ u,,if b, then s, else ¢, E;OFu, fty~uy, ftr
G.~:Dup G.~:FRESH G.~:SIMPL G.~:TRANS
E;0Fu,t; ~up, tr S;GF[\I/#ésh(u,C(nfresh (),)] E;0Fu ~u, E;OFun~v EOFv~w
EOFu,tt ~up,tr, tr &0 Fu,C(nt)~u,C(ngesh () E;0 F uy, ngresh () ~ U, Niresh () EOFu~w
Other rules
L.BYGLOB G.BYLoc L.REWRITE G.REWRITE
;0 F 9] E;0;0F ¢ E;0;T F ¢ls] E;60;TkFs=t ;0 Fl9] E;0F [¢p Y]
E6;THFo E;0F [9] E;0;T F ¢lt] E;0F Fy]
G.R-3 -
EOFFlo—t} EF(t:7) G.5:CHARAC
&OrF3(z:7). F E;0F 5 [~¢] & 3 (g : real). non-negl(g) A (@]
Fig. 15. Structural local and global rules in the CCSA logic
the property det(g) to the context ©’. Then, by the intro- Which achieves the proof of soundness of the rule
duction rule G.LB:INTRO of the predicate low-bound, G.LB:ELIM by contraposition.
we conclude e (G.LB:INTRO) We suppose the property &£;0 +
g0 p[low-bound (g/2) (¢ A~ 1)]. As parameter @71 ...), ie by definition of the predicate [¢]
g is deterministic and by the rule G.LB:OUT, we con- semantics, we suppose the following property '
clude ()
Vi €N Proer [[o71 . rallifs | > Eper(loliyfe).
&0'F 2, low-bound (g/2) (¢ A=) A (d A=) 1] ()
Therefore, as we have ;0" - [[(p A=) r — ¢ r], we We have to prove the following property
conclude by the global transitivity rule G.LB:TRANS the
following property Vn € N, Prjer { [low-bound (g/2) #]y%]
£',0'F 2, low-bound (g/2) ¢ A (6 A=) x]. > Eper([9/20i %) -
However, by logical operations, we have Let n € N*. By definition of the predicate low-bound

low-bound (g/2) é A (¢ A — o semantics, we have

)r
= low-bound (9/2) pA - (mpVY)r

= low-bound (g/2) ¢ A= (¢ — ¢ r) Proer [ltow-bound (9/2) o]5i' /e } B

= - (- low-bound (g/2) ¢V (¢ r — ¢ 1)) Pr. o wm i { P (e }

= - (low-bound (g/2) ¢ - ¢r — Y1) Prjer “eglﬂ““ﬂ’ligl’gﬂnﬂiﬂ;ﬂ:g(1) .

= Eyer(ly 8
Besides, as £’;0’ - non-negl(g), we have &';0' + e . M€
non-negl(g?/4) (the same holds for det predicate) by Moreover, by1 serPantlcs of real terms, we have
operations_on non-negligible real terms. Hence, by the lg/ 2]]'17\7/5;/)5 = 5lgli . Therefore, by linearity of the
rule G.R-3, we conclude the following property function E, (X (P)), we have
~ - - 1
&0+ 3 (h, : real). non-negl(h,) A det(h,) A Eper([9/21 %) = §Epeqy([[g]}§’,ﬁ’:pg).

= (low-bound (g/2) ¢ = ¢or — 9 1)|.
h'g[((9/2) ¢ = ¢ Vol We denote by py the function defined by
By characterization of non-negligibility, we conclude by

~ def
the rule G.5:CHARAC the property ps(,p) = Prpcrin iclin] { [e (ST }
£€;0"F = [low-bound (g/2) ¢ — ¢ — ¢ x]. and we denote by e, the function defined by
Finally, as £ F (g : real) and by the rule G.R-3, we def
conclude eg(n) = Eper (gl)

g0 3 (¢ : real). non-negl(¢') / det(g') Consequently, we have to prove the following property
1

= = [low-bound ¢/ ¢ — ¢ v — ¢ 1] Proce [po(n0) > geo(n) | > gegn).

24

Rules for low-bound predicate

G.LB:ELIM

E;© F Vg : real. non-negl(g) A det(g) = [low-bound g ¢ — ¢ r —) r]

G.LB:INTRO
5;@|—g[¢r1 e

E;O0F [pr— Y]

&0k o[low-bound (g/2)]

L.LB:TRANS G.LB:TRANS
G.LB:OuT &;© + non-negl(g) EOF [(pr1 .. tn) = (Pr1 ... rn)]
E;©det(h) &6 [low-bound h ¢] EOF [(pr1 oo mn) = (W1 ..)] &0 F ,[(low-bound h ¢) A x]

E;0F ,[(low-bound h) A (P71 ... ™n)]

Probabilistic rule
G.SEL ~
&;© F det(k) A pbound(k)
£,0F [V (¢t nat). (rs t) € select™)

rand

&;0; J + low-bound g ¢ — low-bound g)

&;0 1+ [(low-bound h) A x]

£50F [(rs 1) ... (rs)]
krs — (rst)e{rs1,...,rs k}]

£:0F [n<k— o (select'™ kry)]

Predicates correctness rules

L.EQM:CHARAC
N

£6;TH N\ (x|i)=(x|m-i))
i=1
E0;TFeqmy xy

E;,0;T F permy w

L.DECLIST

L.WF:VALID
&;0;T | valid (pkcg sk) cv

rand

L.m:INJ
E;,0;T F permy 7

£;0;T+ (dec-listgg) sk x| i) = deccs sk (x| i)

L.®:CoMm

E;0;T F wf_ctxt sk ¢ N N

&Ee;rk N\ \/(r-i=j)
i=1j=1

L.®:CANOVEC

O TFx®i=(x]|i)

&;0;T I (com-mat ck M s) ® x = com-vec ck (M - x) (s | x)

L.SHUFFLE

N

£;6;T - ¢’ = shuffley, pk c 7 (rj) <+ /\ (c'® (r - 1) = shuf-map_, pk (c® i) (r j |i))

1=1

Algebraic rules For the rule L.OPEN, terms M and s are defined by (M, s)dgsolve a(e)N, (e, k)N ;.

L.OPEN

L.m:CHARAC
O, 'FM-1=1

E;0;T Fprody (M-X)—prody X =0 i=1

£;0;T F basisy (e;)Y;
N

£;0;TF /\(a@ e; = com-vec ck e k;)

=1

L.BASIS
Erxy,...xn : nat

&e;rE A

1<i<j<n

EFes:nat — 7

{Ei#l'j

&;0;T F permy M

L.Sz
£6;T Tl (P)

fresh

E;0;T'Fa=com-matck M s

E;0;T + basis,, (es ;)i

E;0;TF P(xty) =0

6, THFP=0

Fig. 16. CCSA rules sheet

We have, by definition of pg(n, p),

Prper [[pre ... Tn]]gm’;pg} = /ET%(U»P) dp
P

Hence, the idea is to split the space of random tapes T
whether or not py(n, p) is greater than Jey(n). To do so,
we denote by Tiyr, respectively Ty, the set of random

25

tapes defined by

def
Tap={p €T | ps(n,p) > 3e4(n)}
1
2

def
Tir={p € T | ps(n,p) <

As T = Tjy¢ U Ty (these two subsets form a partition

Cryptographic rules: commitment schemes

G.COM:HIDE

&; 0+ adv(u,m1, m2) (u,m1, m2) A ek

comkey

EOF W

fresh

(ll, mler)}

L.CoM:BIND
&;0 adv(mi, ma,71,72) €;®;F)—lllg§rﬁey(m1,m2)
&;0;T + com (ck n) my r1 = com (ck n) ma 72

E;0 F u,com (ck n) my (r i) ~ u,com (ck n) mg (r i)

E;0;T'Fmy =mo

(@) (@)

Cryptographic rules: X:-protocols For the rule L.3-P:SPSOUND, for i € {1, 2}, the term notation p,’ (c;) is an alias for p (ci)déf(oz7 ¢, 2(¢)).

L.X-P:SPSOUND
5;@Fadv(z,p%)(q),pg)(@)) E;0;T ke #co
£ 6Tk /\ zkp-verif; (o s) x p%) (¢i)
ie{1,2}

G.X-P:HVZK

&;0F adv(u, z,w) 0+ Wt p(u, z, w))

fresl

&;0;T I zkp-rel; (o s) x (zkp-extracty (o s) x p%)(cl) p%)(@))

Cryptographic rules: shuffle-friendly maps

L.SFM:CORRECT
E;0;T F wf_ctxt sk ¢

£;6;T F 3v. ¢’ = shuf-map . (pkcs k) cv

&;0 F u,zkp-provey (o s) x w (r i) ~ u,zkp-simy (o s) x (r 1)

L.SFM:CHARAC
E;,0;T F permy 7
E6;TF3v.c' @ (7 (et)) = shuf-map, pk (c® (et)) v

£,0;T + vt

fresh(c’ C/’ 7r)

£;0;T I deccs sk ¢ = deccg sk ¢’

G.SFM:INDCCA

&;0 F adv(u,c,v) E;0+

[‘I}Sk,io

&, (x :msg); ©;T - Jux. ¢’ ® (7 - x) = shuf-mapy . pk (c ® x) vx

(u7 c, U) A \Ij;’elsh(u7 C, ’U)}

&;© - u,if valid (pkcg (sk to)) ¢ v then shuf-map, (pkcg (sk to)) ¢ (r 1)
~ u,if valid (pkcg (sk to)) c v then shuf-map,, . (pkcs (sk to)) (0 (len c)) (7 1)

Fig. 17. Added axiom rules for algebraic properties and cryptographic security properties

of the random tape space T), we conclude

Pryer { [prs ... Tnﬂ{\’ﬂ’:pg] =

/ p¢(n,p)dp+/
PETint peTsup

Besides, on the set Tj,;, we have by definition of this
subset py(n, p) < 3eq(n). As for the set Ty, because
pe(n, p) is a probability, we have py(n, p) < 1. There-
fore, we have

Po(n, p) dp

Prjer [[¢re ... TnM/Jf:pS]

<[(seaw)dor [ap
PETint PETwp
1

= 569(77)/ dp+/ dp
PETing I)eTsup

Now, by property on probabilities, we have

1
/ dp < Prper [M(nap) < 5%(?))} <1
PETint

and
1
dp < Pryer [m(n,p) > 5¢4(1)]
PETsup
Moreover, by hypothesis Eq. (x), we conclude
rn]]gﬂ):pf :|

1 1
< €9(n) + Prer [qu(??m) > 5eq(n)

eq(n) < Prper [[or ...

