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Abstract—Mixnets are crucial components of electronic voting
protocols, used to mix the ballot box before the tally. Mixnets
should ensure two somewhat antithetic properties: preservation
of the list of ballots, and privacy. Unfortunately, proving that
mixnets ensure the desired properties requires both complex
cryptographic primitives (zero-knowledge proofs, commitments
schemes) and proof techniques (mainly rewinding). Hence, such
proofs are at the same time highly desirable but quite complex to
get. In order to achieve such complex formal proofs, we focus on
the quite recent Computationally Complete Symbolic Attacker
logics, which handles computational security proofs with first-
order logic, abstracting most probabilities and explicit reductions.
Said differently, it provides precise and subtle computational
reasoning, while not requiring too much expertise from the
user who setup the proof. In the present work, we enrich
the logic to be able to deal with zero-knowledge proofs and
rewinding techniques, and provide the first complete formal proof
of Terelius-Wikström mixnet protocol.

Index Terms—mixnet, zero-knowledge proof, rewinding, for-
mal proof, Computationally Complete Symbolic Attacker

I. INTRODUCTION

Electronic voting (e-voting) protocols are more and more
used for widespread applications, from professional to political
elections in direct democracy, as for example in Switzerland.
Therefore, depending on the criticality of the elections, we
need them to provide robust security guarantees. In broad
terms, such protocols should achieve two main properties:
verifiability and privacy. Roughly speaking, verifiability en-
sures that all the ballots in the ballot box have indeed been
counted during the tally (universal verifiability) and that each
voter can verify if his ballot is present in the ballot box
(individual verifiability). While specific definitions may vary,
privacy broadly ensures that no adversary can link ballots to
voters. This is why such protocols involve some permutation
step of the ballots, e.g. with the help of mixnets, which we
focus on in this work.

More generally, e-voting protocols are composed of three
main steps. They begin with a setup, where a server is prepared
(by an authority commitee) to host the election. Later, during
the voting phase, voters submit their votes into a public ballot
box. Finally, as soon as the voting delay expires, authorities
join together to perform the tally, which may lead to more or
less complex computations and issues. For simple tallies, e.g.
when only sums are involved, homomorphic encryption can
be enough to compute the result. However, for more complex
tallies, e.g. when voters are asked to rank candidates, we
need to mix the ballot box to safely decrypt the ballots and
then compute the tally without compromising ballots-voters
unlinkability. One solution to this issue is to use mixnets.

A mixnet is composed of several connected mix-servers act-
ing as authorities. Each mix-server takes as input the encrypted
list of ballots, and produces as output a permutation (going
with a re-encryption) of these ballots. Regarding the main
security properties we want e-voting protocols to guarantee,
we expect two security properties from mixnets:

• Verifiability: A dishonest mixnet should not be able to
convince an honest verifier that the output list is a re-
encrypted permutation of the input list when it is not the
case. In particular, as the output list is indeed a permu-
tation of the input list, no ballot can be dismissed nor
duplicated. This preserves both individual and universal
verifiability properties.

• Permutation secrecy: An honest mixnet should ensure that
no adversary can link votes from the output list with votes
from the input list.

To achieve these security properties, mixnets rely on advanced
cryptographic constructions, e.g. zero-knowledge proofs and
commitment schemes, with complex interactions between
them. Consequently, proof techniques required by these pro-
tocols are quite intricate. Indeed, they are based on complex
cryptographic reductions techniques (e.g. rewinding) and com-
plex interactions between cryptographic and algebraic results.

Formally proving security properties of e-voting protocols
is a huge task, and some results have already been achieved.
In particular, some protocols involving simple tallies have
been completely proved [1], whereas more complex ones
using mixnets still need efforts to be completely proved. For
some of them, partial proofs exist, assuming for example that
the involved mixnets are ideal [2]. Formally proving security
properties of real-life mixnets remains somewhat of a blind
spot in the overall proofs of complex e-voting protocols,
mainly because of the complexity of the underlying proofs.
In particular, we need to handle zero-knowledge proofs, which
implies to manage rewinding techniques to get the associated
witnesses (in our case, the witnesses will be the permutations
used to mix the ballot box). This means that we have to “get
back into the past of the adversary’s actions and make them
choose another way, a kind of fork paradigm”. This implies
that we have to manage very precisely adversary knowledge
and behaviour, and cannot consider them as a black box. Other
probabilistic aspects also lead to subtleties, and we need to be
able to manage them through formal models which need to be
precise, expressive and sound. Getting all this at the same time
is necessary to get comprehensive proofs that we can trust.
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A. Related work

Terelius-Wikström mixnet protocol (a variant of mixnet
protocol that is used in the e-voting protocol Belenios [3])
has been originally proposed in [4], [5], with a sketch of
handmade cryptographic proof of the proposed constructions,
and a particular focus on algebraic properties, but without
formalizing the rewinding step linked to the zero-knowledge
proofs, and assuming that the adversary produces as many
proof transcripts as needed to extract a number of witnesses.

Our goal is to supplement this work by providing a for-
mal computational proof of this protocol security properties,
Formal security proofs of cryptographic protocols are usually
based on one among two main paradigms. The first one
is the symbolic model, Based on first-order logic, it has
led to several well-known tools and to successful protocols
analyses, even for mixnets, as in [6], [7]. However, sym-
bolic models consider cryptographic constructions as black-
boxes with perfect security, making them unsuitable to cap-
ture the subtleties of rewinding arguments. The second ap-
proach, known as computational model, takes into account
the ability for the attackers to break cryptographic primitives
with some probability of success, e.g. considering them as
Probabilistic Polynomial-Time Turing Machines. Several such
frameworks have been proposed and developed. The well-
known CryptoVerif tool [8] provides a mechanized way to
handle general reductions techniques, but for intrinsic reasons
is unfortunately not able to handle rewinding techniques. Other
approaches, based on probabilistic Hoare logic (e.g. leading to
the EasyCrypt tool [9]) could be more suitable for our purpose.
Unfortunately, even if recent advances allow rewinding in
EasyCrypt [10], performing complex proofs of protocols using
advanced cryptographic techniques remains very complex and
time consuming with this kind of tools, making them ill-suited
for our goal.

In the present work, we focus on a third paradigm, namely
the Computationally Complete Symbolic Attacker (CCSA)
model [11], [12]. This model aims to take benefits of both
previous paradigms: using a first-order logic, it abstracts
(and then ease) most probabilitic and complexity theoretic
reasoning, but provides at the same time strong cryptographic
guarantees by giving a probabilistic semantics to this logic.
These benefits rely on the central predicate u ∼ v, encoding
the fact that the probability, for a probabilistic polynomial-time
adversary, to distinguish the computational interpretations of
the terms u and v is negligible. In order to perform a proof in
this model, one has to provide elementary axioms in this logic
to capture the properties of the cryptographic constructions
(their computational interpretation should be proven sound),
and perform the proof with the help of these axioms. A
correct proof then provides guarantees against a computational
attacker. This logic, which has been implemented in the
Squirrel proof assistant [13], allows relatively simple proofs
of complex protocols (for example key-management APIs
[14]), with very limited work on proving soundness of the
axioms. Notably, the soundness proofs are small and relatively

easy to check, and the remainder of the reasoning is pure
first-order reasoning. Today, neither CCSA nor Squirrel can
handle rewinding techniques, but it is precisely the goal of the
present work to supplement previous works by providing all
the material to be able to reason with rewinding techniques
and zero-knowledge proofs within the CCSA logic, hence
providing all the necessary reasoning techniques to prove
mixnets security formally.

Other efforts have already been made to formalize such
proofs with logics. In particular, [15], [16] propose a model of
Terelius-Wikström mixnet in Coq (now Rocq) using the Cer-
tiCrypt project [17]. These proofs focus on properly capturing
all the associated probabilistic arguments, but exclude rewind-
ing. More precisely, their models are low-level ones and, then,
more precise than ours when studying the algebraic properties
(which we mostly axiomatize), providing a lot of confidence in
the algebraic reasoning and justifying in particular the proof of
permutation. However, they do not model rewinding at all and,
thus, miss some adversarial selection argument, as discussed
later. These works are complementary to ours, and provide
us confidence that our axiomatization of algebraic properties
is correct, while our work ensures that the rewinding step of
the proof is correct A final remark is that their work provides
verified running code, which is not the case of our work.

Our work heavily relies on the properties of interactive zero-
knowledge protocols, and more precisely on Σ-protocols. A
number of works aim at proving that such interactive zero-
knowledge protocols or Σ-protocols precisely satisfy intended
properties [18], [19], [20], [21], [22], considering them at
the atomic primitive level. Among these works, some lead
to implementations into formal tools as CertiCrypt, ZKCrypt,
CryptHOL, EasyCrypt and SSProve. But, none of them ad-
dresses larger protocols using Σ-protocols at a macro level,
and we adopt here a complementary approach where we
assume that the zero-knowledge or Σ-protocols satisfy the
intended properties, formalize them as building blocks used to
build larger protocols, and then prove that the overall protocol
using them satisfies another set of properties. The aformen-
tioned works give a strong fondation for our hypotheses.

Finally, few works aim at formalizing rewinding for com-
putationally sound logics targeting cryptographic reasoning.
Notably, [10] aims at formalizing rewinding for EasyCrypt
logic’s. However, proofs in EasyCrypt are notoriously in-
tricated as soon as the reductions become complex, and
capturing the nested rewinding steps — which is necessary
here — would be a rather complex problem in this logic.
By contrast, we provide here a relatively simple proof thanks
to our formalization of adversarial success. Concerning our
choice of framework, we point out that in EasyCrypt all
reductions must be explicit, leading to heavier and less Human
readable long proofs (in terms of lines of code). In particular,
adversarial executions are explicit in the number of times the
rewinding has to be executed. Our CCSA formalization of
the rewinding technique abstracts it inside the semantics of
our axiom, making it much easier to handle for the user.
Besides, EasyCrypt provides concrete security analysis, but
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makes computations on probabilities explicit. This makes it
more precise, but leads to heavier and less Human readable
proofs (in terms of lines of code).

B. Contributions

The goal of our work is twofold: firstly, to the best our our
knowledge, we provide the first complete and precise proof
of Terelius-Wikström mixnet protocol; secondly, we provide
a formalization of rewinding and other reasoning techniques
in the CCSA logic, which can be reused in any other formal
analysis involving it. More precisely:
• We provide (and prove) axioms for the algebraic proper-

ties needed for the proof.
• We provide the first CCSA axiomatization of zero-

knowledge proofs, commitment schemes and re-
encryption.

• We provide a new construction that allows to capture
rewinding in the CCSA logic. Natively, the original
CCSA logic only allows reasoning on globally negligible
(or globally non-negligible) events, meaning that one can
only reason on probabilities on the whole sampling space,
but it cannot handle conditional probabilities. However,
rewinding requires reasoning on the probability of a
certain event knowing that an execution point has been
reached. Therefore, we introduce a new construction in
the CCSA logic that captures that a certain formula is
true with non-negligible probability knowing that an-
other formula is true. Additionally, we provide axioms
addressing interactions between this construction and the
usual global CCSA formulas. With this enrichment of
the CCSA logic, we are able to capture the rewinding
argument.

To our knowledge, our work is the first one to provide a
framework providing complete and precise formal proofs of
not-idealized mixnets.

C. Outline

Our paper is organized as follows. We first provide in
Section II an overview of Terelius-Wikström mixnet protocol,
to give a flavor of its intrinsic nature. Then, we introduce in
Section III some background on the CCSA logic, and show in
Section IV how we use it to formalize the cryptographic prim-
itives and properties involved in Terelius-Wikström protocol.
Then, Section V is dedicated to a more detailed presentation
of the protocol, which includes CCSA logic formalizations.
At this point, all the ingredients are set to expose our proofs
of verifiability in Section VI and permutation secrecy in Sec-
tion VII. The article ends in Section VIII with a summary of
our contributions and future work directions. We provide more
technical details on the proofs and supplementary material in
appendices.

II. TERELIUS-WIKSTRÖM MIXNET PROTOCOL IN A
NUTSHELL

We provide in this section an overview of Terelius-Wikström
protocol [5], [4]. A more precise description is provided

in Appendix B. Before presenting the protocol, we need to
introduce some notation. From now on, N will denote a natural
number and pη ∈ N∗ will be a prime number of size at
least η, i.e. we have log2 pη > η. Moreover, Gpη refers to
a cyclic group of order pη , and F(pη) refers to the Galois
field of order pη . We denote by 〈· | ·〉 the standard scalar
product over F(pη)N : for all vectors x = (x1, . . . , xN ),y =

(y1, . . . , yN ) ∈ F(pη)N , we have 〈x | y〉 =
∑N
i=1 xiyi. We

denote by 1 the unit vector 1 = (1, . . . , 1) ∈ F(pη)N . Finally,
we define ~ to be the following operator on vectors: for
two vectors x = (x1, . . . , xN ),y = (y1, . . . , yN ) ∈ F(pη)N ,
x ~ y =

∏N
i=1 x

yi
i . In Terelius-Wikström mixnet protocol,

permutations are represented as matrices. More precisely, if
π ∈ SN is a permutation of length N , its representation in
the form of a matrix is Mπ =

(
m

(π)
i,j

)
16i,j6N

where, for

all i, j ∈ J1;NK, m(π)
i,j = δiπ(j) (where δiπ(j) = 1 when

i = π(j)). We define the predicate permN Mπ to hold when
Mπ is a permutation matrix.