26

Therefore, we have the following probability

. 1 1
Vn e N*, Pryer | py(n, p) > 569(77) 2 569(77)

which achieves the soundness proof of the rule

G.LB:INTRO.
(G.LB:OuT) We suppose the property &£;0
yllow-bound / ¢] where the parameter h verifies £;©
non-negl(h) A det(h). By definition of [¢] semantics,
this leads to the following property
Vne N, Pryer [[low-bound h @] .]
> EPET([[QM/E:/JS)' H)

Let n € N* be a security parameter. By definition of A
semantics, we have

Proer | [(low-bound h) A (671 .. o) | =
Prer | [low-bound h], |
Pryer { [671 ...

Besides, by definition of low-bound semantics, we have

P ernggiction | WU o) | 2 B (1)

Moreover, for all p € T, we have the following lower
bound
n,p

Pryer [lopre ... TTLHM:;:|

= Prrief[ri ieln] |: [[(é]]?l\/ﬂ’:pf(rl) v 7Tn)]

ralii’e | [low-bound h @] Fe }

M

Protocol 4: 9-move zero-knowledge protocol ZK“[RIV]
for the Terelius-Wikstrom commitment-consistent proof of
shuffle using a shuffle-friendly map ¢cs

Public Input : A natural number N € N*. A security
parameter 7 € N*. A commitment key
ck = (g9,8) € G+ for the commitment
schemes KS[F(p,)"] and

KS[Maty (F(py))]- A public key

pk € PKcs of the cryptosystem CS. A list

of ciphertexts ¢ = (¢;)¥; € CX.
Begin protocol
[Offline phase]:
1) (Commitment message) The prover 77%\;”)

a vector of random values s < F(p,)". Then,
P(‘b”) computes the commitment value

: (CS
verifier Yy ™.

2) (Challenge message) V. (¢“S

random a vector challenge €off &]F(p,,)N
it to PL0re).
(3-5) (Rest of the offline phase) Both prover P\~ an

the relation R° with public parameter
ooff = (ck, eoff), public statement zoff = a, and
private statement wog = (7,

defined by the following equation
Vi€ HléNﬂ7 C;r(i) = ¢cs(pk, cis TL)

offline phase zgj.
6) (Challenge message) V%Vcs)

random a vector challenge egn & F(p,)N
P(¢CQ).

. (¢cs)
(7-9) (Rest of the online phase) Both prover Pp°

(%) engage in the -protocol Zoﬁ‘cs)(

on. with public parameter

verifier Vpy,
for the relatlon R

obtain the proof transcript
T(Uonaxon;won) = (@on; Yon, Zon)-

[Conclusion]:

only if the following equations hold

k, s
Uc(,ﬁ oft) * ({cxoff, Yot 2off)) = 1,

and ’U(Ck ,pk,eon), (a,¢,c)((

End

chooses

a random permutation matrix & ~(F(py)) and

a = Compyay, (5(p,)) (ck, 7; s) and hands it to the

chooses uniformly at

and sends

verifier V%F) engage in the 3-protocol Yo (eof) for

s). Hence, we obtain the
proof transcript Toff (Ooff, Toff, Woff) = {Ctoff, Yoffs Zoff) -

[Online phase]:
5) (Commitment message) The prover P-(rd)m) chooses
a vector random values r & F(pn) . Then, P((b“”)
computes the list of ciphertexts ¢’ = (c})Y, € CCS

Finally, PT(m sends the freshly computed list of
ciphertexts ¢’ along with the response message of the

chooses uniformly at

Oon = (ckz,pk,eong, public statement zon = (a,c,c’),
and private statement won = (7, s,r). Hence, we

10) (Conclusion’s bit) The verifier V(‘m accepts if and

Qlon, Yon, Zon)) =1.

and sends it

Therefore, by the two previous equations, we have the
following lower bound

Proer [[é71 .. ralis/e | How-bound h o[/ |

> EPET (Hhﬂ I@Jf:ps) :

Consequently, by hypothesis Eq. () and by the previous
equation, we have

Prcr [[(low-bound h ¢) A (¢ 71 ...)]l %]
> Eper([9lire) - Boer (Rl /e)

As &0 + det(h) holds, we have E,cr([h]{;/:) =
h (here we blend h with its deterministic semantics).
Therefore, we conclude the following lower bound by
properties on expected value

[(low-bound h) A (¢ 11 ...)i % }

> Eper([g - hl %)

which achieve proof of soundness for G.LB:OUT.
(L.LB:TRANS) Let n € N* be a security param-
eter and p € T be a random tape. We suppose
[low-bound g ¢[;; /. By definition of low-bound se-
mantics, we have the following inequality

PrpeT

Pry ciripiclimg | [8ln/e(re - mn) }
> Eyer(lole)-
However, by hypothesis &;0 F
Mor .oorp) = (Wr ... 1)), we conclude the

following inequality

n) }

< Prme[[n]]g[,ie[[l;n]] |: [[’(/}]]g/fzps (7"1, B rn) i| .

PrTiG[[Ti wt€l1n] [[[()b]]g/ﬂ,:pé‘(Tl’ R

Therefore, the two previous inequalities leads to the
following property

Prrieﬂriﬂgﬂ,ieﬂl;nﬂ |: [[¢HK/H7;/)5(T17 o 7rn) :|
z Ep’e'lf([[gﬂgdng)'

Said otherwise, for all security parameter n € N*
and for all random tape p € T, we conclude
[low-bound g ¢[|; /-, and achieves this way the proof.

(G.LB:TRANS) Let & : real with £; © - non-negl(h) be
another non-negligible parameter. Let ¢ : 74 — --- —
Tn — bool be a formula with n parameters. Let x : 7 —
bool be a formula. By definition of [¢] semantics, we
have to prove

V5 € N*, Pryer [[(low-bound h 1) A X[}
2 Eper ([[hﬂ&:ps)'

Let n € N* be a security parameter. Because we have as
hypothesis £;0 -, [(¢p 71 ... rn) = (P11 ... 1)), we

conclude by the rule L.LB:TRANS the following property
£;0;2 + (low-bound h ¢Ax) — (low-bound h 1)Ax).
Therefore, we have the following inequality

Proer { [(low-bound % ¢) A X[y /e }

< Projer [[(low-bound %) A x]{;

£

|

Then, by the hypothesis £;© - [(low-bound % ¢) A
we conclude the property we Want.

xls

B. Soundness of property transfer under adversarial selection

Let k£ : nat be a polynomial bounded and deterministic
natural term. As k is deterministic, that is the semantics of
k does not depend on the random tape p (i.e. for all random
tapes p,p’ € T and for,all security parameter n € N*, we
have [k]}; /. = [kl). Therefore, we denote by k the
function k : n — [k];/ and because pbound(k) holds, the
related function £ is polynomially bounded. Let r : nat — 7
be a random source term of uniformly distributed random
terms of type 7. Let n € N* be a natural number and
¢: 7 — -+ — 7 — bool be a formula of n parameters of the
same type 7. Let selectr(an)d : nat — (nat — 7) — set, (1)
be an adversarial selection function of n distinct terms of
type 7 given by a random source term. Let n € N* be
a security parameter. We suppose that we are in the case
where k(n) > n. By deﬁnition of the type set,(7), we
have Card([[selectﬁanzj k rs]i;) = n. Then, by hypothesis
£:0 + [select™ k r, C {r, 1,...,r, k}], we conclude,
without loss of generality, the existency of n distinct natural
terms tq,...,t, : nat, such that 1 < ¢; < --- <t, < k and
select™ rS = {rs t;}_,. Therefore, we have

rand
e]

- < jn < k(n),

t(™)

rand

Proer [[- ¢ (select, .’ k ry)]y

:Prpeqr[ﬂl < -
[-¢

By property on probabilities, we have the following upper
bound

(rs 1) - (rs gn)lg

Pryer | [6 (selectipy k)17, % |
< Z Prper { [=¢(rsj1) ... (rs jn)ﬂgﬂ):pe }
{7i}i=, C [L:k()]

But as rg is a random source term of uniformly distributed
random terms of type 7, we have

v, C© [LEm
Prjer [[- ¢ (rsj1) ... (rs]n)ﬂlr\]/ﬂ’ pE }
= Prpe’]l‘ |: [[_‘ (,b (rs 1) ce (rs n)ﬂl’g/ﬂ’:pg i|
Besides, we have
Cand(fibis < Dk = (") < ko

28

Therefore, we conclude the following upper bound

G kel e |

oPrpeqy[[[—'gb(rs 1 ...

negligible in n

By hypothesis £;0 + [¢ (rs 1) ... (rs n)], we conclude the
property we want, i.e. we obtain the following property

Prper [[¢ (select

k(n)"
~——

polynomial in 7

< (rs)]

n
M

P
€|

(n)
select.

EOFn<K<k—d(kry)].

C. Soundness of algebraic rules
e (L.m:CHARAC) This rule is a model of the following
proposition:
Proposition 3 (Characterization of permutation matrix).