Terelius-Wikström mixnet protocol is split into two parts,
an offline one and an online one. First, at the same time
as the election setup, during the offline phase, each mix-
server chooses a random permutation π

$← SN and pub-
lishes a commitment to the matrix Mπ representing this
permutation π. In other words, each mix-server chooses a
random vector s

$← F(pη)N and publishes the value a ←
ComMatN (F(pη))(ck,Mπ ; s) where the commitment algorithm
ComMatN (F(pη)) is based on Pedersen’s commitment scheme.
In doing so, each mix-server publicly promises to use the
permutation π without revealing it. Later, just before the tally
of the election, the online phase will consist of the ballot box
mixing procedure, which goal is to erase the link between
ballots and voters, ensuring ballot privacy. During this phase,
each mix-server takes on its turn the list of ballots in the ballot
box b(in), and outputs a permutted and re-randomized version
of this list of ballots b(out). Besides, each phase of the protocol
comes with a zero-knowledge proof attesting that the target
property is satisfied.

Before going deeper into details, let us point out the
properties that any mix-server should satisfy:
• (Correctness) When both mix-server and verifier are

honest, a mix-server must keep the content of each
ballot untouched, and the proof transcripts produced by
the mix-server must be accepted by the verifier. More
precisely, the decryption of the input list of ballots and
the decryption of the output list of ballots are equal as
multisets. Actually, as this property has been shown in
[4] and [16], we will not linger on it.

• (Permutation secrecy) When the mix-server is honest
but the verifier is dishonest, i.e. is controlled by an
adversary A, the mix-server blurs the link between the
output list of ballots and the input one. That is, the
adversary A cannot link ballots to voters.

• (Verifiability) This property aims to verify that a mix-
server does not cheat, under the assumptions that the mix-
server is controlled by an adversary A and the verifier is
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honest. More precisely, it is achieved if A cannot produce
any proof transcript accepted by the verifier while the
decryption of the output list of ballots is not a permutation
(up to re-encryption) of the input one.

III. THE CCSA LOGIC

We briefly recall in this section the very key concepts of
the Computationally Complete Symbolic Attacker (CCSA)
logic [12]. This logic is a first-order logic built on (higher-
order) terms, using names to denote random samplings, and
a subset of functions to represent the adversarial computa-
tions. These terms are interpreted as random variables over
the randomness of both the protocol and the adversary, and
represent the interactions between the protocol and the ad-
versary. Formulas are built on top of two main predicates:
[φ] which denotes that a formula (a term of type bool) is
true with overwhelming probability, and u ∼ v that states
that no probabilistic polynomial-time adversary can distinguish
between the distributions of the lists of terms u and v with
non-negligible probability.

A. Terms

Types in the CCSA logic are built on a set of base types T
using the usual type arrow →. Notably, we assume that base
types include at least bool, nat, real and msg (this latter to
model bitstrings). A type structure M defines an interpretation
JτKηM for each base type τ ∈ T and security parameter η.
The interpretation of standard types is the standard one, and
function types are defined as usual. A type is said to be finite
if, for any η, its interpretation is finite.

The terms considered in the CCSA logic are simply-typed
λ-terms built upon a set of variables X :

t ::= x | t t |λ(x : τ).t | ∀(x : τ).t

Variables represent function arguments, logical variables and
function symbols (e.g. cryptographic functions) declared in an
environment.

An environment consists in variable declarations (x : τ) and
variable definitions (x : τ = t). We assume that environments
declare at least the standard boolean operations (e.g. ∧,∨),
integer operations, real operations, and a number of standard
functions (in particular an if then construct). Note that
environments allow for well-founded recursive definitions.

A model M for a term structure E consists, for every η,
of two sets of random tapes: Th

M,η (the honest randomness)
and Ta

M,η (the adversarial randomness). It defines, for every
declared variable (x : τ) and every security parameter η, a
JτKηM valued random variable ρ ∈ Th

M,η×Th
M,η 7→ JxKη,ρM . This

interpretation J·Kη,ρM is naturally lifted to terms. We require that
usual functions are interpreted in the standard way.

Example 1. For all n ∈ J1;NK, for all i ∈ J1;nK, we define
term i to be the i-th canonical vector ui ∈ F(pη)n where, for
all j ∈ J1;nK, (ui)j = δij . Therefore, we have JiKη , ρM : E = ui
for all security parameter η and all random tape ρ ∈ T.

We call names a subset N ⊂ X of variables, which
represents honest random samplings. Names can only be
declared in an environment, and are of type τ0 → τb where
τb is a base type. Names are interpreted as a sequence of
independent identically distributed random samplings from the
honest randomness Th

M,η to τb. This means that we require
that two different names, or the same name used with two
different indices, do not “use” the same part of the random
tape. Contrary to [12], we do not require that τ0 is a finite
type, however we require that all formulas involving names are
guarded by a condition ensuring that they only use, for every
η, a finite number of indices, which achieves the same effect.
This allows us to define a recursive term of type nat→ msg
that returns a list of randomnesses of arbitrary size. It is then
only used under the assumption that its argument is bounded
for every η.

B. Formulas

Formulas of the CCSA logic are standard first-order for-
mulas built on top of the first-order terms, with predi-
cates designed to capture cryptographic reasoning. We write
∨̃, ∧̃, ∃̃, . . . for the usual global logical connectors, in order
to distinguish them from their local counterparts that appear
in terms. The semantics of the logic is the usual first-order
semantics, where M |= F means that F holds in M.

We now recall the definition of the main predicates of the
CCSA logic given in [12]. To capture cryptographic properties,
we need to define what is a small enough success probability
for the adversary.

Definition 1. A function f : N → R is negligible if for all
polynomials P , we asymptotically have f(η) ≤ 1

P (η) .

Predicate [φ] denotes the fact that the formula φ (i.e. a term
of type bool) is almost always true. Precisely, M |= [φ] holds
when η 7→ Prρ

[
JφKρ,ηM

]
is negligible in η.

Predicate ∼ captures computational indistinguishability. If
u and v are lists of terms with matching types, u ∼ v holds
if, for any probabilistic polynomial-time Turing machine A,∣∣∣Prρ

[
A(1η, JuKρ,ηM , ρa)

]
− Prρ

[
A(1η, JvKρ,ηM , ρa)

]∣∣∣
is negligible in η. Note that A is given access to the adversarial
randomness from the model.

Predicate adv(u) expresses that the term u can be computed
by the adversary in polynomial time. Predicate det states that
a term does not depend on randomness (i.e. is a constant for
each η). Predicate pbound(u) states, for a term of type nat,
that JuKρ,ηM is bounded by a polynomial in η.

The logic given in [12] is equiped with a proof system that
allows to reason at two levels: the local level (i.e. for a fixed
randomness), and global level (i.e. first-order reasoning on the
predicates given above). A global judgement E ; Θ ` F states
that F is entailed by global hypotheses Θ in environment E :

|= E ; Θ ` F if |= (∧̃Θ)→̃F.
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A local judgement E ; Θ; Γ ` φ states that under global
hypotheses Θ, Γ almost always entails φ (a term of type bool):

|= E ; Θ; Γ ` φ if |= (∧̃Θ)→̃[(∧Γ)→ φ].

In order to ensure that terms never need to be evaluated on
unbounded randomnesses, and thus that all probabilities are
well defined, we ensure that all formulas appearing in our
proofs satisfy the following syntactic condition: for every term
k used as index for names in φ or F , we have pbound(k) as
a global hypothesis.

The proof system proposed in [12] also provides generic
reasoning rules for logical connectives, together with a number
of rules dealing with simple properties of the predicates which
we do not recall here.

IV. MODELLING CRYPTOGRAPHIC PROPERTIES

We provide axioms for cryptographic constructions needed
to model the protocol. First, we model commitment schemes
to reveal only a fingerprint of the permutation used. Then,
we model Σ-protocols, a kind of interactive zero-knowledge
proofs used to prove the good behavior of a mixnet. Finally,
we model an abstraction of the shuffle performed by a mix-
server, with so-called shuffle-friendly maps. In this section, we
focus only on how to model these cryptographic constructions
in the CCSA logics. For readers who are not familiar with
these advanced cryptographic objects, we provide detailed
definitions and security properties statements in Appendix A.

A. Commitment schemes

Commitment schemes are used to commit to an information
without revealing it directly; the committed information is
first sealed and can eventually be revealed later, but its value
cannot be modified between commitment and opening steps.
We denote by M the set of messages we commit to. More
formally, a commitment scheme for a set of messages M is a
pair of algorithms KS[M] =

(
gencomkey, com

)
where

• JgencomkeyKη , ρM : E defines an algorithm which outputs a
commitment key ck and defines the set Rcom

M of randoms
used to commit, as well as the set KM of commitment
messages.

• com : msg → msg → msg → msg is a deterministic
algorithm outputting commitment message a; it takes as
inputs a commitment key ck, a message m ∈ M and a
randomness r ∈ Rcom

M .
A commitment scheme has two cryptographic properties: the
hiding property and the binding property. For both properties,
the commitment key ck is honestly computed by a setup
oracle.
• (Hiding property) The hiding property states that for

any given commitment message a, no polynomial-time
adversary can break a to obtain an opening information
(m, r) such that a = com ck m r. The underlying
cryptographic game HidingAKS[M]

(
η, ρ ; β

)
is a classic

left-right game with some secret bit β ∈ {0, 1} and can
be found in Appendix A. An adversary against this game

is given by a pair of probabilistic polynomial-time adver-
saries A =

(
Asetup,Aguess

)
such that Asetup generates

a challenge consisting of two messages m0,m1 ∈ M
with m0 6= m1, while Aguess tries to guess β from the
output of the commitment oracle, which has committed
to message mβ . A wins the game HidingAKS[M]

(
η, ρ ; β

)
when β is correctly guessed by Aguess. We formalize this
property by the rule G.COM:HIDE (see Fig. 1).

• (Binding property) The binding property states that a
commitment message a can only be opened to a single
message m, the one used to compute a. Identifying the
function com with a hash function, we see this property as
the collision resistance property usually set for hash func-
tions. Therefore, the idea behind the cryptographic game
BindingAKS[M]

(
η, ρ
)

is to leave the choice of challenge
messages to the adversary A. They have to produce two
messages m1,m2 ∈M with two randoms r1, r2 ∈ Rcom

M ,
and send these two pairs (m1, r1) and (m2, r2) to the
commitment oracle, which produces honest commitments
c1, c2 ∈ KM from these two pairs. The adversary
A wins the game BindingAKS[M]

(
η, ρ
)

when c1 = c2
but (m1, r1) 6= (m2, r2). We formalize this rule by
L.COM:BIND (see Fig. 1).

B. Σ-protocols

Let R ⊂ PPR × XR × WR be a polynomial-time com-
putable relation. For triplets (σ, x, w) ∈ R, we denote by
σ ∈ PPR the public parameter, by x ∈ XR the statement,
and by w ∈ WR the witness. We define the set LR(σ)

def
={x ∈

XR | ∃w ∈ WR, (σ, x, w) ∈ R} to be the language set of the
binary relation R. Besides, given a security parameter η ∈ N∗
and a random tape ρ ∈ T, the property Jzkp-relR σ x wKη , ρM : E
holds for a public parameter σ, a statement x and a witness w
when (JσKη , ρM : E , JxK

η , ρ
M : E , JwKη , ρM : E) ∈ R. A Σ-protocol for the

computable relation R is a 3-message protocol ΣR between
two agents, a prover P and a verifier V . These agents and
the setup phase S are formalized as probabilistic polynomial-
time Turing machines. Note that the statement x is a public
input of both P and V , while the witness w is known only
by P . The prover P first sends a so-called commit message
to initiate the interaction. Then, the verifier V sends back
a random challenge (chosen uniformly at random in the
challenge space), to which P responds. A Σ-protocol ΣR
is then defined by three functions zkp-comR, zkp-resR and
zkp-verifR, corresponding to executions of honests prover P
and verifier V:

• zkp-comR : msg → msg → msg → msg computes,
from an input (σ, x, w) ∈ R, a commit message α;

• zkp-resR : msg → msg → msg → msg → msg com-
putes a response message z(c) from an input (σ, x, w) ∈
R and a challenge c;

• zkp-verifR : msg→ msg→ msg→ bool takes as input
a public parameter σ, a statement x and a proof transcript
〈α, c, z(c)〉 and outputs a Boolean b : bool whether or not
the verifier is convinced by the proof transcript.
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For ease of notation, we will use function zkp-proveR :
msg→ msg→ msg→ msg→ msg as a macro for

zkp-proveR σ x w (r i)
def
=

〈zkp-comR σ x w, r i, zkp-resR σ x w (r i)〉.

We denote by
(
P(w) 
(Σ)

R V
)

(σ, x) the Σ-protocol
interaction between the prover P and the verifier V
as described above by the macro zkp-proveR. Note
that functions zkp-proveR and zkp-verifR must satisfy
zkp-verifR σ x (zkp-proveR σ x w (r i)) = >. Besides, a
Σ-protocol must satisfy the two following properties:
• (Special-soundness) ΣR is said to be special-sound

when there exists a polynomial-time extractor ER given
by the function zkp-extractR : msg → msg → msg →
msg→ msg, such that the witness extraction is possible
when two proof transcripts p(i)

R
def
=〈α, ci, z(ci)〉, i ∈ {1, 2},

are accepted by the verifier for the same commitment
message α but for different challenges c1 6= c2. Infor-
mally, ΣR is special-sound when any prover producing
a proof accepted by the verifier for the witness-statement
pair (σ, x, w) ∈ R ”knows” the witness w. We formalize
this rule by L.Σ-P:SPSOUND (see Fig. 1).

• (Honest-Verifier Zero-Knowledge) This property is
surely the trickiest one. The key idea is to state that
any proof accepted by an honest verifier V leaks no
information about a witness w of a witness-statement
triplet (σ, x, w) ∈ R. More precisely, ΣR is said to be
honest-verifier zero-knowledge (HVZK) when there exists
a polynomial-time simulator S imR (given by the function
zkp-simR : msg→ msg→ msg→ msg) such that, on a
public parameter σ, a statement x ∈ LR(σ) and a random
challenge c, outputs an accepting interaction 〈α, c, z〉 with
the same probability distribution as honest interactions(
P(w) 
(Σ)

R V(c)
)

(σ, x) between the honest prover P
and the honest verifier V where w is the witness for the
statement x (i.e. (σ, x, w) ∈ R) and where the verifier V
must send the challenge c. We formalize this property by
the rule G.Σ-P:HVZK (see Fig. 1).

In the case of Terelius-Wikström protocol, we define a fam-
ily of Σ-protocols (ΣR(e))e∈F(pη)N for a family of binary
relations (R(e))e∈F(pη)N , each Σ-protocol and relation being
associated to a specific vector e ∈ F(pη)N . For a given vector
e, the corresponding Σ-protocol is defined by adding a first
challenge vector e sent by the verifier at the very beginning of
the Σ-protocol, the following steps being those of a standard
Σ-protocol, but for a relation depending on e.

C. Shuffle-friendly maps

In their works, Terelius-Wikström generalize the re-
randomization of the encryption and potential partial decryp-
tion performed by a mix-server, by a so-called shuffle-friendly
map φCS. Formally, each ballot in the ballot box is encrypted
using a cryptosystem CS allowing re-encryption (typically, an
homomorphic cryptosystem is well-suited to encrypt ballots).

To achieve semantic security, the encryption algorithm EncCS
is a (see Fig. 1) non-deterministic algorithm using some
random r as randomness: for a plaintext m ∈ MCS the
encryption of m under the public key pk = pkCS(sk) is
c = EncCS(pk,m ; r),where r

$← RCS is chosen uniformly
at random. From this ciphertext c, we re-encrypt the plaintext
m without decrypting the ciphertext, by multiplying c by
the encryption of 1 using another random value r′ $← RCS.
That is, if c′ is the new ciphertext, then the re-encryption
algorithm ReEncCS computes: c′ = ReEncpk(c ; r′)

def
=c ·

EncCS(pk, 1 ; r′). A ciphertext c is said to be well-formed for
a secret key sk when c can be decrypted with the secret key
sk. We denote it wf ctxt sk c, and this means:

Jwf ctxt sk cKη , ρM : E = 1 ⇐⇒ DecCS(JskKη , ρM : E , JcK
η , ρ
M : E) 6= ⊥

We extend this predicate to ciphertexts lists c of length n
as expected: wf ctxtn sk c ↔

∧n
i=1(wf ctxt sk 〈c | i〉).

A map φCS : PKCS × CCS × RCS −→ CCS is called a
shuffle-friendly map for a cryptosystem CS if it defines an
homomorphic map, i.e., for all public key pk ∈ PKCS, for
all ciphertexts c, c′ ∈ (CCS, ·) using the public key pk, and
for all randomnesses r, r′ ∈ (RCS,+), we have φCS(pk, c ·
c′ ; r + r′) = φCS(pk, c ; r) · φCS(pk, c′ ; r′). We model these
shuffle-friendly maps φCS in the CCSA model by supplying a
function shuf-mapφCS

: msg→ msg→ msg→ msg. Roughly
speaking, two different modes can be considered, separately
or together: re-encryption or partial decryption. In the CCSA
logic, we denote by decCS the decryption predicate of a single
ciphertext, and by dec-list(n)

CS the decryption of a ciphertexts
list of length n.

To be used in a mixnet protocol, a shuffle-friendly map φCS
must satisfy the following three properties.

• (Decryption preservation) Firstly, φCS must keep the
content of each ballot untouched. For this property, we
assume that the public key pk is honestly computed
from a secret key sk, i.e. we have pk = pkCS sk.
Therefore, we say that φCS preserves decryption when,
for all ciphertexts c, c′ ∈ CCS such that, if (i) c is an
encryption of a message m ∈ MCS under public key
pk, and (ii) there exists a random value r′ ∈ RCS such
that c′ = φCS(pk, c ; r′), then we have DecCS(sk, c′) =
DecCS(sk, c) = m. This proves the soundness of rule
L.SFM:CORRECT (see Fig. 1). Notice that for each new
definition of a shuffle-friendly map, one has to prove
that this new map satisfies the decryption preservation
property.

• (Associated Zero-Knowledge Proof) Secondly, we want
to get a Σ-protocol Σmap

φCS
proving that a ciphertext

c′ ∈ CCS is computed with φCS from a ciphertext
c ∈ CCS and a random value r′ ∈ RCS. This property can
be characterized by an associated relation Rmap

φCS
, called

shuffle-friendly map relation, which is given by

(pk, (c, c′), r′) ∈ Rmap
φCS

def⇐⇒ c′ = φCS(pk, c ; r′).
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• (Indistinguishability of φCS output) Finally, we do not
want φCS to leak any information about the supplied
ciphertext c ∈ CCS. Let c, c′ ∈ CCS be two ciphertexts
such that c′ = φCS(pk, c ; r′) and c = EncCS(pk,m ; r),
where m ∈ MCS is a message and r, r′ ∈ RCS
are random values. We need to make sure that no ad-
versary can distinguish whether c′ has been computed
by φCS from a ciphertext c0 ∈ CCS or some other
c1 ∈ CCS. Therefore, we define a new cryptographic
game Ind-CCAAφCS, valid

(
η, ρ ; β

)
to be a left-right game

with some secret β ∈ {0, 1}. An adversary against this
game is given by a pair of probabilistic polynomial-time
adversaries A = (Asetup,Aguess). The first sub-adversary
Asetup generates two ciphertexts c0, c1 ∈ CCS with c0 6=
c1 and a proof v that these ciphertexts satisfy the valid
predicate, which is an over-approximation property of the
well-formed predicate wf ctxt: valid (pkCS sk) c v →
wf ctxt sk c. We extend this predicate to ciphertexts list
c in the following way:

validn (pkCS sk) c v → wf ctxtn sk c

∧
∧

16i<j6n

(len 〈c | i〉 = len 〈c | j〉)

Then, the second sub-adversary Aguess tries to
guess β from the output of the oracle which applies
φCS on ciphertext cβ . Adversary A wins the game
Ind-CCAAφCS, valid

(
η, ρ ; β

)
when β is correctly guessed

by Aguess. When A wins the game with negligible ad-
vantage, the rule G.SFM:INDCCA (see Fig. 1) is sound.

V. CCSA LOGIC TO PROVE TERELIUS-WIKSTRÖM MIXNET
PROTOCOL

Now we have given general background about the protocol
and some formalizations of the cryptographic primitives and
properties, we dive into this section in the core of our
contributions and show how to precisely formalize and prove
the security properties of the protocol with the CCSA logic.
Notice that we will not details proofs of soundness of CCSA
rules here. They can be found in Appendix D, alongside a
figure which recap all the rules we need.

A. Linking the protocol description with the CCSA logic

a) A more precise description: To define a commitment
scheme for a matrix, we first define a commitment scheme for
vectors in F(pη)N based on Pedersen’s commitment scheme.
Then, the commitment algorithm com-mat for a matrix in
MatN (F(pη)) is based on this commitment scheme for vectors
com-vec with the exception that the randomness space is
F(pη)N and the commitment space is GNpη . For a matrix M , a
commitment key ck and a random vector s, the commitment
message a = com-mat ck M s to matrix M is defined by
〈a | i〉def

=com-vec ck (M · i) 〈s | i〉. Both above-mentioned
commitment schemes are perfectly hiding and computationally
binding under the Discrete Logarithm assumption for the
group Gpη . During the offline phase, each mix-server must

produce a valid commitment message to the secret permu-
tation matrix it chose. The corresponding zero-knowledge
proof proving this step is based on an algebraic result of
characterization of a permutation matrix. Indeed, a matrix
M ∈ MatN (F(pη)) is a permutation matrix if and only if (i)
M ·1 = 1 and (ii) for all vector e = (e1, . . . , eN ) ∈ F(pη)N ,∏N
i=1(M · e)i =

∏N
i=1 ei.

Definition 2 (Correct commitment relation). Let a ∈ GNpη
be a vector. Let ck ← GenF(pη)N (1η, N) ∈ GN+1

pη be a
commitment key of Pedersen commitment scheme KS[F(pη)N ].
Let e ∈ F(pη)N be a vector. We define Rcom(e) to be the
relation of correct commitment for vector e:

((ck, e),a, (t, e′, k)) ∈ Rcom(e)

def⇐⇒


a~ 1 = ComF(pη)N (ck,1 ; t)

∧ a~ e = ComF(pη)N (ck, e′ ; k)

∧
∏N
i=1 e

′
i =

∏N
i=1 ei.

During the online phase, a mix-server has to use the same
permutation (than the one picked up and committed during
the offline phase) to permute the input list of ballots and
transform it thanks to the shuffle-friendly map φCS. We define
the following relation of correct shuffle.

Definition 3 (Correct shuffle relation). Let a ∈ GNpη be a
vector of size N . Let ck ← GenMatN (F(pη))(1

η, N) ∈ GN+1
pη

be a commitment key for the Pedersen commitment scheme
KS[MatN (F(pη))]. Let (sk, pk)← KeyGenCS(1η) ∈ F(pη)×
PKCS be a key pair and φCS be a shuffle-friendly map for the
cryptosystem CS. Let c, c′ ∈ CNCS be two lists of ciphertexts.
Let e ∈ F(pη)N be a vector. We define Rshuffle

φCS
(e) to be the

relation of correct shuffle for vector e:

((ck, pk, e), (a, c, c′), (e′, k, u)) ∈ Rshuffle
φCS

(e)

def⇐⇒
{

a~ e = ComF(pη)N (ck, e′ ; k)

∧ (pk, (c~ e, c′ ~ e′), u) ∈ Rmap
φCS

.

Again, if a is a commitment message to a matrix M , we
get M ·e = e′ from the first equality and the binding property.
Hence, by an algebraic argument (that we will explain later),
we conclude the existency, with overwhelming probability,
of a vector of random values r = (ri)

N
i=1 ∈ F(pη)N such

that we have, for all i ∈ J1;NK, c′π(i) = φCS(pk, ci ; ri).
For ease of notation, we denote by shuffleφCS pk c π r
the function outputting the ciphertexts list term c′ with the
semantics defined above. Concrete definitions of Σ-protocols
for both relations of correct commitment Rcom(e) and of
correct shuffle Rshuffle

φCS
(e) can be found in [4].

b) Formalization and axiomatization in the CCSA logic:
We model the execution of Terelius-Wikström shuffle protocol
in the CCSA logic with the help of a macro mixφCS/4,
considered as a function symbol of arity 4. More precisely,
for a permutation matrix term π : matrixN , for a commitment
key parameter term ck : comkey, for a public key term
(pkCS sk) : pkey, and a pair of ciphertexts list and bitstring

7



G.COM:HIDE
E; Θ ` adv(u,m1,m2) E; Θ ` [Ψr,ifresh(u,m1,m2) ∧Ψck,ncomkey(u,m1,m2)]

E; Θ ` u, com (ck n) m1 (r i) ∼ u, com (ck n) m2 (r i)

L.COM:BIND
E; Θ ` adv(m1,m2, r1, r2) E; Θ; Γ ` Ψck,ncomkey(m1,m2)

E; Θ; Γ ` com (ck n) m1 r1 = com (ck n) m2 r2

E; Θ; Γ ` m1 = m2

L.Σ-P:SPSOUND
E; Θ ` adv(x, p

(1)
R (c1), p

(2)
R (c2)) E; Θ; Γ ` c1 6= c2

E; Θ; Γ `
∧

i∈{1,2}
zkp-verifR (σ s) x p

(i)
R (ci)

E; Θ; Γ ` zkp-relR (σ s) x (zkp-extractR (σ s) x p
(1)
R (c1) p

(2)
R (c2))

G.Σ-P:HVZK
E; Θ ` adv(u, x, w) E; Θ ` [Ψr,ifresh(u, x, w)]

E; Θ ` u, zkp-proveR (σ s) x w (r i) ∼ u, zkp-simR (σ s) x (r i)

L.SFM:CORRECT
E; Θ; Γ ` wf ctxt sk c

E; Θ; Γ ` ∃ v. c′ = shuf-mapφCS
(pkCS sk) c v

E; Θ; Γ ` decCS sk c = decCS sk c′

G.SFM:INDCCA
E; Θ ` adv(u, c, v) E; Θ ` [Ψsk,t0skey (u, c, v) ∧Ψr,ifresh(u, c, v)]

E; Θ ` u, if valid (pkCS (sk t0)) c v then shuf-mapφCS
(pkCS (sk t0)) c (r i)

∼ u, if valid (pkCS (sk t0)) c v then shuf-mapφCS
(pkCS (sk t0)) (0 (len c)) (r i)

For the rule L.Σ-P:SPSOUND, notation p
(i)
R (ci) stands for the triplet term 〈α, ci, z(ci)〉. For definitions of Ψr,ifresh(u,m1,m2)-like properties, see

Appendix C. Roughly, it is used to ensure that the adversary does not know secret values like private keys.

Fig. 1. New cryptographic rules in CCSA

term (c, v) : CNCS×msg, the term mixφCS π ck (pkCS sk) (c, v)
is a macro for the following sequence of terms:

mixφCS π ck (pkCS sk) (c, v)
def
= aπ, eπ t1, (rπ j), pπ(π),

if validN (pkCS (sk k)) c v then
〈(r l), c′π, (eφ t2), (rφ p), pφ(π)〉

where

aπ
def
= com-mat ck π (s i),

pπ(π)
def
= zkp-proveπ (ck, eπ t1) aπ wπ (rπ j),

c′π
def
= shuffleφCS (pkCS sk) c π (r l),

pφ(π)
def
= zkp-proveφ (ck, pkCS sk, eφ t2) (aπ, c, c

′
π) wφ (rφ p).