Let M € Maty(F(py)) be a matrix. Let e & F(p,)N
be a vector of N independent variables and chosen
uniformly at random. We suppose that the two following
equations, denoted by (i) and (ii) hold, for M and e.

(7’) (”) sz\il (M : e)z = sz\il €.

Then we conclude that M is a permutation matrix with
probability at least equal to 1 —

M-1=1 and

pTI

A proof of this proposition can be found in [5].
(L.OPEN) Soundness of this rule come quite straightfor-
wardly from the following lemma:

Lemma 1. Let a = (a;)Y, € GIJXI be a vector. Suppose
there exists a set W = {e;}¥.| of N linearly independent

vectors of F(p,)N such that
Vi€ [1;N],3e; € F(p,)N, 3 ki € F(py),
ComF(pn)N(ck,el i k) =a® e;.

Then a is a commitment message to a matrix M,y €
Maty (F(py,)) using the vector of random values sy, €
F(p,)", ie. we have

a = Compya, (v (p,)) (¢k, Mw ; sw). Besides, these open-
ing (Myy,syw) can be obtained in polynomial time.

Proof. Let a = (a;);L; € G} be a vector of values in

the group G, . Let W = {el}l 1 a set of N linearly
independent vectors of F(p,)" such that
Vie [1;N],3e; € F(p,)™,3k; € F(py),
ComF(pn)N (Ck7 ez) k) =a®e;. (%)

As the vectors of the set W = {ez *, are linearly
independent, and because dim(F(p,)"V) = N, the family
By (el,...,eN) is a basis of F(pn)N. Hence,
for all j € [1; N], there exists a set of scalar values
(AN € F(p,)" such that 3 APe; = u; where
u; is the j-th standard vector of F(p,)"™. In fact, such
set of scalar values can be obtain in polynomial time by

Gaussian elimination. Let j € [1; N]. By basic properties
on ®, we have

LA N £
a; =a® Z)\,ﬂei :H(a@)ei)’.

i=1 i=1
By the equation Eq. (%), we have, for all ¢ € [1; N],
a® e; = Comy, \v(ck,e; k;). Thus,

N A
;= [T (Comeg, v (ch e} 1)

i=1
By definition of the commitment algorithm ComF(pn)N,

we have Comyp, v (ck,e}; k;) = g% T, 9{*”". Con-
sequently,

_ Al AP g, al /\Ej)(e;)L
aj = I | g I |gl
=1

=1

N G T SN AW (e)
— gE'izl Ak Hgl i=1" i)l
I=1

Finally, we have, for all j € [1; N],

N N
a; = Comg, \~ (ckz, Z)\E])eg ; Z)\EJ)ki> .

i=1 i=1
Consequently, we conclude that a is indeed a commit-
ment message produced by the commitment algorithm
ComMatN(F(pn)), ie. a= ComMatN(F(pn))(ck, 1\41/\)7 SW)
where My, € Maty(F(p,)) and syy € F(p,)V are
defined as follows.

N

N
j=1

= j=1

N

N
and sy = (Z)\§-l)kj>
1 =1

O

(L.BASsIS) Let n € N* be a non-null natural number. Let
(e;)7—' be a free family of vector in F(p,)"”. Let H be
the linear span of vectors set (e;)!"";'. Hence, H defines
an hyperplane of F(p,)™. Therefore, the probability to
choose a new vector e uniformly and independently from

vectors family (e;)?";" such that e € H is at most equal
to L
Pn
1
r g |: ec H :| < .
e(—F(pn)" pn

Which achieve proof of soundness of the rule L.BASIS.
(L.m:CHARAC) This rule is a model of the following
lemma:

Lemma 2 (Schwartz-Zippel). Let f4 €
F(py)[X1,...,Xn] be a non-zero multivariate
polynomial of total degree d € N over F(py).
Let e & F(p,)N be a vector chosen uniformly
at random in the vector space TF(p,)™. Then

PreeF(pn)N [fd(e) = 0} g ﬁ

29

A proof of this lemma can be found in [23] and [24].
(L.®:CoM) Soundness of this rule come from the fol-
lowing proposition:

Proposition 4. For ck = (g9,8) + Gen(1",N) be a
commitment key, for all matrix M € Maty(F(p,)) and
for all vectors x,s € F(p,)N, we have the following
identity.

ComMa[N(]F(pn))(Ck7 M, S) ®» X =
Compgy,, v (ck, M -z ; (s | x))

Proof. Let ¢k = (g,91,...,9n) < Gen(1",N) be a
commitment key. Let M/ € Maty (F(p,,)) be a matrix and
let x,s € F(p,)" be two vectors. Then, by definitions of
both commitment schemes and of operator ®, we have

COI’IlMatN (F(pn))(ck‘, M, S) ® x
N N
=1 7j=1
N N
= gZL SiT; H ngizl mj,iTq
Jj=1

= Comg, v (ck, M -x; (s |x)).
O

D. Soundness of cryptographic rules

In this subsection, we briefly give some flavour of key
arguments to prove soundness of the cryptographic rules. More
details for these kind of proofs can be found in [12].

e (G.CoM:HIDE) Soundness of this rule comes from the

hiding security property, and more precisely from the
hiding game Game 5 of the commitment scheme defined
consistently with the semantics of the function symbol
com/3. Notice that in this game, commitment key param-
eter ck is honestly computed, meaning that the adversary
can only uses this parameter. This is why we have the
global hypothesis £;0 + [¥%" (u,my, my)]. Besides

comkey
the random value r & F(py) is chosen uniformly at
random and independently from all other computations of
the game, r is then fresh. Thus, we have to suppose the
global hypothesis £;0 F [W (u,m1,m3)]. All other
terms (in u, and message terms mj and msy) are computed
by the adversary.
(L.CoM:BIND) Based on the binding game Game 6, only
the commitment key parameter ck is not computed by the
adversary. Thus, we suppose the local property £;0;I" -
\Ifglgﬁ(ey(ml,mg,rl,rg). Which gives us the soundness
of this rule.
(L.X-P:SPSOUND) For this property, we only have two
accepted proof transcripts p%) (ci)dg<a, ¢i, 2(¢;)) regard-
less the way these proofs are generated. Only require-
ments are to have the same commitment message «
and two different challenges ¢; # co. Besides, these

transcripts prove that any statement x belongs to the

language L£,(R) of the relation R. Besides, the ex-
istency of the function symbol zkp-extracty/4 in the
CCSA logic and the soundness of the rule follows from
the special-soundness security property Game 10 for
the X-protocol given by semantics of function symbols
(zkp-provey, /4, zkp-verif /3).

(G.2-P:HVZK) By definition of the Honest-Verifier
Zero-Knowledge game given in G.X-P:HVZK, even if
the adversary can force the witness-statement pair (x, w)
and the challenge ¢ used by honest prover and verifier,
they cannot distinguish between an honestly computed
proof transcript, using the witness w, from a simulated
one, which does not uses w. Moreover, the existency
of the simulator function symbol zkp-simg /3 and the
soundness of the rule follows from the Honest-Verifier
Zero-Knowledge security property.

(L.SFM:CORRECT and G.SFM:INDCCA) As soundness
of these two rules are strongly dependent from the
definition of the shuffle-friendly map considered, these
rules have to be proved as soon as such map is defined.
(L.SFM:CHARAC) Soundness of this rule follows from
the following lemma giving a criterion of correct shuffle.

Lemma 3 (Characterization of correct shuffle). Let ¢cg
be a shuffle-friendly map for a cryptosystem CS. Let ¢ =
()N, € C& and ' = ()N, € C& be two lists of
ciphertexts. Let m € G be a permutation of length N.
Let pk € PKcs be a public-key for the cryptosystem CS.
We denote by He o' x C F(py)N the following set

m :{ ecF(p,)N | 3v e F(py),c/ ® (M -e) }
T = ¢cs(pk,c® e; v)

Then, we have an equivalence between the following
properties.

(i) There exists a vector of random values r = (r;)_, €
F(p,) such that we have:

Vi€ [1;N], ¢y = des(pk, cis mi).

(“) Hc,c’,ﬂ' =]F(pﬂ)N
(iii) Card(He,err) > pN .

(iv) Pr !

EE(p)N [e € Heor n] > o
Proof. Let ¢cs be a shuffle-friendly map for a cryptosys-
tem CS. Let ¢ = (¢;)¥, € C& and ¢ = ()N, € C&
be two lists of ciphertexts. Let m € & be a permutation
of length N. Let pk € PKcs be a public-key for the
cryptosystem CS.

- (i) == (ii) Suppose there exists a vector of ran-
dom values v = (r;)N, € F(p,)N such that:
Vi e ﬂl;Nﬂ,c;(i) = o¢cs(pk,ci; ;). We want to
prove the following inclusion: IE‘(p,,)N C Heer r
Lete € F(p,)" be a vector. Let M, € Maty (F(p,))
be the permutation matrix representing the permuta-

30

tion 7. We set € = M, - e. By definition of €', we
have, for all ¢ € [1; N,

N N
= (M), = Y = 3 Binies = ex v
j=1 Jj=1

Hence, we have

N

d@e = [[)e
i=1
N

= [(bes®k, cargiys Ta1(a)) =@
i=1
(by the hypothesis (i))

N N
= dcs (Pkynci"ll(g) ; Z%—l(i)%—l(i))
i=1 i=1
(because ¢cg is an homomorphism)
= ¢cs(pk,c@e; (e|r)).

Thus, we have e € He ¢/ », i.e. we have proved (ii).
(i) = (i) Actually, we proceed by contraposi-
tion. Hence, we suppose the existence of iy € [[1; N]
such that we have the following property

Vv e]F(pn), C;'r(io) # ¢CS(pk, Cio 3 U)-

We show that u;, ¢ Hc c/ ». Let v € F(p,;). Hence,
we have.