The (only) trace of the protocol is frame, defined as

(ck n), (pkCS (sk k)), π, c, v,(
mixφCS π (ck n) (pkCS (sk k)) (c, v)

)
.

B. Algebraic properties

Proofs of verifiability strongly rely on some algebraic
properties. Firstly, once enough witnesses have been extracted
and have given enough equations to fully determine a matrix
M and a vector s such that a = com-vec ck M s (if
M is of size N , we need N equations and therefore N
witnesses), we can solve the system of equations with a
function solve : msg → msg → msg → (msg × msg) that
outputs M and s. This function’s semantics corresponds to an
adaptation of the Gaussian elimination, which is polynomial-
time. For all i ∈ J1;NK, the witness (t, e′i, ki) ∈ WR for the
relation of correct commitment Rcom(ei) associated with the
vector ei ∈ F(pη)N gives the following equation on matrix
M : a~ ei = ComF(pη)N (ck, e′i ; ki).

Actually, we have enough equations, i.e. we have N equa-
tions, when the vectors family (ei)

N
i=1 defines a basis of the

vector space F(pη)N , which is expressed by basisN (ei)
N
i=1

in the CCSA logic. As dim(F(pη)N ) = N , we only need a
free family, which is achieved with overwhelming probability
for any family of vectors chosen uniformly and independently
at random. Therefore, we formalize the opening of the com-
mitment value a by the rule L.OPEN (see Fig. 2).

Secondly, once we get matrix M , we use the characteriza-
tion of a permutation matrix to show that this matrix indeed
represents a permutation. This characterization states that M is
a permutation matrix if and only if the two following equations
hold: (i) M · 1 = 1 and (ii) when e is chosen uniformly at
random in F(pη)N , then

∏N
i=1(M · e)i =

∏N
i=1 ei. In the

CCSA model, we denote this last product operation by the
function prodN . Actually, to model this characterization result
in the CCSA model, the second condition (ii) is a bit twisted,
and instead of Condition (ii), we use Equation

(ii′) ∀ e ∈ F(pη)N ,

N∏
i=1

(M · e)i =

N∏
i=1

ei.

We characterize a permutation matrix in the CCSA logic by
the rule L.π:CHARAC (see Fig. 2). Equations (ii) and (ii′) are
equivalent thanks to the Schwartz-Zippel lemma [23], [24],
which states that, for fd ∈ F(pη)[X1, . . . , XN ] a non-zero
multivariate polynomial of total degree d ∈ N over F(pη) and
for e

$← F(pη)N a vector chosen uniformly at random in the
vector space F(pη)N , then Pr

e
$←F(pη)N

[
fd(e) = 0

]
6 d

pNη
.

This result can be formalized by L.SZ (see Fig. 2).
Finally, to show that matrix M has indeed been used to

shuffle the input list of ciphertexts, the second zero-knowledge
proof shows that for any e ∈ F(pη)N chosen uniformly at
random we have: ∃u ∈ F(pη), c′ ~ (M · e) = φCS(pk, c ~
e ; u). By studying the set Hc,c′,π given by

Hc,c′,π =
{
e ∈ F(pη)N |
∃ v ∈ F(pη), c′ ~ (Mπ · e) = φCS(pk, c~ e ; v)

}
,

we show the equivalence between the two following properties
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1) Hc,c′,π = F(pη)N ;
2) When vectors e ∈ F(pη)N are chosen uniformly at

random, we have: Pr
e

$←F(pη)N

[
e ∈ Hc,c′,π

]
> 1

pη
.

We formalize it in rule L.SFM:CHARAC (see Fig. 2).

C. Security properties

Now, let us focus on security properties. In both following
properties, the commitment key parameter ck is honestly
computed by the setup algorithm gencomkey and is publicly
sent on the network to all agents. Details of corresponding
cryptographic games can be found in Appendix B.

• (Verifiability) This property is studied under the assump-
tion that the mix-server is controlled by an adversary A
and the verifier behaves honestly. Intuitively, the verifi-
ability property ensures that, as long as the mix-server
provides proofs that are accepted by the verifier, the
decryption of the output list of ballots is a permutation
of the decryption of the input one. We state this property
in the CCSA model as

E;∅ `



zkp-verifπ (ck n, eπ t1) a 〈απ , (rπ l), zπ(rπ)〉
∧ zkp-verifφCS

(ck n, pkCS (sk k), eφ t2) (a, c, c′)
〈αφ, (rφ p), zφ(rφ)〉

∧ wf ctxtN (sk k) c
→
wf ctxtN (sk k) c′

∧ eqmN (dec-list(N)
CS (sk k) c) (dec-list(N)

CS (sk k) c′)


where eqmN is the predicate standing for equality of

lists as multisets.
• (Permutation secrecy) This property is studied under the

assumption that the mix-server behaves honestly while
the verifier is controlled by an adversary A. The idea of
the secrecy property is to show that there is no way for
A to identify the permutation used by the mix-server if
the mix-server behaves accordingly to the protocol. Let
frameinit denote the initial knowledge of the adversary
and let Θinit be the initial global context of formulas
defined by

frameinit
def
= (ck n), (pkCS (sk k)), π, id, c, v and

Θinit
def
= [Ψck,n

comkey(frameinit)], [Ψ
sk,k
skey (frameinit)]

We formalize the permutation secrecy property in the
CCSA logic by the following property

E; Θinit ` frameinit,mixφCS π (ck n) (pkCS (sk k)) (c, v)

∼ frameinit,mixφCS id (ck n) (pkCS (sk k)) (c, v)

VI. PROOF OF VERIFIABILITY

Let us remind that in the case of the verifiability property,
the adversary A controls the mix-server while the verifier V
behaves honestly. This property is a trace property, i.e. at the
very end of the mix-server protocol, we check whether or
not the verifiability property holds for the obtained trace, by

considering all the messages exchanged between A and V .
More precisely, the full trace frameverif is given by

frameverif
def
= (ck n),a, (eπ t1), απ, (rπ l), zπ(rπ),

sk, c, c′, v, (eφ t2), αφ, (rφ p), zφ(rφ)

where
• terms a, απ , zπ(rπ), (sk, c, c′, v), αφ, and zφ(rφ) are

computed by A;
• while terms (ck n), (eπ t1), (rπ l), (eφ t2), and (rφ p)

are honestly computed by V .

A. Sketch of verifiability proof

To prove the verifiability property, we first need to extract
N witnesses for the commitment relation Rcom(ei), for a
vector basis (ei)

N
i=1 sent by the verifier. These witnesses are

used to extract the matrix M contained in the commitment
message a ∈ GNpη . Then, by extracting one last witness for the
commitment relation Rcom(e), we use the binding property of
the commitment scheme KS[F(pη)N ] to show that M satisfies
both (i) M ·1 = 1 and (ii) prodN (M ·X) = prodN X , hence
concluding that M is a permutation. Finally, we extract a wit-
ness for the shuffle relation Rshuffle

φCS
(e), concluding that both

ciphertexts lists c and c′ are linked by the shuffle-friendly map
φCS, meaning that for all i ∈ J1;NK, we have the following
property: ∃ ri ∈ F(pη), c′M(i) = φCS(pkCS(sk), ci ; ri). Those
last equations imply, by correctness of shuffle-friendly maps,
the equality of lists dec-list(N)

CS (sk, c) and dec-list(N)
CS (sk, c′)

as multisets, which is the property we wanted to prove.
To be able to extract witnesses, rewinding is necessary.

Roughly speaking, this technique states that one can run the
adversary A twice: A is run a first time, then we rewind them
to a previous state, and finally run them a second time from
this state. The rewinding argument is used in two different
contexts. The first one is linked to the witness extraction
from a Σ-protocol using the special-soundness property. As
a reminder, the idea behind the special-soundness property is
that: if we get two different proof transcripts for the same
commitment message, then we can extract the witness for
the associated relation. The second one is linked to the re-
building of the matrix committed in the vector a, where we
need N independent linear equations. Note that if the first use
of rewinding mentioned above can be abstracted as a black-
box, the second one cannot. Indeed, to be able to apply the
solver of linear equations system solve, the family of vectors
(ei)

N
i=1 used to extract witnesses, and then to get the linear

equations system, has to be a free family. However, even if
the probability for a vector family to be free is overwhelming,
the verifier must generate more than N vectors, because the
adversary A may not give an accepted proof transcript for all
the vectors produced by V . As a matter of fact, A sort of
chooses which vectors they will answer to.

B. Rewinding in the CCSA logic

The main issue when formalizing the proof is precisely how
to properly formalize the rewinding argument. As mentioned
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L.OPEN

E; Θ; Γ ` basisN (ei)
N
i=1 E; Θ; Γ `

N∧
i=1

(a ~ ei = com-vec ck e′i ki)

E; Θ; Γ ` a = com-mat ck M s

L.π:CHARAC
E; Θ; Γ `M · 1 = 1 E; Θ; Γ ` prodN (M ·X)− prodN X = 0

E; Θ; Γ ` permN M

L.SZ
E; Θ; Γ ` Ψx,t0

fresh(P ) E; Θ; Γ ` P (x t0) = 0

E; Θ; Γ ` P = 0

L.SFM:CHARAC
E; Θ; Γ ` permN π E; Θ; Γ ` Ψe,t

fresh(c, c′, π)
E; Θ; Γ ` ∃ v. c′ ~ (π · (e t)) = shuf-mapφCS

pk (c ~ (e t)) v

E, (x : msg); Θ; Γ ` ∃ vx. c′ ~ (π · x) = shuf-mapφCS
pk (c ~ x) vx

In L.OPEN rule terms M and s are defined as follows: (M, s)
def
=solve a (ei)

N
i=1 (e′i, ki)

N
i=1.

Fig. 2. New algebraic rules in CCSA

above, rewinding gets back to a past state of the adversary’s
computation, and run the attack process again from this state.
In our case, it is used to obtain a number of proof transcripts
in order to apply the special-soundness property.

Rewinding is neither a fully local construction (we need
the adversary to succeed with non-negligible probability), nor
a fully global one (we rewind from a state of the protocol
where a portion of the randomness is fixed). In order to capture
rewinding in the CCSA model, we therefore introduce two new
predicates, which precisely quantify the probability of success
of the adversary, globally and from a specific execution point.

First, we capture the fact that a formula is true with
probability at least g. This predicate offers a quantitative
version of what already exists in the CCSA framework, but
with explicit lower bounds for the adversary. For a formula
φ : bool and a real parameter g : real with non-negl(g), we
define the global predicate g[φ] with the following semantics:

Jg[φ]KM : E
def
= ∀ η ∈ N∗,Prρ

[
JφKη , ρM : E

]
> Eρ

(
JgKη , ρM : E

)
.

Notice that, if g is non-negligible, we have:
G.¬̃:CHARAC

E ; Θ ` ¬̃ [¬φ] ↔̃ ∃̃ (g : real). non-negl(g) ∧̃ g[φ]

The proof is quite straightforward, as if ¬φ is false with non-
negligible probability, then there exists a non-negligible g such
that φ is true with probability g.

In order to capture rewinding, we also need a local version
of this predicate, quantifying the success probability of the
adversary when part of the protocol state is fixed. Therefore,
given a property φ : τ1 → · · · → τp → bool and parameter
g : real with non-negl(g), we define the low-bound predicate
with the following semantics:

∀ η ∈ N∗, ∀ ρ ∈ T, Jlow-bound g φKη , ρM : E
def
=

Prri∈JτiK
η
M, i∈J1;pK

[
JφKη , ρM : E(r1, . . . , rp)

]
> Eρ′

(
JgKη , ρ

′

M : E
)
.

This predicate captures the probability that a formula φ is
true with non-negligible probability when part of the random-
ness used (everything but r1, . . . , rp) is fixed.

These two predicates are linked by the following axiom:

G.LB:INTRO
E ; Θ ` g[φ r]

E ; Θ ` g/2[low-bound (g/2) φ]

This comes from the following fact: for a φ(r, s) property
to be true with probability g, there needs to be enough values
of r where the probability over s that φ(r, s) is true is large.

In fact, these axioms imply a nicer one that will be really
helpful in our proofs:

G.LB:ELIM
E; Θ ` ∀̃ g : real. non-negl(g) ∧̃ det(g) →̃ [low-bound g φ→ φ r→ ψ r]

E; Θ ` [φ r→ ψ r]

This axiom allows us to introduce low-bound conditions
when proving a security property of the form φ→ ψ. This is
crucial for using rewinding, as rewinding is only allowed for
properties that are true with non-negligible probabilities. We
can now state the rewinding axiom in the CCSA logic:

Axiom 1 (Rewinding). For all polynomial-time property
φ

def
= λx. (φ x) : τ → bool [ptime], for all non-negligible

parameter g : real with non-negl(g), the following rule to
catch the rewinding argument 1 is sound

E ; Θ ` ∃̃ select(n)rand. ∃̃ kg : nat. det(kg) ∧̃ pbound(kg) →̃
[low-bound g φ → ∀ (t : nat). (rs t ∈ select(n)rand kg rs) → φ (rs t)]

∧̃ [∀ (t : nat). (rs t) ∈ select(n)rand kg rs → (rs t) ∈ {rs 1, . . . , rs kg}]

To prove the soundness of this rewinding axiom, we define
an adversarial selection function select(n)

rand : nat → (nat →
τ) → setn(τ); studying its complexity provides a concrete
value for the natural number term k : nat which satisfies both
predicates det(k) and pbound(k). The complete proof can be
found in Appendix E.