C/) (Mﬂ— . uio) = C;T(’io) 7é ¢CS(pk7 Cig 3 IU)
(by definition of — (7))
= ¢cs(pk,c ® vy, ; v)

Consequently, we have H¢ o » C F(pn)N .

(i9) <= (i9t) In fact, we prove that H¢ o/ is a
subgroup of (]F(pn)N,—i—). Let e1,e2 € He o/ ». By
definition of He ¢/ ~, there exists v1, va € F(p,;) such
that

' ® (M;-e1) = o¢cs(pk,c® e ; vq)
' ® (M -ez) = ¢cs(pk,c ® es; v2)

Then, we have
® (M- (e —e2))
- Cl@ (Mﬂ-el) . (C/® (Mﬂ-~eg))
-1
= ¢cs(pk,c® er;vy)- ((bcs(pk, c®ey; U2))

(because e; € He o/ and €y € He o 1)

pes(pk,c ® (e1 — ez); v1 — v2)
(by a basic property of ¢cs)

Consequently, we have e; — e; € Hc ¢ . Thus,
He e/« is a subgroup of (F(pn)N, +). However, by
the Lagrange’s theorem, the cardinal Card(He ¢/)
divides the cardinal Card(F(p,)™) = pJ. There-
fore, we have (i) < (iii).

— (iii) <= (iv) As the vector e <- F(p,)N is chosen
uniformly at random, we have

Card Hcc/ﬂ'
[e e, | _ Card(Her)
Py

Consequently, we have (iii) <= (iv).

T g
e—F(p,)N

O

Hence, to obtain soundness of the L.SFM:CHARAC rule,
as we have the hypothesis £;0;T \Df}gsh(c,c’,w), we
can use the equivalence (ii) <= (iv).
Notice that all these rules hold regardless whether the cryp-
tographic property considered is perfect or computational.

APPENDIX E
REWINDING ALGORITHMS

The procedure of witness extraction for the -protocol Xr
is given by Algorithm 5.

Algorithm 5: Witness extraction procedure using the
rewinding technique

Input : A security parameter n € N*. An adversary A.
A X-protocol £ = (S,P,V) for a computable
binary relation R. An extractor Ex for Y. A
public parameter o for the relation R. A
statement x,, € Lr (o) of bit-size polynomial in
the security parameter 7, i.e. |z, |= n°W).
Output: A witness w € Wy such that (o, z,, w) € R.
1 let extract-sigpn o v, =
2 The adversary A begins by computing some
commitment message for the statement x,, which
updates their state and sends it to the verifier:

(stfj),a) — Ao, zy) ;
3 repeat
4 The verifier V chooses a first challenge
1 < V(o,z,,) ;
5 A produces a response for this challenge, which

also updates their state:

2 1
(st&\),zl(cl)) — Ao, zy, 0,01 ; st&)) :
6 Then, we rewind A to their previous state stfi) ;
7 One more time, V chooses a second challenge

¢ < V(0,x,,) and A produces another
response for this challenge:

(stfi),ZQ(CQ)) — Ao, xy, 0, ¢ ; stfi)) ;

8 Finally, the verifier V check whether or not the
two produced proofs are valid

bi <~ V(0,zy, (o, i, 2i(ci))) 3

9 until both Boolean by and by are true (by = by = 1)
and the challenges are different (c; # c2).;

10 Finally, at this point, we finally extract the witness

from the two proof transcripts p%) (ci)(gf(a, ¢iyzi(c)):
1 return w < Ex (o, ;m,,p%)(cl), pg) (c2))

The procedure given in Algorithm 6 defines an adversarial

selection function selectr(;ll : nat — (nat — 7) — set, (7).

31

Algorithm 6: Adversarial selection function for rewinding
Input :

A natural number £ € N* and a source of
uniformly distributed and independent random
values rg : N* — X. (implicit inputs) A natural
number n € N* such that n < k and a formula
¢n,p : X — {0, 1} evaluable in polynomial
time.

n random values (rs(i;))}7_; € X" with
1<ii<...<i, <k.

1 let selectign)d krg =
2 t+—1;0l«1;L+[;
3 while (I <n A t< k) do

Output:

s i & k) {12
5 if ¢, ,(rs(é;)) then
6 L+ rs(y) =L
7 l+<1+1;
8 t<—t+1;
9 end
10 return L
APPENDIX F

FULL VERSION OF SECURITY PROPERTIES PROOF

Before giving security properties proofs, a disclaimer. In
this section, we present pen-and-paper proofs of security
properties. Therefore, to ease readability, we won’t precise
when we use CCSA rules about logical reasoning, i.e. when
we use the following rules: G.~:TRANS, G.BYLOC, and
G.REWRITE. Moreover, when b : bool is a Boolean term and
t: 7 is a term of any type, the term if b then ¢ is a macro for
if b then ¢ else (). Meaning that, in the case where b is false,
no term is output, even if this term is deep in another term.
Besides, in the case where b.,b; : bool are Boolean terms,
the term if b. then b; is a macro for if b. then b; else L.
In the case of application of the function application rule
G.~:FA, we precise only the main relevant function symbols
on which we apply the rule, but the rule may be applied to
other function symbols like n-tuple ones. Finally, if we want
to implement this proof in the Squirrel prover, we may want
to adapt some rules to match exactly the structure of the goals.
For example, in the case of the honest-verifier zero-knowledge
rule G.X-P:HVZK, we put proof transcript and the simulated
transcript term under an if condition.

A. Proof of permutation secrecy

Lemma 4. Let £ be an environment, let © be a context of
global formulas and let " be a context of local formulas. Let
i € [1;n] be an index. We have an equivalence between this
two following different properties

£0:Tk (c; | (0-1))
= shuf-map , . (Pkcs (sk k)) (c|i) (rl]i)
& (c, | 1) = shuf-map,, . (pkes (sk k)) (c | (07" -1))

(el (c7"-1)

Proof. Let n € N* be a security parameter. Let p € T be a
random tape. Let pk = [pkeg (sk k;)]]g/ﬂ’.”‘g € PKcs, (¢i)i-q =
[[C]]n f € C(CS’ (z)z 1 — [[Co}rh € C(STS’ 0= [[U]]?Mlv:pé" and
(r)y = [r i fe € Reg)™. Besides, by definition of the
scalar product CCSA function and of the term j, for j € [1;n],
we have:

Vje [1;n],Vx : veet,, [(x | i)y = =,
where (z;)i =[x /e

Let i € [1;n] be an index. Hence, the following equations
holds

[(co | (0 INTiee = by [l D e = ¢
[{c|Dlys = c [(e | (=" - D) fe = cor)
[(e LI D = i [t] (o7t - D)ife = ro—r(i)-

However, as we have the following equation
oy = Pes(Ph,cis i) <= ¢ = des(Pk, co-13i) 5 To-1(3))s
which achieves this way the proof. O

Lemma 5. Let £ be an environment and let © be a context of
global formulas. We suppose the following global judgement

£;0 F [Wiggn(u,)] (H)
Then, the following property holds for all i € [1;n]
EOFu, (rl|i)~u,rpesh ().

Proof. Actually, we will only give key elements of this proof,
a full detailed version of the proof can be found in [12] with
the proof of soundness of the freshness rule G.~:FRESH.
Let £ be an environment and let © be a context of global
formulas. Let ¢ € [1;n] be an index. By property Eq. (H), we
have in particular the property [\I/frésh (1)]. Hence, conclude the
following property, for all security parameter n € N*

[11912 | € T] = [Irvesn Ol % | p€ T].

Besides, by Eq. (H), we have [\I'f”r’elsh(u)], meaning that, for all

security parameter 7 € N*, the three following distributions
are independent

[l o], [let DIt [peT),

[[[I'fresh Ollir e ‘ pE T}-
Therefore, the following property holds
E;0F u,(ri|i)~u,riesh ().
O

Theorem 1 (Permutation secrecy property). Let framejn the
initial knowledge of the adversary and let Oy be the initial
global context of formulas defined by

frame,-n,-,d:d(ck n), (pkeg (sk k)), 7, id,c,v and

de ck,n s
O] (W miey (frameiny)], (W 5y (frameini)]

skey

32

Then, the Terelius-Wikstrom shuffle protocol achieves the per-
mutation secrecy property, i.e. the following property holds

7 (ck n) (Pkes (sk k) (¢, v)
~ frameipjt, mix y; id (ck n) (pkeg (sk k)) (c,v)

5; G)init F frame,-n,-t, mix¢CS

Proof. We denote by terms a,, c., poft(c) and pon(o) the
following terms

a,com-mat (ckn) o

(s)
:shufﬂe¢cg (Pkeg (sk k) co (r 1)

Poir(0) =zkp-prove o (ck n. eoff 1) ag wot(0) (rofr J)
pon(a)défzkp-proveRg;CS (ck n, pkeg (sk k), €on t2)
(ar, ¢, %) won(0) (Ton p).

Let framegng(o) the frame at the very end of the protocol
execution defined by

frameena(0) & framein, o, (€of t1), (roff 4), Pott(0),
if validy (pkes (sk k) ¢ v then (c,, (€on t2), (Ton D), Pon(7))

By unfolding the definition of the mix predicate mixg.,, one
has to prove the following indistinguishability

E; Oinit F frameeng(m) ~ framegng(id).

Notice that if b then (t1,¢2,t3) is a macro for
(if b then t,,if b then ¢, if b then ¢3). Hence, by the case
study rule for the indistinguishability predicate G.~:CS, and
by the elimination rule of duplicates G.~:DUP, we have to
prove the following property

&; Oinit - (ck n), Pkeg (sk k), (¢,v), ar, (€off t1), Port (),
(if validy (pkgg (sk k)) ¢ v then c;),

(validy (pkeg (sk k)) € v), (€on t2), (Pon (7))

~ (ck n),pkeg (sk k), (c,v), aig, (€off t1), Por(id),
(if validy (pkcg (sk k)) ¢ v then cy),

(validy (pkeg (sk k)) € v), (€on t2), (Pon(id))

Let frameg (o) be the sequence of terms such that

Hrameg (o), pon().

By the rule G.2-P:HVZK applied to the online relation Rocﬂ,
we have the following indistinguishability

frameeng(o)

&; Oinit - frameg (o), pon(0)

~ frameo(o),zkp-simR?; (ck n,pkeg (sk k), €on t2)
CS

(aO'a C, C/g') (Ton p)

Hence, by the function application rule G.~:FA applied to
the function zkp-51mRon /3, and by the duplicates elimination

rule G.~:DUP, we havegto prove the following property

E; Oinit - framey () ~ frameg(id)

Let frame; (o) be the sequence of terms such that

then, by N applications of the case study rule G.~:CS?, the
goal given by Eq. (x) becomes the following

frameq (o) frame; (o), (if validy (pkeg (sk k)) ¢ v then c.),

(validy (pkeg (sk k)) € v), (eon t2).

By the freshness rule G.~:FRESH applied to the term eqp %o,
by simplification of fresh name rule G.~:SIMPL, by the
function application rule G.~:FA applied to the function
validy /3, by the elimination rule of duplicates G.~:DuUP, and
by definition of the ciphertexts list term ¢/, we have to prove
the following property

E; Oinit F frame; (), if validy (pkeg (sk k) cv
then shuffle, . (pkeg (sk k)) ¢ (r)
~ frame (id), if validy (pkcg (sk k)) c v
then shuffle, . (pkeg (sk k)) cid (r). (%)

However, by the characterization rule of the shuffle,.. predi-
cate L.SHUFFLE, we have

&; Oinit - [C; = Shufﬂe¢cs (Pk(CS (Sk k)) co (I‘ l) AN

~-

|
—

K2

Therefore, the goal given by Eq. (x) becomes the following

E; Oinit F frame; (), if validy (pkeg (sk k)) ¢ v then

~-

s
I
—

(c®(m-i) = shuf-map,__ (pkeg (sk k)) (c®i) (r1]1i))

~ framey (id), if valid y (pkg (sk k)) ¢ v then

=

—

(cig ® i =shuf-map,__ (pkeg (sk k) (c® i) (vl]i))

K2

We denote by b : bool the Boolean term defined by
b&validy (pkeg (sk k)) c v.

For o € {m,id} and i € [1; N], we denote by 1), ; : bool the
following Boolean term

Vi (ch ® (0-1) =

shuf-map,, . (pkg (sk k) (c @ i) (r 1| i)).

Hence, by operations on Boolean terms and properties over
the function if _ then _/2, we have

N N N
if b then /\ VYo =bA /\ Voi = /\ (b A wm)
=1 N =1 =1
= A\ (if b then ¢, ;)

i=1

Besides, as we have, for all sequence of N Boolean terms
(b; : bool)N,

N
/\ bi = if by then (if b, then (if ... then (if by then T)))

=1

(c,®(0i) = shuf-map,,_ (pkeg (sk k)) (c®i) (v]i))].

E; Oinit F frameq (m), (if validy (pkeg (sk k)) ¢ v then

N
(c®(m-i) = shuf-map, (pkcg (sk k)) (c@®i) (ri| 1>)> -
~ frame, (id), (if validy (kg (sk k)) ¢ v then

(ci’d ® i = shuf-map,, . (pkeg (sk k) (c®i) (r! | 1>))jil

Let i € [1; N] be an index. We denote by frame;(o) the
following frame

frame.z; (o) %! (if validy (pkes (sk k)) ¢ v then

(c}® (i) = shuf-map,,., (pkcs (sk k) (c@j) (v 1)))

By the characterization rule for canonical vectors
L.®:CANOVEC, we want to prove the following property

E; Oinit F frame, (), frame; (),
if validy (pkeg (sk k)) ¢ v then
((c, | (1)) = shuf-map,_ (pkeg (sk K)) (e |) (r]i)
~ frame; (id), frame; (id),
if validy (pkeg (sk k)) c v then
({ciq | i) = shuf-map, (pkeg (sk k) (c| 1) (r1]1)) (+)

However, by Lemma 4, the i-th goal Eq. (*;) becomes the
following

E; Opit F frame, (), frame; (),
if validy (pkeg (sk k)) c v then

((c | 1) = shuf-map, . (pkes (sk k) (e | (77 11)) (1| (v7")))

~ frame (id), frame; (id),
if validy (pkeg (sk k)) c v then
({cia | 1) = shuf-map, , (pkes (sk k)) (e |) (ri]1))

Let rfesh : unit — rand be a name such that rgegn, does not
appear in &, and frame; (o) for o € {m,id}. Therefore, by

3 Actually, for all j € [1; N, we have to prove the goal

€5 Opi - frames (), (if valid (pkcs (sk k) ¢ v then
(¢, @ (r - i) = shuf-map,, _ (pkes (sk k) (c®) (r 1 | i)))::1
~ frame (id), (if validy (pkcg (sk k) c v then
(cly ® i = shuf-map,,__ (pkeg (sk k) (c® i) (vl i>))J_‘

1=

which are all subsumed by the case where j = N.

JELNT\{4}

the Lemma 5, and by the case study rule G.~:CS, the goal
property Eq. (x;) becomes the following

E; Oinit F frame (), frame; (1),
if validy (pkeg (sk k)) ¢ v then
((c% i) = shuf-map,, (pkcs (sk k)) (c | (7~
~ frame (id), frame; (id),
if validy (pkeg (sk k)) c v then
({cia | 1) = shuf-map, . (pkes (sk k)) (¢ | i) (Tiresh ()

However, by definition of the predicate validy, we have the
following property

validy (pkeg (sk k))

Z\;j\len

We denote this common value by the term m :
such that

nat, i.e. m is

Vj € [1;N],m =len (c| j).

Besides, by definition of the predicate validy, we have the
following property

validy (pkeg (sk k)) c v — valid (pkeg (sk k)) (c | n7*

Therefore, by the indistinguishability of ¢cs output rule
G.SFM:INDCCA, the goal property Eq. (%;) becomes the
following

E; Oinit F frame, (), frame_; (),
if validy (pkeg (sk k)) c v then
((ch | i) = shuf-map,,_, (pkcg (sk k) (0 m) (rpesn ()))
~ frame (id), frame; (id),
if validy (pkeg (sk k)) ¢ v then
((cly | 1) = shuf-map,,__ (pkes (sk) (| 1) (tresn ()))

Hence, by the function application rule G.~:FA for the
indistinguishability predicate ~ applied to functions = /2,
validy /3 and shuf-map, /3, by the case study rule G.~:CS,
by simplification of fresh names G.~:SIMPL, and by the
duplicates elimination rule G.~:DUP, we have to prove the
following property

E; Oinit F framey () ~ framey (id).

By definition of the frame frame; (o), we have to prove the
following property

E; Oinit - frameinit, ar, (€off 1), Pott ()
~ frameinit, aig, (€off t1), Port(id).

By the rule G.2X-P:HVZK applied to the offfine relation
RO, by the function application rule G.~:FA applied to
the function zkp-simy.i/3, by the duplicates elimination rule
G.~:DUP, by the freshness rule G.~:FRESH applied to terms
Toff J and eqf t1, by simplification of fresh names G.~:SIMPL,

=1len (c | k)).

1) v.

34

and by definition of the term a,, we have to prove the
following property

E; Oinit F framejpit, com-mat (ck n) m (s 7)
~ framejnit, com-mat (ck n) id (s 7).

")) (Tresn ())) By the hiding property for the commitment predicate

com-mat, we conclude the proof by applying the correspond-
ing rule G.COM:HIDE. O

B. Rewinding axiom proof
To prove the rewinding CCSA axiom, we need the Chernoff

bound, which we recall here:

Lemma 6 (Chernoff bound). Let Xq,..., X, : N — {0,1}
be n independent and identically distributed random variables,
i.e. there exists a number p € [0, 1] such that, for all i € [1;n],

Pr[X; = 1] = p. Then we have
n 52
. < ——np).
Vée]O,l[,Pr[;Xz\(—9) p] exp(2np>

Let n € N, with n >
follows, we fix a source of random values rg
semantics of ry is given by

2, be a natural number. In what
:nat — 7, Le.

Vne N VpeT,V(i:nat),[r, il % & [
Q)

Besides, we consider the function symbol select; ; : nat —
(nat — 7) — set,, (1) with semantics given by Algorithm 6.
Axiom 2 (Rewinding). For all polynomial-time property

(bd‘f)\ (¢p) : 7 — bool [ptime], for all non-negligible
parameter g : real with non-negl(g), the following rule to

catch the rewinding argument is sound

£;0+ Iselect'™ . Ik, : nat. det(k
[low-bound g § — V(¢ : nat). (rs

¢ (rs t)] AV (¢ : nat). (rs

9) A pbound(k

t € select”),
(n)

t) € select, ' kgrs —
(ret) e{rs1,...,rs kg}l

Next, we use the same notation between the natural number
1 € N and its corresponding term ¢ : nat. Besides, notice that
in the rewinding axiom, the natural number k; € N depends
only on the non-negligible real parameter g : real.