But, to be able to derive a complete proof, a last ingredient is
still missing. Indeed, throughout their proof, Terelius and Wik-
ström assumed that the adversary is not able to influence the
distribution of challenges for which rewinding is performed.
But we need to address the fact that properties which are true
with overwhelming probability are preserved under adversarial

1Notice that this axiom closely captures the rewinding argument: as long
as a formula is true with non-negligible probability, we have a polynomial-
time procedure that produces a given number of quasi-independent witnesses.
A crucial point here is that g is assumed to be non-negligible, ensuring
that our choice of k is, indeed, polynomial. If we drop that assumption, an
exponentially small g would yield an exponential k breaking the reduction.
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selection of randomness as defined previously. We address this
point with the following rule:

G.SEL
E; Θ ` det(k) ∧̃ pbound(k) E; Θ ` [φ (rs 1) . . . (rs n)]

E; Θ ` [∀ (t : nat). (rs t) ∈ select(n)rand k rs → (rs t) ∈ {rs 1, . . . , rs k}]

E; Θ ` [n 6 k → φ (select(n)rand k rs)]

This rule states that if a property φ holds with overwhelming
probability over a set of random samplings, then it still holds
even if the adversary is allowed to select the randomness
from a polynomial-size set. This comes from the fact that
in a polynomial-size set of randomness, the probability of
finding a subset that invalidates φ is negligible. As a short
example, [basisN (select(n)

rand k rs)] holds, meaning that even
if the adversary can select randomness in a polynomial-size
set, N random vectors still form a basis with overwhelming
probability. This is necessary, as the rewinding axiom does
not provide uniformly sampled random values. To the best of
our knowledge, this argument has been missed in all previous
proofs of Terelius-Wikström mixnet protocol.

C. Verifiability proof

In this subsection, we give a detailed sketch of the verifia-
bility. The complete proof is given in Appendix F.

Let frameverif be the complete trace of Terelius-Wikström
protocol, defined as

frameverif
def
= (ck n),a, (eπ t1), απ, (rπ l), zπ(rπ),

sk, c, c′, (eφ t2), αφ, (rφ p), zφ(rφ)

Verifiability property states that if the input is well-formed and
all zero-knoweldge proofs are successfully verified, then the
output list of votes produced by the mix-server is equal (as a
multiset) to the input one. In CCSA, we capture this as

[φ→ eqmN (dec-list(N)
CS sk c) (dec-list(N)

CS sk c′)]

where φ is the verifiability condition:

φ
def
= zkp-verifπ (ck n, eπ t1) a 〈απ, (rπ l), zπ(rπ)〉
∧ zkp-verifφCS

(ck n, pkCS sk, eφ t2) (a, c, c′)

〈αφ, (rφ p), zφ(rφ)〉
∧ wf ctxtN sk c.

The CCSA proof sketch is similar to the computational
proof [4], but introduces low-bound predicates when needed
for rewinding steps, and removes them at the end to conclude.

1) Extraction of the committed matrix: The first step of the
proof is the extraction of the permutation matrix. This is per-
formed through the extraction of N witnesses (e′i, ki)

N
i=1 for

the relations of correct commitment Rcom(ei), where (ei)
N
i=1

is a free family of F(pη)N ; then, for each of these witnesses we
build one linear equation involving the committed matrix, and
we finally solve the system composed of all these equations.

To do so, we have to handle two rewinding steps. The first
one provides a sequence of proofs for vectors (ei)

N
i=1. Then,

for each of these vectors, we perform a rewinding on the

challenge r ∈ F(pη); doing so, we can apply the special-
soundness axiom and obtain one equation. Hence, to be able
to apply the rewinding axiom twice, we need two low-bound
assumptions: the first one states that there are enough random
vectors to rewind; and the second one states that for a chosen
vector, there are enough random challenges to rewind. More
formally, let us denote by ψπ the formula

ψπ
def
= λe. λr. zkp-verifπ (ck n, e) a 〈απ, r, zπ(r)〉,

where both arguments on which we perform rewinding are
abstracted. We introduce the following condition allowing for
both, nested, rewinding steps

low-bound g (λe. low-bound g′ (ψπ e))

for g, g′ : real.
Going deeper into the details, let us define es : nat→ vectN

and rs : nat→ challπ to be names (i.e. semantically random
nonces) corresponding to sources of random vectors and public
random coins in F(pη)∗. With two sequential rewinding axiom
applications, we prove the existence of two deterministic and
polynomially bounded natural number terms ke : nat and kr :
nat, with ke > N and kr > 2, and two selection functions,
such that for all i ∈ J1;NK and j ∈ {1, 2}:

• select(N)
vect ke es = {es ti}Ni=1, with t1, . . . , tN : nat

pairwise distincts,
• select(2)

chall kr rs = {rs ri,1, rs ri,2}, with ri,1 6= ri,2,
• and ψπ (es ti) (rs ri,j).

Therefore, for all i ∈ J1;NK, we have ψπ (es ti) (rs ri,1)
and ψπ (es ti) (rs ri,2) with ri,1 6= ri,2. Thus, by the
special-soundness axiom, we get N witnesses wπ(i), for all
i ∈ J1;NK, defined by

wπ(i)
def
= zkp-extractπ (ck n, es ti) a

(p(i)
π (rs ri,1)) (p(i)

π (rs ri,2))

where p
(i)
π (c)

def
= 〈απ(i), c, zπ(i, c)〉. And each witness wπ(i)

satisfies the property zkp-relπ (ck n, es ti) a (wπ(i)).
Then, using G.SEL and L.BASIS followed by L.OPEN, we

get two terms M and s such that a is a commitment message
to the matrix M , i.e. under the low-bound described above
we have a = com-mat (ck n) M s.

2) M is a permutation: We now need to prove that matrix
M is indeed a permutation. To do so, we use our characteri-
zation of a permutation matrix: we extract a new witness for
the relation of correct commitment Rcom(eπ), where vector
eπ and matrix M must be independent; then, we can apply
Schwartz-Zippel rule (L.SZ and G.SEL), and finally conclude
that prodN (M ·X) − prodN X = 0. Once again, we need
enough random challenges to rewind with vector eπ , which
implies to add the condition low-bound g′ (ψπ eπ). Finally,
using L.π:CHARAC, we get permN M , which concludes the
proof.
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3) M has been used to shuffle the input ciphertexts list
with the shuffle-friendly map φCS: The last step of the proof
consist in proving that the permutation matrix M we have
extracted satisfies a = com-mat (ck n) M s, for some
vector s. Indeed, we are left with proving that the output
ciphertexts list c′ is the shuffle of the input ciphertexts list c for
the extracted permutation M . Once again, we need to apply
the rewinding axiom, this time to the second zero-knowledge
proof. We define ψφ the formula used in the rewinding axiom

ψφ
def
= λr. zkp-verifφ (ck n, pkCS sk, eφ t2) (a, c, c′)

〈αφ, r, zφ(r)〉
and add the corresponding lower bound condition
low-bound g′′ ψφ. Using the extracted witness, it follows
from the properties of shuffle-friendly maps that M has been
used to shuffle the input ciphertexts list.

4) Putting everything together: We will now prove the
verifiability property. To do so, we denote by H the function
defined by

H def
= λe. λr. λr′. zkp-verifπ (ck n, e) a 〈απ, r, zπ(r)〉

∧ zkp-verifφCS
(ck n, pkCS sk, eφ t2) (a, c, c′) 〈αφ, r′, zφ(r′)〉

∧ wf ctxtN sk c.

We want to prove the following formula

[H (eπ t1) (rπ l) (rφ p)→
eqmN (dec-list(N)

CS sk c) (dec-list(N)
CS sk c′)]

As H (eπ t1) (rπ l) rφ p→ ψπ (eπ t1) (rπ l) and
H (eπ t1) (rπ l) (rφ p) → ψφ (rφ p), we use the
three previous results to prove the following property for all
deterministic non-negligible parameters g, g′ : real:

low-bound g (λe. low-bound g′ (H e))→
low-bound g′ (H (eπ t1))→ H (eπ t1) (rπ l) (rφ p)→

eqmN (dec-list(N)
CS sk c) (dec-list(N)

CS sk c′)

Therefore, by two applications of the elimination rule
G.LB:ELIM of predicate low-bound (one with parameter
g, then another one with parameter g′), we get the desired
verifiability property.

VII. PROOF OF PERMUTATION SECRECY

Let frameinit denote the initial knowledge of the adversary,
and let Θinit be the initial global context of formulas:

frameinit
def
= (ck n), (pkCS (sk k)), π, id, c, v

Θinit
def
= [Ψck,n

comkey(frameinit)], [Ψ
sk,k
skey (frameinit)]

For ease of notation, for a permutation σ, we denote by xφ(σ)

the statement xφ(σ)
def
= (aσ, c, c

′
σ). By unfolding the definition

of the mix predicate mixφCS , one has to prove the following
indistinguishability property:

E ; Θinit ` frameinit,aπ, (eπ t1), (rπ j), pπ(π),

if validN (pkCS (sk k)) c v then 〈(r l), c′π, (eφ t2), (rφ p), pφ(π)〉
∼ frameinit,aid, (eπ t1), (rπ j), pπ(id),

if validN (pkCS (sk k)) c v then 〈(r l), c′id, (eφ t2), (rφ p), pφ(id)〉

where

aσ
def
= com-mat (ck n) σ (s i),

pπ(σ)
def
= zkp-proveπ 〈ck n, eπ t1〉 aσ wσ (rπ j),

c′σ
def
= shuffleφCS (pkCS (sk k)) c σ (r l), and

pφ(σ)
def
= zkp-proveφ 〈ck n, pkCS (sk k), eφ t2〉 xφ(σ) wφ (rφ p).

To prove this security property, and because of dependencies
between adversarial computations, we have to use a backtrack-
ing strategy using the following order of terms:

pφ(σ) (rφ p, eφ t2) c′σ  (r l)

 pπ(σ) (rπ j, eπ t1) aσ.

More precisely, we use the following arguments.
• For proof transcript terms pφ(σ) and pπ(σ), we

use the Honest-Verifier Zero-Knowledge hypothesis on
both Σ-protocols by applying the corresponding rule
G.Σ-P:HVZK. Therefore, we transform function sym-
bols zkp-proveR/4 by simulated ones zkp-simR/3,
which are independent of the respective witnesses. Doing
so, the term we obtain only depends on public data, and
not on the permutation used σ.

• For fresh names computed by the honest verifier (i.e.
terms eπ t1, rπ j, r l, eφ t2, and rφ p), we use the fresh
rule G.∼:FRESH and, then, can simplify the resulting
term with rule G.∼:SIMPL.

• For the list of ciphertexts term c′σ , which is computed
by applying function symbol shuf-mapφCS

/3, we use the
indistinguishability of φCS output hypothesis by applying
corresponding rule G.SFM:INDCCA.

• Finally, for the commitment value aσ , we use the hiding
hypothesis for commit function symbol com-mat/3, by
applying corresponding rule G.COM:HIDE.

More details on this proof can be found in Appendix A.

VIII. CONCLUSION

Many e-voting protocols use mixnets, which are critical to
achieve security properties but unfortunately really hard to
handle in automatic formal proofs frameworks. In this paper,
we propose a complete proof of Terelius-Wikström mixnet
protocol in the CCSA logic. To do so, we introduce new
predicates, rules and axioms in the logic to be able to handle
zero-knowledge proofs and rewinding. To our knowledge, it
is the first time that this protocol can be proved in a logical
framework, and the first fully precise cryptographic proof of
the Terelius-Wikström mixnet.

As future work, we plan to include this new material in
Squirrel, the tool implementing the CCSA logic. This will
open the way to complete mechanized proofs of e-voting
protocols using mixnets. In parallel, since our axiomatization
of rewinding is not tailored to our case study, this will also
open the way to proofs of other kinds of protocols needing
to handle zero-knowledge or rewinding. Our additions to the
CCSA logic also open the way for other types of proofs. For
example proofs involving the programmable Random Oracle
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Model (e.g. the Fiat-Shamir transform) are now attainable as
they involve probabilistic arguments which are similar to those
needed to catch the rewinding lemma in the CCSA logic.

While the present paper focuses on proving properties of
one mix-server, in an e-voting protocol several such mix-
servers are run sequentially. The goal is to ensure that privacy
holds if at least one is honest, while maintaining verifiability
through a chain of mix sevrers. While this is left as further
work, we took particular care to ensure that our secrecy and
verifiability properties are amenable to sequential composition
by guarding the conditions of the input list by an arbitrary
valid predicate that is also satisfied by the output of a
mixserver. Formally integrating mix servers in a larger proof
of e-voting protocols will be a significant further work.
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[17] G. Barthe, B. Grégoire, and S. Z. Béguelin, “Formal certification of
code-based cryptographic proofs,” in POPL. ACM, 2009, pp. 90–101.

[18] G. Barthe, D. Hedin, S. Zanella-Béguelin, B. Grégoire, and S. Heraud,
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APPENDIX

In Appendix A we recall and precise all cryptographic def-
initions and games this paper is based on. In Appendix B, we
recall the specification of Terelius-Wikström shuffle protocol
as given in [5], [4]. Finally, our details proofs of security
properties for Terelius-Wikström shuffle protocol, and proofs
of soundness for the CCSA rules we have added, can be found
in the other appendices (Appendices D and F). Appendix E
presents details of the rewinding technique and Appendix C
presents subterms mechanics and freshness properties used in
cryptographic rules.

APPENDIX A
CRYPTOGRAPHIC DEFINITIONS

In this section, we recall usual definitions of the crypto-
graphic security properties for all the cryptographic construc-
tions we need in this paper.