Proof. Let g : real with £;0 F non-negl(g) be a non-
negligible parameter. Let € N* be a security parameter and
let p € T be a random tape. Let Y, , : N — {0,1} be the
following random variable

o (rs D)5 € {0,1}

Let k(1) € N be a natural number. We consider the family of

NS

kgrs) —

VieN,Y, (i)

random variables (an,p)k(znl) such that we have

def

Vi€ [k, Y7 =15 Y, () = 1, i & [1; k()]

As r is a source of uniformly distributed and independent ran-
dom variables, the random variables Y;"*, for all j € [1;n],

are mutually independent. Besides, we suppose that we are in
the case where [low-bound g ¢];)/’. = 1, meaning that we
have the following lower bound

PY(TI,P)d:efPTre[[T]]gH [[Py (r) =1 } > Eyer([glirle)-

We want to prove that the function 7 —

Proer [Z i1 Y;7 P> n is overwhelming. In fact,
we show that, for all security parameter n € N7,
2?21 an.,p < n] < 2"’
to the property we want to show. To prove this property, we
use the Chernoff bound which states the following property

Pr,,eqp[which is equivalent

k
V4 €]0, 1[, Prper [Z — 0)kpy (n, p)]

62
< exp <—2kpy(77,p)) :

Therefore, to obtain the property we want, we have to find a
pair (6(n), k(n)) €]0,1[x N* such that

(L =3dm)k(n)py (n,p) <n

and exp(—(“’”km)py(n,p)) <L

2 2n

@

By monotonic increasing of the logarithm function, the second
equation becomes

§(n)?
2

k(n)py (n,p) = nln2.

In fact, the system of inequalities Eq. (Z) can be solved by
solving the following system of equations where we have to
find a pair (6(n),z(n)) €]0,1[x RT such that

(1 =4(n)x(n)py (n,p) =n 1)
g 0’
2

z(n)py (n, p) = nin 2. 2)

Indeed, if we have found a solution (§(n),z(n)) of the second
system of equations, the pair (6(n), [z(n)]) is a solution of
the first system Eq. (Z). The second equation Eq. (2) leads to

2nln2
#0) = S ()

n)2py (1, p)

Hence, by equations Eq. (x) and Eq. (1) leads to the following
quadratic equation

nd(n)? + (2nIn2)8(n) — 2nn2 = 0. (Es)

The solutions of this quadratic equation are given by

def—2nIn2 + VA
51(77):T

where A = (2nIn2)? + 8nnln2 > 0. Moreover, we have
d_(n) <0 and d4(n) > 0. Besides, we have

2n n
o 1 = 1
+m) < nln2 < nln2+
— 1+ < L 2
nln2 nln2

n 2 0
= TIn2 >

Therefore, only the solution ¢, (7)) interest us and the partnered
solution x(7) is given by

2n2 2n
o) =—"_ (1-,/1+
) npy (1, p) In 2 (nln2>

Therefore, we denote by f,, : N* — R% such that

* dif fn(n)
v eNL TS e

-2

To conclude, we have to study the asymptotic behavior of
the function f,, to show this function is at least polynomial
bounded in the security parameter n. By series expansion, we
have the following results.

-1
n? 11— J14 2n n n
nln2 nln2 nln2

n? n \2 1 !
- 2(7) = e
nln2< 2In2/ n? Ot (”2)>

=2(In2)n (14 0p—40(1)) -

VneN foln) =

Therefore, the asymptotic analysis of function f,, gives us the
following result

©)

Ju(n) ~vioo 2(In2)n |

Moreover, by hypothesis on py (7, p) given by the hypothesis

low-bound g ¢, we have z(n) < Y 1G) N— Therefore, if
EPET(HQM'@)
we denote by k(n) € N* the quantity

In(n) -‘
E,(lolife) | |

we conclude, as g is a non-negligible parameter and because
of result Eq. (©) that £ is polynomial in the security parameter
7.

Consequently, we have proved that if & : nat is the natural
term for whose semantics is given by

k(n) = {

VneN" VpeT,

[T /= {

1 2n?

o\
1—4/1
) nin2 (V + n 1112) —‘

]Ep’ ([[g]]g/ﬂ

then k is polynomial
deterministic. Let ¢ :

in the security parameter 7 and is
T — ...— 7T — bool be a property
————

n times

defined by

n

JAXCEDE

i=1

. def
Tn=

V(l’l,... T).'l/).’tl...

Sy Ty

Moreover, we denote by ® and H the functions in N* x T —
{0, 1} respectively defined by

®(n, p)EV (¢ : mat). (r, t) € select™ kr, — ¢ (v,)]

and H(n, p)£low-bound g ¢]7; %%

p

Hence, by what precedes, we have shown the following result

VnGN*,Prp@T[[(x5 1) ... (ra W] % | Hn, p)]

1
~ o

Thus, we have shown the following global judgement

(rs n)].

Consequently, by using the property transfer under adversarial
selection function G.SEL, we conclude

> 1

E;0F [low-bound g ¢ — ¢ (rs 1) ...

&;0 F [low-bound g ¢ — ¢ (select"™)

rand

kry).

Thus, by definition of 1), we have shown the following result

N 1
vVneN 7PrpET[o1, p) | H(n,p) } >1-o
And finally, by definition of the function selectr(;;)d given in

Algorithm 6, we have, for all natural number term ¢ : nat, if
(ro t) € select™ k r, then (r, t) € {r, i}*_, and then we
conclude

(n)

rand

(I's t) S {rS 1a e 7rS k}ﬂl@ﬂ’:pﬁg :| = 1

Vn e N, Pryer | [V(t:nat). (r, t) € select, ; kry —

Consequently, those results achieves the proof of the rewinding
CCSA axiom. O
C. Verifiability proof

Let frameygris be a trace of the Terelius-Wikstrom shuffle
protocol defined by

def
frameyert= (ck 1), a, (€off t1), Qoft, (Toff 1), Zoff,
<Ska C, C/>» (eon t2)» Qon, (Ton p)a Zon-
and such that

zkp-verifRon (Ck N, €off tl) a <Oéoff, (Toff l), Zoff>
A zkp-veringbn (ck n, pkeg sk, eon t2)
Cs

(37 C, C/) <Oéon> (Ton p), Zon>
A wf_ctxty sk c.

&

36

1) Extraction of the committed matrix: To be able to
rebuild the committed matrix, we have to extract N witnesses
(e}, k;)¥, for the relations of correct commitment R%°™(e;),
where (e;)Y; is a free family of F(p,)"V. Consequently, there
is two steps of rewinding, one on the vectors e;, for i € [1; N]
and the other one is when we obtain a candidate vector e;,
we have to rewind the challenge ~ € F(p,)) to be able to use
the special-soundness axiom. Therefore, in that case, we have
to use two times the predicate low-bound, one states there is
enough random vectors to rewind and the second one states
that for a chosen vector, there is enough random challengs to
rewind. Hence, if we denote by 1o the formula

wofdeEf/\e. Ar. zkp-verifor (ck n,e) a {aof, 1, Zoft (1)),
we have to suppose the following property
low-bound g (\e. low-bound ¢’ (o €))

for two parameters g,¢g’ real with non-negl(g) and

non-negl(g’).

Lemma 7. Let £ be an environment, let © be a context of
global formulas and let I" be a context of local formulas. We
denote by 1o the formula

woffd:()f)\e. Ar. zkp-verifpor (ck n,€) a (oof, T, 2om(T)).
We suppose
E;0;T I low-bound g (M\e. low-bound g' (Vo €)), (He,r)
with

E; 0 - non-negl(g) A det(g)
and &;0O t non-negl(g) A det(g)

Then, the property £;0;T F a = com-mat (ck n) M s holds,

where there exists a name e : nat — msg and N terms

t1,...,tN : nat pairwise distincts such that there exists a name

rs : nat — msg and 2 terms r;1,7;2 : nat with v; 1 # ;2
. . def .

such that if we denote, for all i € [1; N], ej=m2 wor(i) and

ktdiefﬂ'g woff(i) with

woff(i)‘gzkp-extmctnoff (ckn,est;) a

<CVoff» rs 71, Zoff(l's Ti,1)> <0¢ofh rs 7,2, Zoff(l‘s T¢,2)>

def def
then terms M and s are defined by Méfwl u and Séfm w
d
where usolve a (es t))N, (el k)N ;.

Proof. Firstly, we have to obtain N vectors such that the
adversary produces at least two different proof transcripts
but for the same commitment message to be able to apply
the special-soundness axiom. Let e; : nat — vecty be an
uniform source of random vectors with semantics defined by
the honest verifier of the Terelius-Wikstrom shuffle protocol.
Then, we apply the rewinding axiom (Axiom 1) to the for-

mula wdér)\e. low-bound ¢’ (v €). Hence, there exists a

e by —

select(N)

rand ke €s _

ck — a

€ ty — Qr

(2) rs Uy — Zﬂ—(I‘s Ul)
select,q kr Ts
s
rs Ug — Zﬂ—(I‘S 'LLQ)
() rs w1 — z;(rs wy)
select ', kr r;
rs Wy — 2z (rg woy)

Fig. 18. Skeleton of committed matrix extraction proof

polynomial bounded and deterministic term ke : nat such that
N < k. and the following property holds

&;© F [low-bound g ¢ —
V(¢ : nat). (e5 t) € selectgé\cft) ke es — ¥ (est)]
AV (¢ : nat). (v, t) € select'Y) ke e, —
(rst) € {es1,... €5 kol

Therefore, by hypothesis Eq. (He,-), we conclude
£;0;T F VY (t:nat). (e, t) € select') ke e, — 1 (e, 1).

On another hand, we have the following global formula by the
rule L.BASIS

£;0 | [basisy (e, i)Y ,].

Therefore, by the second conclusion of the rewinding axiom
and by the transfer of properties by adversarial selection rule
G.SEL, we have

)

N
ct

E;OF [N < ke — basisy (selectse ke €5)] B
Moreover, by the second conclusion of the rewinding axiom,
and because Card([[select\(,é\cft) ke 5]y s) = N by definition
of the semantics of the type sety(msg), we conclude the
existence of N pairwise distinct terms ¢1,...,¢y : nat such
that 1 < t; < ... < ty < ke (without loss of generality
for the order of terms t;) and select\(,i\cft) ke €5 = {es i} ,.

Therefore, for all ¢ € [1; N], we have

£;0;T + low-bound ¢’ (1o (€5 t;)) (H,)

Now we have obtain those N vectors, we apply the rewind-
ing axiom for each vector to obtain two different proof
transcripts but for the same commitment message in the
goal of extract a witness by the special-soundness property.
Let ¢ € [1;N]. Let rs : nat — challgor be an uniform
source of random values with semantics given by the honest
verifier of the offline relation Vyot. By the rewinding axiom
(Axiom 1) applied to the formula o (e t;) the existency of

37

a polynomial bounded and deterministic term k, : nat such

that 2 < k,. and the following property holds

&; 0+ low-bound ¢’ (¢ (€5 t;)) —
V(¢ :nat). (rs t) € selectgill krrs — o (€5 ;) (rs)]
AV (t:nat). (rs t) € selectgfw)dl krrs —
(rst)€{rs 1,...,rs kr}]

Therefore, by hypothesis Eq. (#,-), we conclude

E;0;T VY (t:nat). (rst) € selectgizn ky 1
— Yot (€5 t;) (rs).

By the second conclusion of the rewinding axiom, and because
Card([[selectéﬁzu kr)iy /e) = 2, we conclude the existency
of 2 distinct terms 71,72 nat with, without loss of
generality, 1 < 71 < 7,2 < k, and selectéiﬁn k. rg
{rs 7ri1,rs 72} Therefore, for all ¢ € [1; N] and for all

j € {1,2}, we have

&;0;T F zkp-verif o (ck n, €5 t;) a (Qoff, T's T4 5, 2off (Ts T3,5))

By the special-soundness property L.>%-P:SPSOUND applied
to the relation for the offline phase RO we conclude the
existency of an extractor function zkp-extractyor such that

E;0;T F zkp-relgor oo (i) @
(zkp-extractgor oof (i) a Por(i, 1) Posr(i, 2))
where, for all 7 € [[1; N] and 5 € {1,2}, O'Off(i)déf(ck n,es t;)
and poff(z',j)g(aoﬁ,rs Ti.j, Zoft (s 75;)). Hence, for all i €
[1; N], we denote by we(7) the witness given by

.\ def . . .
Wor (1) =zKp-extract por oof (i) a por(i, 1) Por(4, 2).

Besides, let €] and k; be the terms defined by e;dgm Wit (1)

and k:idgm wot (7). Therefore, by definition of the predicate
zkp-rel o1, we have in particular

N
£;0;T+ /\ a® (e, t;) = com-vec (ckn) e, k;. ()
i=1
Hence, by properties Eq. (5), Eq. (x) and by the commitment
opening rule L.OPEN, we conclude

E;0;T Fa=com-mat (ckn) Ms

def def
where v=solve a (e, t;)N, (e}, k)Y,, M=n; v, and
def
S=1y . O
2) M represents a permutation:
Lemma 8. Let £ be an environment, let © be a

context of global formulas and let T' be a context
of local formulas. We denote by 1 the function

def .
PE N zkp-verifpor (ck mn,eop t1) a (oo, T, Zor(r))-
We suppose

E; O F non-negl(g) A det(g) (Hg)
E;0;T - low-bound g 1, (H1)
&;0;T' I+ a=com-mat (ck n) M s, (H2)

Then, we conclude £;0;1" - permy M.

Proof. Let ry : mat — challpsr be an uniform source of
random values with semantics given by the honest verifier of
the offline relation R°". By the rewinding axiom (Axiom 1)
applied to the formula 1, there exists a polynomial bounded
and deterministic term k, : nat such that 2 < k, and the
following property holds

&;0 I [low-bound g 1) —
V(¢ : nat). (rst) € selectgﬁzn krrs — 9 (rst)]
AV (t: mat). (r, t) € select’D) ko —
(rst) € {rs 1,...,rs k. }]
Therefore, by hypothesis Eq. (#1), we conclude
£:O;T VY (t:nat). (r, t) € selectD) k, ry — ¥ (v,).

Hence, there exists 2 distinct terms 71, 72 : nat with, without
loss of generality, 1 < r1 < r < k, and selectéﬁzn krrs =
{r1,72}. Therefore, we have
0Tk /\ zkp-verifor (ck n,eo t1) @
je{1,2}
<a0ffa r rj7 ZOff(rS T'])>
By the special-soundness property L.X-P:SPSOUND applied

to the offline relation R°", we conclude the existency of an
extractor function zkp-extractyor such that

E;0;T F zkp-relqor (ck 1, egf t1) & Woft.

where wes is the witness term defined by

wor & zkp-extract o (ck n, eoff 1) a
(Qvoffs Ts 71, 2off (Ts 71)) (Qoff, T's T2, Zoff (s 72))-
Hence, let ¢, € and k be the terms defined respectively by
120 worr, €Sy wer and kS we. By definition of

the offline relation predicate zKp-relo.r, we have the three
following properties

£;0;TFa®1=com-vec (ckn) 1t ()
E;0;T+a® (e t1) = com-vec (ck n) e k D)
E;0;T I prody € = prody (eos t1) (447)

38

label=—
« By Eq. (7), and by hypothesis Eq. (#3), we have
E6; + (commat (ck n) M s)® 1 =
com-vec (ck n) 1 ¢t Next, by action of ® on

commitments and by transitivity, the rule L.®:CoMm
applied to the previous identity leads to &;0;I' F
com-vec (ck n) (M -1) (s | 1) = com-vec (ck n) 1 ¢.
Finally, as the commitment scheme KS[F(p,)"] is com-
putationally binding, we conclude, thanks to the related
rule L.CoM:BIND, the following equality

O TFM-1=1. (*1)

Similarly, using equation Eq. (iz) and by hypothesis
Eq. (H2), we conclude by the binding rule L.COM:BIND
the following judgement £;0;T - M - (ey t1) = €.
Hence, by the last equation Eq. (¢i7), the last identity
leads to

E;0;T F prody (M - (e t1)) = prody (e t1).

Let Py[M] be the polynomial defined by
PN[M]dgprodN (M- X)—prody X. As (eof t1) is
a fresh name, we apply the Schwartz-Zippel lemma to

the polynomial Py[M] and conclude by the related rule
L.Sz

E;0;T Fprody (M- X)=prody X. (*m1)

Consequently, as equations Eq. (1) and Eq. (xr) hold,
we conclude by the characterization of permutation matrix
that M represents a permutation, i.e. by applying the rule
L.m:CHARAC, the following judgement holds &;0;T" +
perm,, M. Therefore, the vector a is a commitment message
to a permutation matrix, i.e. we have

E;0;T Fa=com-mat (ckn) M s
and &;0;I' I permy M.
O

3) M has been used to shuffle the input ciphertexts list with
the shuffle-friendly map ¢cs:

Lemma 9. Let £ be an environment, let © be a context of
global formulas and let T be a context of local formulas. We
denote by on the formula defined by
Yon Y \r, zkp-verifnin (ck n, pkeg sk, eon t2) (a,c,c’)
CS

<Oéona T Zon(T)>

We suppose
E; O + non-negl(g) A det(g) (Hy)
E;0;T F low-bound g vop (Hr)
E;0;T +a=com-mat (ckn) M s (Ha)
E;0;T + permy M (H~)

Then, we conclude the following property

N

E;6;TH /\(Elvi. c® (M -i)

i=1
shuf-map ;. (pkcs sk) (c ® i) vi).

Proof. For ease of notation, we denote by oo, the public
parameter defined by aondéf(ck n,pkeg Sk, eon t2) and by
Zon the statement defined by a:ondéf(a, c,c’). Let ry : nat —
challRL;nC . be an uniform source of random values defined by
the verifier of the online relation RS’ . By hypothesis Eq. ()
and by the rewinding axiom (Axiom 1) applied to the function
1on, We conclude the existency of a term k, : mat such that
2 < k; and there exists 2 distinct terms t1,f5 : nat with
1 <t < ty < k, such that selectéizu kr rs = {rs t1,rs ta}
and

4) Proof of the verifiability property under conditions: Now
we have obtain the 3 key lemmas to show that we extract a
permutation matrix 7 from the commitment message a sent by
the adversary and show that this matrix m was indeed used to
shuffle the input ciphertexts list c to form the output ciphertexts
list ¢/, we present the lemma proving the verifiability property
we want but under some conditions needed to rewind parts of
the protocol trace.

Lemma 10. Let £ be an environment, let © be a context of
global formulas and let T be a context of local formulas. We
denote by H the function defined by

H e, Ar. M. zkp-verifpor (ck n,e) a (o, T, Zor(T))
A zkp-veringn ~ (ck n,pkeg sk,eont2) (a,c,c)

(cvon, ', zon(1"))
A wf_ctxty sk c.