A. Useful usual cryptographic definitions

Firstly, we recall usual definition of cryptosystems from
[25]. A cryptosystem CS is a tuple

CS =
(
PKCS,MCS,RCS, CCS,KeyGenCS,EncCS,DecCS

)
where
• The sets PKCS, MCS, RCS, and CCS are respectively

called the public key space, the plaintext space, the
randomness space, and the ciphertext space for the cryp-
tosystem CS ;
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• KeyGenCS : N∗ −→ F(pη)×PKCS is an algorithm takes
as input a security parameter η ∈ N∗ and outputs a key
pair (sk, pk) ← KeyGenCS(η) where sk ∈ F(pη) is the
randomly chosen private key of bit-size at least η and
pk ∈ PKCS is the corresponding public encryption key
defined by some function pkCS : F(pη) −→ PKCS ;

• Enc
(η)
CS : PK(η)

CS ×M
(η)
CS ×RCS −→ CCS is a deterministic

algorithm taking as inputs a public key pk ∈ PKCS,
a message m ∈ MCS, and a randomness r ∈ RCS
and outputs a ciphertext c ← Enc

(η)
CS (pk,m ; r) ∈ CCS

encrypted with the public key pk ;
• Dec

(η)
CS : F(pη)×C(η)

CS −→M
(η)
CS t {⊥} is a deterministic

algorithm taking as input a secret key sk ∈ F(pη)
and a ciphertext c ∈ CCS and try to decrypt it with
some secret key sk ∈ F(pη). If c was not encrypted
with the corresponding public key pk = pkCS(sk), the
decryption algorithm fails and outputs in this case a
special symbol ⊥ supposed to not belong to the mes-
sage space MCS. Otherwise, the decryption algorithm
succeeds and outputs the message m ∈ MCS such that
c = EncCS(pkCS(sk),m ; r) where r ∈ RCS.

For a cryptosystem CS, and for all natural number n ∈
N∗, we define the function wf

(n)
CS : F(pη) × CnCS −→ {0, 1},

called the well-founded ciphertexts list predicate, such that the
following property holds

∀ sk ∈ F(pη), ∀ (ci)
n
i=1 ∈ CnCS,

wf
(n)
CS
(
sk, (ci)

n
i=1

)
= 1

def⇐⇒ ∀ i ∈ J1;nK,DecCS(sk, ci) 6= ⊥.

Definition 4 (Homomorphic cryptosystem). A cryptosystem
CS is called homomorphic when

• The sets (MCS,⊗), (RCS,⊕) and (CCS,�) are Abelian
groups ;

• For all security parameter η ∈ N∗, for all honest key pair
(sk, pk)← KeyGenCS(η), the following property holds

∀m1,m2 ∈M(η)
CS , ∀ r1, r2 ∈ RCS,

EncCS(pk,m1 ⊗m2 ; r1 ⊕ r2) =

EncCS(pk,m1 ; r1)� EncCS(pk,m2 ; r2).

Besides, we recall two usual cryptographic properties, the
Indistinguishability under Chosen Plaintexts Attack (Ind-CPA)
[26] security property and the Discrete Logarithm assumption
[25].

1) Indistinguishability under Chosen Plaintexts Attack
(Ind-CPA): For an adversary A =

(
Asetup,Aguess

)
, a security

parameter η ∈ N∗, a random tape ρ ∈ T, and a secret bit
β ∈ {0, 1}, we define the cryptographic Indistinguishability
under Chosen Plaintexts Attack game Ind-CPAACS

(
η, ρ ; β

)
to

be the cryptographic game defined in Game 3.
We define the advantage of the adversary A against the

indistinguishability under chosen plaintexts attack game to be

Ind-CPA(Asetup,Aguess)
CS

(
η, (ρh, ρa) ; β

)
– Ind-CPA property

(sk, pk)← KeyGenCS(η ; ρh) ; r $← RCS ;
(m0,m1)← Asetup(η, pk ; ρa) ;
cβ ← EncCS(pk,mβ ; r) ;
b← Aguess(cβ ; ρa) ;
return (b = β).

Game 3. Cryptographic game of indistinguishability under chosen plaintexts
attack for cryptosystems

the following function

∀ η ∈ N∗, AdvInd-CPA
[
A
∣∣ CS] (η)

def
=

Prρ∈T
[

1← Ind-CPAACS
(
η, ρ ; β

) ]
∈ [0, 1].

A cryptosystem CS is said to be secure against the in-
distinguishability under chosen plaintexts attack when, for
all adversary A against the Ind-CPA game, the function
AdvInd-CPA

[
A
∣∣ CS] is negligible in the security parameter

η ∈ N∗.
2) Discrete Logarithm assumption: Let G = (Gpη , gη)η∈N∗

be a sequence of pairs of cyclic group and generator where, for
a security parameter η ∈ N∗, gη ∈ Gpη is a generator of the
cyclic group Gpη of prime order pη such that log2 pη > η. For
an adversary A, a security parameter η ∈ N∗, and a random
tape ρ ∈ T, we define the Discrete Logarithm Attack game
DLPAG

(
η, ρ
)

to be the cryptographic game defined in Game 4.

DLPAG
(
η, (ρh, ρa)

)
– Discrete Logarithm problem

r
$← F(pη) ; h← grη ∈ Gpη ;

γ ← A(gη, h ; ρa) ;
return (r = γ).

Game 4. Cryptographic game of discrete logarithm attack for a sequence of
cyclic groups G = (Gpη , gη)η∈N∗

We define the advantage of the adversary A against the
discrete logarithm game to be the following function

∀ η ∈ N∗, AdvDLP
[
A
∣∣ G] (η)

def
=

Prρ∈T
[

1← DLPAG
(
η, ρ
) ]
∈ [0, 1].

We say that the sequence of cyclic groups G =
(Gpη , gη)η∈N∗ is secure against the Discrete Logarithm Attack
when the function AdvDLP

[
A
∣∣ G] is negligible in the security

parameter η ∈ N∗.

B. Commitment schemes

In this subsection, we recall definitions of cryptographic
security properties for zero-knowledge proofs as described
in [27]. Let M be an infinite countable set. A commitment
scheme KS[M] for the set of messages M is a tuple

KS[M] =
(
PKM ,Rcom

M ,KM ,GenM ,ComM
)

such that
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• The sets PKM , Rcom
M , and KM are respectively called

the commitment key parameter space, the randomness
space, and the commit value space ;

• The algorithm GenM : N∗ −→ PKM is a probabilistic
polynomial-time algorithm which outputs a commitment
key ck ← GenM(η) ∈ PKM on input a security
parameter η ∈ N∗. This algorithm is called the generator
of commitment parameters for the commitment scheme
KS[M] ;

• Finally, the algorithm ComM : PKM ×M×Rcom
M −→

KM is a deterministic polynomial-time (in the security
parameter η ∈ N∗) algorithm which outputs a commit-
ment value Com

(η)
M (ck,m ; r) on input a commitment

key parameter ck ∈ PKM , a message m ∈ M and a
randomness r ∈ Rcom

M .

Moreover, a commitment scheme KS[M] has to satisfies two
security properties: the hiding and the binding properties as
defined below. Notice that these two properties cannot be
perfectly verified at the same time.

1) Hiding property for commitment schemes: For an ad-
versary A =

(
Asetup,Aguess

)
, a security parameter η ∈ N∗,

a random tape ρ = (ρh, ρa) ∈ T (where ρh ∈ Th is the
honest random tape and ρa ∈ Ta is the adversarial random
tape), and a secret bit β ∈ {0, 1}, we define the cryptographic
hiding game HidingAKS[M]

(
η, ρ ; β

)
to be the cryptographic

game defined in Game 5.

Hiding(Asetup,Aguess)

KS[M]

(
η, (ρh, ρa) ; β

)
– Hiding property

ck ← GenM(η ; ρh) ; r $← Rcom
M ;

(m0,m1)← Asetup(η, ck ; ρa) ;
cβ ← ComM(ck,mβ ; r) ;
b← Aguess(cβ ; ρa) ;
return (b = β).

Game 5. Cryptographic game of hiding for commitment schemes

We define the advantage of the adversary A against the
hiding game to be the following function

∀ η ∈ N∗, AdvHiding
[
A
∣∣ KS[M]

]
(η)

def
=

Prρ∈T
[

1← HidingAKS[M]

(
η, ρ ; β

) ]
∈ [0, 1].

• (Perfectly hiding) A commitment scheme KS[M] for
the message set M is said to be perfectly hiding when,
for all adversary A against the hiding game, we have

∀ η ∈ N∗, AdvHiding
[
A
∣∣ KS[M]

]
(η) = 0.

• (Computationally hiding) A commitment scheme
KS[M] for the message setM is said to be computation-
ally hiding when, for all adversary A against the hiding
game, the function AdvHiding

[
A
∣∣ KS[M]

]
is negligible

in the security parameter η ∈ N∗.

2) Binding property for commitment schemes: For an ad-
versary A, a security parameter η ∈ N∗, and a random
tape ρ ∈ T, we define the cryptographic binding game
BindingAKS[M]

(
η, ρ
)

to be the cryptographic game defined in
Game 6.

BindingAKS[M]

(
η, (ρh, ρa)

)
– Binding property

ck ← GenM(η ; ρh) ;
(m1, r1)← A(η, ck ; ρa) ; (m2, r2)← A(η, ck ; ρa) ;
a1 ← ComM(ck,m1 ; r1) ; a2 ← ComM(ck,m2 ; r2) ;
if (m1 6= m2 ∧ a1 = a2) then b← 1 else b← 0 ;
return b.

Game 6. Cryptographic game of binding for commitment schemes

We define the advantage of the adversary A against the
binding game to be the following function

∀ η ∈ N∗, AdvBinding
[
A
∣∣ KS[M]

]
(η)

def
=

Prρ∈T
[

1← BindingAKS[M]

(
η, ρ
) ]
∈ [0, 1]

• (Perfectly binding) A commitment scheme KS[M] for
the message set M is said to be perfectly biding when,
for all adversary A against the biding game, we have

∀ η ∈ N∗, AdvBinding
[
A
∣∣ KS[M]

]
(η) = 0.

• (Computationally binding) A commitment scheme
KS[M] for the message setM is said to be computation-
ally binding when, for all adversary A against the binding
game, the function AdvBinding

[
A
∣∣ KS[M]

]
is negligible

in the security parameter η ∈ N∗.

C. Zero-knowledge proofs and Σ-protocols

In this subsection, we recall definitions of cryptographic
security properties for zero-knowledge proofs as described in
[28].

1) General case: Let R ⊆ PPR × XR × WR be a
computable relation, i.e. a relation which can be verified
by a Polynomial-time Turing Machine. The sets PPR, XR
and WR are respectively called the public parameters space,
the statements space and the witnesses space. We denote
by ϕR : PPR × XR × WR −→ {0, 1} the polynomially
decidable function such that, for a public parameter σ ∈ PPR,
a statement x ∈ XR, and a witness w ∈ WR, we have
ϕR
(
(σ, x, w)

)
= 1 if and only if (σ, x, w) ∈ R.

Let µ ∈ N. A zero-knowledge proof ZK(µ)[R] for the rela-
tion R with (2µ+1) moves is a triplet ZK(µ)[R] =

(
S,P,V

)
such that
• Algorithm S is a special probabilistic polynomial-time

algorithm which outputs on a public channel a public
parameter σ ∈ PPR and a statement x ∈ XR (x is a
public data) and outputs on a private channel directly to
the algorithm P a witness w ∈ WR (w is a private data).
This algorithm takes as input a security parameter η ∈ N∗
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and is called the setup algorithm for the zero-knowledge
protocol ZK(µ)[R].

• Both probabilistic polynomial-time algorithms P , called
the prover, and V , called the verifier define a (2µ + 1)-
move protocol, where 2µ + 1 messages are exchanged
between the both on a public channel. Let η ∈ N∗ be a
security parameter. Let (σ, x ; w)← S(η) be an output of
the setup algorithm S. An interaction between P and V is
given by the sequence of 2µ+ 1 messages

(
P(w)
(µ)

R

V
)

(η, σ, x) = (mi)
2µ+1
i=1 . All even messages (m2i)

µ
i=1 are

sent by the verifier V , are called the challenge messages
and live respectively in the sets

(
Ch(i)
R
)µ
i=1

. All odd
messages (m2i+1)µi=0 are sent by the prover P , are called
the commitment messages and live respectively in the sets(
K(i)
R
)µ−1

i=0
except the last one m2µ+1 which is called the

response message and lives in the set ZR. We denote by
TR =

(×µ

i=1

(
K(i−1)
R ×Ch(i)

R
))
×ZR the proof transcripts

space of the zero-knowledge protocol ZK(µ)[R].
• At the very end of the (2µ+1)-move protocol, the verifier
V outputs a bit b ∈ {0, 1} either they are convinced by
the messages sent by the prover P or not. More formally,
we define a set EqλR [ZK(µ)[R]] =

{
fi : PPR × XR ×

TR −→ {0, 1}
}λR
i=1

of equations with λR ∈ N∗ defined
by the zero-knowledge protocol ZK(µ)[R]. Let η ∈ N∗ be
a security parameter. Let (σ, x ; w)← S(η) be an output
of the setup algorithm S. We denote by vσ, xR : TR −→
{0, 1} the function defined by the following equation.

∀ (mi)
2µ+1
i=1 ←

(
P(w)
(µ)

R V
)

((η, σ, x)) ∈ TR,

vσ, xR
(
(mi)

2µ+1
i=1

)
= 1

def⇐⇒ ∀ j ∈ J1;λRK, fi
(
σ, x, (mi)

2µ+1
i=1

)
= 1.

Hence, at the very end of the (2µ+1)-move protocol, the
verifier V outputs the bit b = vσ, xR

(
(mi)

2µ+1
i=1

)
∈ {0, 1}.

Besides, a zero-knowledge protocol ZK(µ)[R] has to satistfy
at least three security properties defined below whether or not
the prover or the verifier is honest or not.

a) Completeness property for zero-knowledge proto-
cols: This property describes the case where both prover P
and verifier V are honest. For an adversary A, a security
parameter η ∈ N∗, and a random tape ρ ∈ T, we define the
cryptographic completeness game CompletenessAZK(µ)[R]

(
η, ρ
)

to be the cryptographic game defined in Game 7.

CompletenessAZK(µ)[R]

(
η, (ρh, ρa)

)
– Completeness property

σ ← S(η ; ρh) ;
(x,w)← A(η, σ ; ρa) ;

(mi)
2µ+1
i=1 ←

(
P(w)
(µ)

R V
)

(σ, x ; ρh) ;

b← vσ, xR
(
(mi)

2µ+1
i=1

)
;

return
(
ϕR
(
(σ, x, w)

)
∧ ¬ b

)
.

Game 7. Cryptographic game of completeness for zero-knowledge protocols

We define the advantage of the adversary A against the
completeness game to be the following function

∀ η ∈ N∗, AdvCompleteness

[
A
∣∣ ZK(µ)[R]

]
(η)

def
=

Prρ∈T
[

1← CompletenessAZK(µ)[R]

(
η, ρ
) ]
∈ [0, 1].

• (Perfectly complete) A zero-knowledge protocol
ZK(µ)[R] for the relation R and with (2µ+ 1)-move is
said to be perfectly complete when, for all adversary A
against the completeness game, we have

∀ η ∈ N∗, AdvCompleteness

[
A
∣∣ ZK(µ)[R]

]
(η) = 0.

• (Computationally complete) A zero-knowledge proto-
col ZK(µ)[R] for the relation R with (2µ + 1)-move
is said to be computationally complete when, for all
adversary A against the completeness game, the function
AdvCompleteness

[
A
∣∣ ZK(µ)[R]

]
is negligible in the secu-

rity parameter η ∈ N∗.
b) Computational soundness property for zero-

knowledge protocols: This property describes the case where
the prover P is dishonest and the verifier V is honest. For an
adversary A = (Asetup,Aprove), a security parameter η ∈ N∗,
and a random tape ρ ∈ T, we define the cryptographic sound-
ness game SoundnessAZK(µ)[R]

(
η, ρ
)

to be the cryptographic
game defined in Game 8.

Soundness(Asetup,Aprove)

ZK(µ)[R]

(
η, (ρh, ρa)

)
– Soundness property

σ ← S(η ; ρh) ;
x← Asetup(η, σ ; ρa) ;

(mi)
2µ+1
i=1 ←

(
Aprove(ρa)
(µ)

R V(ρh)
)

(σ, x) ;

b← vσ, xR
(
(mi)

2µ+1
i=1

)
;

return
(
x ∈ LR(σ) ∧ ¬ b

)
.

Game 8. Cryptographic game of soundness for zero-knowledge protocols

Then, we define the advantage of the adversary A against
the soundness game to be the following function

∀ η ∈ N∗, AdvSound

[
A
∣∣ ZK(µ)[R]

]
(η)

def
=

Prρ∈T
[

1← SoundnessAZK(µ)[R]

(
η, ρ
) ]

.

A zero-knowledge protocol ZK(µ)[R] for the relation R
with (2µ + 1)-move is said to be computationally sound
when, for all adversary A against the soundness game, the
function AdvSound

[
A
∣∣ ZK(µ)[R]

]
is negligible in the security

parameter η ∈ N∗.
c) Perfect Honest-Verifier Zero-Knowledge property

for zero-knowledge protocols: This last property describes
the case where the verifier V is honest but the prover P
is dishonest. For an adversary A, a special probabilistic
polynomial-time algorithm S imR called simulator, a security
parameter η ∈ N∗, a random tape ρ ∈ T, and a secret
bit β ∈ {0, 1}, we define the cryptographic Honest-Verifier
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Zero-Knowledge game HVZKAZK(µ)[R],S imR

(
η, ρ ; β

)
to be the

cryptographic game defined in Game 9
Then, we define the advantage of the adversary A against

the Honest-Verifier Zero-Knowledge game to be the following
function

∀ η ∈ N∗, AdvHVZK

[
A
∣∣ ZK(µ)[R], S imR

]
(η)

def
=∣∣∣∣ Prρ∈T

[
1← HVZKAZK(µ)[R],S imR

(
η, ρ ; β = 0

) ]
− Prρ∈T

[
1← HVZKAZK(µ)[R],S imR

(
η, ρ ; β = 1

) ] ∣∣∣∣.
A zero-knowledge protocol ZK(µ)[R] for the relation R

with (2µ + 1)-move is said to be perfectly Honest-Verifier
Zero-Knowledge when, there exists a probabilistic polynomial-
time simulator S imR such that, for all adversary A against the
HVZK game, we have the following identity

∀ η ∈ N∗, AdvHVZK

[
A
∣∣ ZK(µ)[R], S imR

]
(η) = 0.

2) Special case of µ = 1 – Σ-protocols: In the spe-
cial case of zero-knowledge 3-move (µ = 1) protocols, we
first define a new cryptographic property stronger than the
soundness property, called the k-special-soundness [29], for
a natural number k ∈ N, k > 2, defined by the relation
R. This property implies the soundness property but also
give a ”way” to recover the witness from proof transcripts
with some additional information. Hence, for an adversary A,
a special deterministic polynomial-time algorithm ER called
extractor, a security parameter η ∈ N∗, and a random tape
ρ ∈ T, we define the cryptographic k-special-soundness game
k-SpSoundAZK(1)[R], ER

(
η, ρ
)

to be the cryptographic game
defined in Game 10.

Then, we define the advantage of the adversary A against
the k-special-soundness game to be the following function

∀ η ∈ N∗, Advk-SpSound

[
A
∣∣ ZK(1)[R], ER

]
(η)

def
=

Prρ∈T
[

1← k-SpSoundAZK(1)[R], ER

(
η, ρ
) ]

.

A zero-knowledge 3-move protocol ZK(1)[R] for the re-
lation R is said to be k-special sound when there exists
a deterministic polynomial-time extractor ER such that, for
all adversary A against the k-special-soundness game, the
function Advk-SpSound

[
A
∣∣ ZK(1)[R], ER

]
is negligible in the

security parameter η ∈ N∗.

Definition 5 (Σ-protocol). A Σ-protocol ΣR for a computable
relation R is a 3-move zero-knowledge protocol satisfying (i)
the perfect (or computational) completeness property, (ii) the
perfect Honest-Verifier Zero-Knowledge property, and (iii)
the k-special-soundness property for some k ∈ N, k > 2.

D. Shuffle-friendly maps

In this subsection, we recall the notion of shuffle-friendly
map from [5] and extend it.

1) Cryptographic definition: A shuffle-friendly map φCS :
PKCS × CCS × RCS −→ CCS for the cryptosystem CS is an
homomorphic map, i.e. the following property holds.

∀ pk ∈ PKCS, ∀ c, c′ ∈ CCS,∀ r, r′ ∈ RCS,

φCS(pk, c · c′ ; r + r′) = φCS(pk, c ; r) · φCS(pk, c
′ ; r′).

Besides, a shuffle-friendly map φCS has to satisfy the three
following security properties.
• (Decryption preservation) This property states that the

application of a shuffle-friendly map have no effect on
the decryption of a valid ciphertext c, i.e. a ciphertext
honestly computed. Formally, we say that a shuffle-
friendly map φCS achieves the decryption preservation
security property when the following property holds.

∀ η ∈ N∗,∀ (sk, pk)← KeyGenCS(η),∀ c ∈ CCS,∀ r′ ∈ RCS,[
∃ (m, r) ∈MCS ×RCS, c = EncCS(pk,m ; r)

]
=⇒ DecCS(sk, φCS(pk, c ; r′)) = DecCS(sk, c).

• (Associated zero-knowledge proof) We define
Rmap
φCS
⊆ PKCS︸ ︷︷ ︸

Public parameter set

× C2CS︸︷︷︸
Statement set

× RCS︸︷︷︸
Witness set

to be the relation of correctness for shuffle-friendly maps
Rmap
φCS

defined by
(pk, (c, c′), r′) ∈ Rmap

φCS

def⇐⇒ c′ = φCS(pk, c ; r′).

We say that a shuffle-friendly map φCS achieves the
associated zero-knowledge proof security property when
there exists a zero-knowledge proof ZK(µ)[Rmap

φCS
] for the

relation of correctness for shuffle-friendly maps Rmap
φCS

with (2µ+ 1) moves.
• (Indistinguishability of φCS output) First, we define a

decidable function v
(n)
CS : PKCS × CnCS × {0, 1}∗ −→

{0, 1}, where n ∈ N∗, such that, for all public key
pk ∈ PKCS, for all list of n ciphertexts (ci)

n
i=1 ∈ CnCS,

for all additional information v ∈ {0, 1}∗, the following
property holds

v
(n)
CS
(
pk, (ci)

n
i=1, v

)
= 1

def
=⇒

∃ sk ∈ F(pη),

{
pk = pkCS(sk)

∧ ∀ i ∈ J1;nK,DecCS(sk, ci) 6= ⊥. (Φ)

We call this function v
(n)
CS to be the function of valid

ciphertexts for the cryptosystem CS.
For an adversary A =

(
Asetup,Aguess

)
, a security

parameter η ∈ N∗, and a random tape ρ ∈ T,
we define the indistinguishability of φCS output game
Ind-CCAA

φCS, v
(2)
CS

(
η, ρ ; β

)
to be the cryptographic game

defined in Game 11. Then, we define the advantage of
the adversary A against the indistinguishability game to
be the following function

∀ η ∈ N∗,AdvInd-CCA

[
A
∣∣ φCS, v

(2)
CS

]
(η)

def
=

Prρ∈T
[

1← Ind-CCAA
φCS, v

(2)
CS

(
η, ρ ; β

) ]
.
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HVZKAZK(µ)[R],S imR

(
η, (ρh, ρa) ; β

)
– HVZK property

Case β = 0 Case β = 1
σ ← S(η ; ρh) ; σ ← S(η ; ρh) ;
(x,w, ρ)← A(η, σ ; ρa) ; (x,w, ρ)← A(η, σ ; ρa) ;

(mi)
2µ+1
i=1 ←

(
P(w ; ρh)
(µ)

R V(ρ)
)

(σ, x) ; (mi)
2µ+1
i=1 ← S imR(σ, x, ρ ; ρh) ;

b← vσ, xR
(
(mi)

2µ+1
i=1

)
; b← vσ, xR

(
(mi)

2µ+1
i=1

)
;

return
(
ϕR
(
(σ, x, w)

)
∧ b

)
. return

(
ϕR
(
(σ, x, w)

)
∧ b

)
.

Game 9. Cryptographic game of Honest-Verifier Zero-Knowledge for zero-knowledge protocols

k-SpSoundAZK(1)[R], ER

(
η, (ρh, ρa)

)
– k-special-soundness

σ ← S(η ; ρh) ;(
x, (〈α, ci, zi〉)ki=1

)
← A(η, σ ; ρa) ;

b 6= ←
∧

16i<j6k

ci 6= cj ; bv ←
k∧
i=1

vσ, xR
(
〈α, ci, zi〉

)
;

if (¬ (b 6= ∧ bv)) then return 0 ;
w ← ER(σ, x, (〈α, ci, zi〉)ki=1) ;
return ϕR

(
(σ, x, w)

)
.

Game 10. Cryptographic game of k-special-soundness for zero-knowledge
protocols

Ind-CCA(Asetup,Aguess)

φCS, v
(2)
CS

(
η, (ρh, ρa) ; β

)
– Indistinguishability

(sk, pk)← KeyGenCS(η ; ρh) ; r $← RCS ;
((c0, c1), v)← Asetup(η, pk ; ρa) ;

if
(
¬ v(2)

CS
(
pk, (c0, c1), v

))
then return 0 ;

c′β ← φCS(pk, cβ ; r) ;
b← Aguess(c′β ; ρa) ;
return (b = β).

Game 11. Cryptographic game of output indistinguishability for shuffle-
friendly maps

We say that a shuffle-friendly map φCS achieves the
indistinguishability of its output security property when,
for all function of valid ciphertext v(2)

CS satisfying the
property given by Eq. (Φ), for all adversary A, the
function AdvInd-CCA

[
A
∣∣ φCS, v(2)

CS

]
is negligible in the

security parameter η ∈ N∗.
2) A full example – ”re-encryption only” mode: As an

example of shuffle-friendly map, we present the case of ”re-
encryption only” for the El-Gamal cryptosystem discussed in
[5]. The El-Gamal cryptosystem EG is defined as follows. Let
η ∈ N∗ be a security parameter. Let g ∈ Gpη be a generator
of the cyclic group of prime order pη .

• The set of plaintexts is MEG = Gpη , the set of public
keys is PKEG = G2

pη , the set of randomness is REG =
F(pη), and the set of ciphertexts is CEG = Gpη ×Gpη ;

• The key generation algorithm KeyGenEG : N∗ −→
F(pη)×G2

pη is a probabilistic polynomial-time algorithm

which outputs a random secret key sk $← F(pη) and the
associated public key pk = (g, gsk) ∈ G2

pη on input a

security parameter η ∈ N∗ ;
• The encryption algorithm EncEG is given by the follow-

ing function

Enc
(η)
EG : G2

pη ×Gpη × F(pη) −→ G2
pη(

(g, y),m, r
)

7−→
(
gr, yrm

)
;

• The decryption algorithm DecEG is given by the follow-
ing function

Dec
(η)
EG : F(pη)×G2

pη −→ Gpη(
sk, (u, v)

)
7−→ v · u−sk.