5; @,F F /\ (ka'verifR?ﬁnC“ Oon Lon <a0n, rg tj, Zon(rs tj)>).We suppose

je{1,2}
By the special-soundness property L.>-P:SPSOUND applied
to the relation for the online phase R°2§, we conclude the
existency of an extractor function zkp-extractR;n such that
CS

;' zkp-rele).LS Oon Ton Won

where wo, is the witness term defined by
def
Won — ka'extractR({)bn”S Oon Lon <a0n, rg tl, Zon (I‘s t1)>

(con; T's t2, Zon(Ts t2))-

Hence, let e, k and u be the terms defined respectively by
e dgm Won, kdgm Won and udgﬂg wWon. By definition of the
correct shuffle relation predicate zkp-relR(;n , we have the two
following properties ©
E;0;TFa® (eon ta) = com-vec (ckn) € k (%)
£;6;T +c' ® e =shuf-map,, (pkcg sk) (¢ ® (eon t2)) u

(@1)
By the first equation Eq. (¢), by the hypothesis Eq. (#,) and
by the binding rule L.COM:BIND applied to the commitment
scheme KS[F(p,)"], we conclude £ 0;T = M-(eon t2) = €.
Therefore, the second equation Eq. (7z) becomes

EOTHI® (M-ey) =
Shllf-map(%s (kaS Sk) (C @ (eon tg)) U

Besides, as eqn to is a fresh name, we have &£;0;I' +
g2 (e, ¢/, M). Moreover, by hypothesis Eq. (#,), M is a
permutation matrix, i.e. the following property holds £;0; 1" -
permy; M. Thus, by characterization of shuffle-friendly maps
given by the rule L.SFM:CHARAC, the following property

holds
E,(x:msg); ;T FJuy. ¢/ ® (M -x) =
shuf-map,_ (pkcg sk) (¢ ® x) vx

In particular, this property holds for all vectors i where ¢ €
[1; N] and achieve this way the proof. O

39

E; O non-negl(g) A det(g) (Hy)
E;© + non-negl(q') A det(g') (Hy)
&;0;T + low-bound g (M\e. low-bound g’ (H e)) (H1)
E;0;T I low-bound g' (H (eot1)) (Hs)
E;0;T FH (eorr t1) (rorrl) (Ton p) (Hs)

Therefore, we conclude the following property

E;0;T - wf _ctxty sk ¢’
. (N) . (N) /
Negm y (dec-list;g’ sk c) (dec-list.g’ sk c').
Proof. Let 1o be the formula defined by
Vot & e M. zkp-verif5or (ck n,€) a (oo, T, Zoft (1))

By definition of %4 and H, we have the following global
judgement

EOF [Herr = yorer]. (*7)

Hence, because £ + ¢ : real with £;0 F non-negl(g’),
we conclude &;0;2 + low-bound ¢ (H e) —
low-bound ¢’ (o €) for all vector e. In fact, this last
property is true with probability 1, ie. we have &0 F
,[low-bound ¢’ (H e) — low-bound ¢’ (voft €)]. Therefore,
because £ I ¢ : real and £; © - non-negl(g), we conclude

&;0; 3 I low-bound g ()\e. low-bound ¢’ (H e))
— low-bound g (\e. low-bound ¢’ (o €)).

Hence, by this last judgement and by hypothesis Eq. (1), we
conclude &; O; T I low-bound g (\e. low-bound ¢’ (¢of €)).
Therefore, by the first key lemma (Lemma 7), we conclude
the existency of two terms 7 and s such that £;0;T' - a =
com-mat (ck n) 7 s.

Next, by global property Eq. (x), because £ I ¢’ : real
and &£;0 + non-negl(g’) and by hypothesis Eq. (Hs), we
conclude &;0;T F low-bound ¢’ (1ot (€oft t1)). Therefore,
by the second key lemma (Lemma 8), the rebuild matrix 7
previously obtained is a permutation matrix, i.e. we have the

property £; ©; ' - perm; 7. Hence the vector a sends by the
adversary can be open to a permutation matrix:

E;0;T'Fa=com-mat (ckn) s

)
Now, let 1on be the formula defined by
def .
on = . zkp-verlfstn(cg Ton Ton {Con, T’y zon(1"))
where oo, is the public parameter defined by

aondg(ck n,pkeg Sk,eon t2) and xon is the statement
defined by xondéf(a,c,c'). Hence, by definition of o, and
‘H, we have the following global judgement

E;OF [Herr — onr']. (*4)

Hence, by global property Eq. (x4), because £ - ¢’ : real and
£; 0 F non-negl(¢’) and by the second hypothesis Eq. (H2),
we conclude &;O;T + low-bound ¢’ vo,. Therefore, by this
last property and by the conclusion Eq. (I'), we apply the third
key lemma (Lemma 9) and conclude the following property

N
5;@;FI—/\(3vi.c’®(7r-i):

i=1
shuf-map, (pkcg sk) (c ® i) vi>.

By conclusion &£;0;I' F perm, 7 given by Eq. (I') and
by the injectivity rule for permutations L.7:INJ, we have, for
all ¢ € [1; N], the existency of an index j; € [1; N] such
that the property £;0;T F 7 -i = j; holds. Hence, by the
action rule of ® on canonical vectors applied to i and j;, we
conclude £;0;TFc®i=(c|i)and &;O;T Fc'® (7-1) =
¢ ®ji = (c' | ji) = (¢’ | m-1i). Then, the equation obtained
in the previous step becomes

EO;TFJu. (¢ |m-i) =

shuf-map (pkcg sk) (c|i) vi. (P)

As the input ciphertexts list ¢ is well-formed for the secret
key sk by the third hypothesis Eq. (Hs), ie. £;0;T F
wf_ctxt sk c, we have by the characterization of the predicate
wf_ctxt rule L.WF:VALID, for all i € [1;N], & 6;T +
wf_ctxt sk (c | i). Therefore, by the correctness rule for
shuffle-friendly maps L.SFM:CORRECT, and by the equation
Eq. (®), we have

N
£:6;T+ N\ (decCS sk (¢ | 7 i) = deecs sk (c | i>).
=1

Next, by application of the characterization rule of dec-listfcg)

L.DECLIST and by the rewrite rule, the previous equation
becomes &;0;I" + /\f\;((dec-listg) sk ¢ | (w-1)

(dec-list((cg)

because the property £;0;I' - perm, 7 holds, the char-
acterization of multisets equality rule L.EQM:CHARAC leads
to

sk c | 1>> Finally, using this property and

£;0;T + eqmy (dec-list™y sk ') (dec-list'sy sk c)

40

O
5) Proof of the verifiability property: Now, we finally prove

and &;0;I' I permy wthe verifiability property. We denote by H and Goal the

functions defined by
HENe. Ar. A zkp-verifor (ck n,e) a (oo, T, Zoft (1))
A zkp-verifR?; (ck n,pkeg sk, eon t2) (a,c,c)
Cs
<aona 7', Zon (7'/)>
AN wf_ctxty sk c.

and

Goal & wf_ctxty sk ¢’
Aeqmy (dec-list') sk c) (dec-listy) sk).
Hence, the verifiability property consists in proving the fol-
lowing global formula
E; o+ [H (eoff t1) (1off 1) (ron p) — Goal].

Therefore, by the elimination rule G.LB:ELIM of predicate
low-bound applied to the hypothesis function H (eqs 1) and
to the goal Goal, we have to prove

E;@ V(g : real). non-negl(g') A det(g') =
[low-bound ¢’ (H (ec t1)) —
H (eoff t1) (rotf 1) (ron p) — Goal].
Let ¢’ : real be a non-negligible deterministic parameter such

that non-negl(g’) and det(g’). We define ©, be the following
context of global formulas

0y def non-negl(g’), det(g’).

By another use of the elimination rule G.LB:ELIM of

predicate low-bound applied to the hypothesis function
Hy, &' \e. low-bound ¢’ (H e) and to the goal

Goal' & Xe. (eoff t1) (roff 1) (ron p) — Goal, we have to
prove

&,(g : real); O, F V(g : real). non-negl(g) A det(g) =
[low-bound g H;, — H;, (eqif t1) — Goal’ (eof t1)].
Let g : real be a non-negligible deterministic parameter such
that non-negl(g) and det(g). We define ©, to be the following
global context
Q4 &f non-negl(g), det(g).

By putting notations back together, we have to prove the
following judgement

E,(g9,9 :real);0,,0,
[low-bound g (\e. low-bound ¢’ (H e)) —
low-bound ¢’ (H (eoff t1)) —
H (et t1) (roff 1) (ron p) — Goal]
Which is exactly the statement of the last key lemma

(Lemma 10). Therefore, this achieves the proof of the veri-
fiability property.

	Introduction
	Related work
	Contributions
	Outline

	Terelius-Wikström mixnet protocol in a nutshell
	The CCSA logic
	Terms
	Formulas

	Modelling cryptographic properties
	Commitment schemes
	-protocols
	Shuffle-friendly maps

	CCSA logic to prove Terelius-Wikström mixnet protocol
	Linking the protocol description with the CCSA logic
	Algebraic properties
	Security properties

	Proof of verifiability
	Sketch of verifiability proof
	Rewinding in the CCSA logic
	Verifiability proof
	Extraction of the committed matrix
	M is a permutation
	M has been used to shuffle the input ciphertexts list with the shuffle-friendly map
	Putting everything together

	Proof of permutation secrecy
	Conclusion
	References
	Appendix
	Appendix A: Cryptographic definitions
	Useful usual cryptographic definitions
	Indistinguishability under Chosen Plaintexts Attack (Ind-CPA)
	Discrete Logarithm assumption

	Commitment schemes
	Hiding property for commitment schemes
	Binding property for commitment schemes

	Zero-knowledge proofs and -protocols
	General case
	Special case of = 1 – -protocols

	Shuffle-friendly maps
	Cryptographic definition
	A full example – "re-encryption only" mode

	Appendix B: Specification of the Terelius-Wikström protocol
	-protocols family for the offline phase offeF(p)N
	-protocols family for the online phase oneF(p)N
	9-move protocol of the Terelius-Wikström shuffle
	Permutation secrecy property
	Verifiability property

	Appendix C: Generalised subterms and freshness properties
	Appendix D: Proof system
	Soundness of low-bound rules
	Soundness of property transfer under adversarial selection
	Soundness of algebraic rules
	Soundness of cryptographic rules

	Appendix E: Rewinding algorithms
	Appendix F: Full version of security properties proof
	Proof of permutation secrecy
	Rewinding axiom proof
	Verifiability proof
	Extraction of the committed matrix
	M represents a permutation
	M has been used to shuffle the input ciphertexts list with the shuffle-friendly map
	Proof of the verifiability property under conditions
	Proof of the verifiability property