Notice that the El-Gamal cryptosystem EG is an homomor-
phic cryptosystem and verifies the Ind-CPA security property,
because the cyclic group Gpη verifies the discrete logarithm
assumption. Then, the ”re-encryption only” shuffle-friendly
map φreenc

EG for the El-Gamal cryptosystem EG is defined by
the following function

φreenc
EG : G2

pη ×G2
pη × F(pη) −→ G2

pη(
(g, y), (u, v), r

)
7−→

(
gr · u, yr · v

)
.

Then, we verify all three mandatory security properties for
shuffle-friendly maps.
• (Decryption preservation) Let η ∈ N∗ be a security

parameter. Let
(
sk, (g, gsk)

)
← KeyGenEG(η) be an El-

Gamal key pair. Let (u, v) ∈ G2
pη be a ciphertext and

r′ ∈ F(pη) be a random value. We suppose the following
property

∃ (m, r) ∈ Gpη × F(pη), (u, v) = EncEG((g, y),m ; r). (H)

Then, we have
DecEG(sk, φreenc

EG ((g, y), (u, v) ; r′))

= DecEG(sk, (gr
′
u, yr

′
v)) (by definition of φreenc

EG )

= DecEG(sk, (gr
′
gr, yr

′
yrm)) (by hypothesis Eq. (H))

=
(
yr+r

′
m
)
·
(
gr+r

′)−sk
(by definition of DecEG)

=
(
yr+r

′
m
)
/
(
yr+r

′)
= m = DecEG(sk, (u, v)).

Hence, the decryption preservation security property is
verified by the shuffle-friendly map φreenc

EG .
• (Associated zero-knowledge proof) Let Σmap

φreenc
EG

be the
protocol defined as follows in Protocol 1. Hence, this
3-move protocol Σmap

φreenc
EG

defines a Σ-protocol for the
computable relation for shuffle-friendly maps Rmap

φreenc
EG

.
Consequently, the shuffle-friendly map φreenc

EG verifies the
associated zero-knowledge proof security property.

18



Protocol 1: Σ-protocol Σmap
φreenc
EG

– Correct output for the
shuffle-friendly map φreenc

EG .
Public Input : A security parameter η ∈ N∗. A public

key pk = (g, y) ∈ G2
pη . Two ciphertexts

c = (u, v), c′ = (u′, v′) ∈ G2
pη .

Private Input: A random value r $← F(pη) such that
c′ = φreenc

EG (pk, c ; r).
Begin protocol

1) (Commitment message) The prover Pmap chooses
a random value s $← F(pη). Then, Pmap computes
(α, β) = (gs, ys), and hands it to the verifier Vmap.

2) (Challenge message) The verifier Vmap chooses
uniformly at random a challenge γ $← F(pη)∗ and
sends it to Pmap.

3) (Response message) Pmap computes the value
δ = γ · r + s ∈ F(pη) and sends back to Vmap the
response δ.

4) (Conclusion’s bit) The verifier Vmap accepts if and
only if the following equations hold.

gδ =
( u
u′

)γ
α and yδ =

( v
v′

)γ
β.

End

• (Indistinguishability of φreenc
EG output) Let v(2)

EG : G2
pη ×(

G2
pη

)2 × {0, 1}∗ −→ {0, 1} be a function of valid
ciphertext satisfying the property Eq. (Φ), i.e. such that

∀ pk = (g, y) ∈ G2
pη , ∀ c0, c1 ∈ G2

pη ,∀ v ∈ {0, 1}
∗,

v
(2)
EG
(
pk, (c0, c1), v

)
= 1 =⇒ ∃ sk ∈ F(pη),

y = gsk ∧
∧

i∈{0,1}

(
DecEG(sk, ci) 6= ⊥

)
. (H)

Let A =
(
Asetup,Aguess

)
be an adversary. Let η ∈ N∗

be a security parameter. Let ρ = (ρh, ρa) ∈ T be an
adversarial-honest random tapes pair. Let (sk, pk) ←
KeyGenEG(η ; ρh) be an honest pair of keys for the
El-Gamal cryptosystem EG where pk = (g, y) with
y = gsk. Let r $← F(pη) be an honest random value
(meaning that r is computed by using the honest ran-
dom tape ρh). Let

(
(c0, c1), v

)
← Asetup(η, pk ; ρa)

be an adversarial setup material. Let suppose that we
have indeed v

(2)
EG
(
pk, (c0, c1), v

)
= 1. Therefore, by the

hypothesis Eq. (H) on the valid ciphertext function v(2)
EG ,

there exists a secret key sk′ ∈ F(pη) such that y = gsk
′
.

However, by definition of y, we have also y = gsk.
Thus, we have gsk = gsk

′
. By the discrete logarithm

assumption for the cyclic group Gpη , we conclude,
with overwhelming probability, that sk = sk′. Hence,
by the hypothesis Eq. (H), we conclude that, for all
b ∈ {0, 1}, DecEG(sk, cb) 6= ⊥. Said differently, we
have, for all b ∈ {0, 1}, the existency of a plaintext
mb ∈ Gpη and a random value rb ∈ F(pη) such that
cb = EncEG(pk,mb ; rb). For b ∈ {0, 1}, let c′b ∈ G2

pη

be the ciphertext defined by c′b = φreenc
EG (pk, cb ; r). As

EG is an homomorphic cryptosystem, and by definitions
of cb and c′b, the following property holds

∀ b ∈ {0, 1}, c′b = EncEG(pk,mb ; r + rb).

Because the El-Gamal cryptosystem EG verifies the
Ind-CPA security property, we conclude that the follow-
ing quantity is negligible in the security parameter η ∈ N∗∣∣∣∣ Prρa∈Ta

[
0← Aguess(c

′
0 ; ρa)

]
− Prρa∈Ta

[
1← Aguess(c

′
1 ; ρa)

] ∣∣∣∣.
Consequently, the function AdvInd-CCA

[
A
∣∣ φreenc

EG , v
(2)
EG

]
is negligible in the security parameter η ∈ N∗, i.e. the
shuffle-friendly map φreenc

EG verifies the indistinguishability
of its output security property.

APPENDIX B
SPECIFICATION OF THE TERELIUS-WIKSTRÖM PROTOCOL

Let φCS be a shuffle-friendly map for the cryptosystem CS
with ciphertext set denoted by CCS. Let N ∈ N∗ be a constant
natural number. Let η ∈ N∗ be a security parameter and pη ∈
N∗ be a η-bits size prime, i.e. log2 pη > η. We suppose that
the randomness set used by the cryptosystem CS is the finite
field F(pη) of cardinality pη .

We define

RTW
φCS ⊆

(
GN+1
pη × PKCS

)︸ ︷︷ ︸
Public parameter set

×
(
GNpη × C

N
CS × CNCS

)︸ ︷︷ ︸
Statement set

×
(
MatN (F(pη))× F(pη)N × F(pη)N

)︸ ︷︷ ︸
Witness set

to be the relation of the Terelius-Wikström protocol defined
by

((ck, pk), (a, c, c′), (π, r, s)) ∈ RTW
φCS

def⇐⇒
{

a = ComMatN (F(pη))(ck, π ; r)

∀ i ∈ J1;NK, c′π(i) = φCS(pk, ci ; ri)

To prove this relation with zero-knowledge proofs, we define
two families of Σ-protocols, one occuring as a preliminary
work, called this way the offline proof, and the other one
occuring only when the election is closed and the result is
about to be computed, called this way the online proof. Each
of these two families have an extra dependency in a random
public vector honestly output by the verifier with the honest
random tape.

A. Σ-protocols family for the offline phase
(
Σoff(e)

)
e∈F(pη)N

We define

Roff ⊆
(
GN+1
pη ,F(pη)N

)︸ ︷︷ ︸
Public parameter set

× GNpη︸︷︷︸
Statement set

×
(
F(pη)× F(pη)N × F(pη)

)︸ ︷︷ ︸
Witness set
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to be the offline relation of the Terelius-Wikström protocol
defined by

((ck, e),a, (t, e′, k)) ∈ Roff

def⇐⇒


a~ 1 = ComF(pη)N (ck,1 ; t)

∧ a~ e = ComF(pη)N (ck, e′ ; k)

∧
∏N
i=1 ei =

∏N
i=1 e

′
i

A Σ-protocol family proving this relation is given by the
Protocol 2, according to Terelius-Wikström papers [4].

As shown in the paper [4], we have the following property.

Proposition 1. On the hypothesis of perfectly hiding and
computationally binding commitment schemes KS[F(pη)N ]
and KS[MatN (F(pη))], and on the hypothesis of discrete loga-
rithm assumption on the set of group

(
Gpη

)
η∈N∗ , the following

property holds. The offline proofs family
(
Σoff(e)

)
e∈F(pη)N

given by the Protocol 2 is a family of computationally com-
plete Σ-protocols for the relation Roff.

B. Σ-protocols family for the online phase
(
Σon(e)

)
e∈F(pη)N

By the property of associated zero-knowledge proof verified
by the shuffle-friendly map, there exists a Σ-protocol Σmap

φCS

proving the relation for shuffle-friendly map Rmap
φCS

. We denote
by α

(φCS)
map the probabilistic function outputting a commitment

message according to the specification of the Σ-protocol Σmap
φCS

on input a public key pk ∈ PKCS, a statement (c, c′) ∈ C2
CS,

and a witness u ∈ F(pη). Besides, we denote by z
(φCS)
map the

probabilistic function outputting a response message according
to Σmap

φCS
on input a public key pk ∈ PKCS, a statement

(c, c′) ∈ C2
CS, a witness u ∈ F(pη), a commitment message

α and a challenge γ ∈ F(pη)∗. We define

Ron
φCS ⊆

(
GN+1
pη × PKCS × F(pη)N

)︸ ︷︷ ︸
Public parameter set

×
(
GNpη × C

N
CS × CNCS

)︸ ︷︷ ︸
Statement set

×
(
F(pη)N × F(pη)× F(pη)

)︸ ︷︷ ︸
Witness set

to be the online relation of the Terelius-Wikström protocol
defined by

((ck, pk, e), (a, c, c′), (e′, k, u)) ∈ Ron
φCS

def⇐⇒
{

a~ e = ComF(pη)N (ck, e′ ; k)

∧ (pk,
(
c~ e, c′ ~ e′

)
, u) ∈ Rmap

φCS

A Σ-protocol family proving this relation is given by the
Protocol 3, according to Terelius-Wikström papers [4].

As shown in the paper [4], we have the following property.

Proposition 2. We suppose the zero-knowledge proof Σmap
φCS

to
be a Σ-protocol for the relation Rmap

φCS
. Then, the online proofs

family
(
ΣφCS

on (e)
)
e∈F(pη)N

given by the Protocol 3 is a family
of Σ-protocols for the relation Ron

φCS
.

Protocol 2: Σ-protocol Σoff(e) – offline proof – Correct
commitment Σ-protocol using a vector e ∈ F(pη)N

Public Input : A natural number N ∈ N∗. A security
parameter η ∈ N∗. A commitment key
ck = (g,g) ∈ GN+1

pη for the commitment
schemes KS[F(pη)N ] and
KS[MatN (F(pη))]. Two vectors a ∈ GNpη
and e ∈ F(pη)N .

Private Input: A permutation π ∈ ΠN (F(pη)) and a
vector of random values s

$← F(pη)N such
that a = ComMatN (F(pη))(ck, π ; s).

Begin protocol
1) (Commitment message) The prover Poff(e) defines

e′ = π · e ∈ F(pη)N , t = 〈1 | s〉 ∈ F(pη) and
k = 〈s | e〉 ∈ F(pη). Then, Poff(e) chooses two
vectors of random values r, s′

$← F(pη)N and three
random values sγ , sδ, sε

$← F(pη). We set B0 = g1

and Poff(e) computes the following values

∀ i ∈ J1;NK, Bi = griB
e′i
i−1, and βi = gsiB

s′i
i−1

γ = gsγ
N∏
i=1

g
s′i
i , δ = gsδ , and ε = gsε

Finally, Poff(e) hands to the verifier Voff(e) the
commitment message α =

(
(Bi)

N
i=1, γ, (βi)

N
i=1, δ, ε

)
.

2) (Challenge message) Voff(e) chooses uniformly at
random a challenge c $← F(pη)∗ and sends it to
Poff(e).

3) (Response message) We set e′′1 = s1 and, for all
i ∈ J2;NK, e′′i = e′′i−1e

′
i + si. Then, Poff(e)

computes the following values in F(pη):
∀ i ∈ J1;NK, d′i = ce′i + s′i, and di = cri + si
dγ = ck + sγ , dδ = ct+ sδ, and dε = ce′′N + sε

Finally, Poff(e) sends to Voff(e) the response
message z(c) =

(
(d′i)

N
i=1, dγ , (di)

N
i=1, dδ, dε

)
.

4) (Conclusion’s bit) The verifier Voff(e) accepts if
and only if the following equations hold:(

a~ 1

/ N∏
i=1

gi

)c
δ = gdδ ,

(
a~ e

)c
γ = gdγ

N∏
i=1

g
d′i
i ,

∀ i ∈ J1;NK, Bci βi = gdiB
d′i
i−1,(

BN

/
g
∏N
i=1 ei

1

)c
ε = gdε .

End
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Protocol 3: Σ-protocol ΣφCS
on (e) – online proof – Correct

shuffle zero-knowledge proof using a shuffle-friendly
map φCS and a vector e ∈ F(pη)N

Public Input : A natural number N ∈ N∗. A security
parameter η ∈ N∗. A public key
pk ∈ PKCS of a cryptosystem CS. A
commitment key ck = (g,g) ∈ GN+1

pη for
the commitment schemes KS[F(pη)N ] and
KS[MatN (F(pη))]. Two vectors a ∈ GNpη
and e ∈ F(pη)N . Two lists of ciphertexts
c = (ci)

N
i=1, c

′ = (c′i)
N
i=1 ∈ CNCS.

Private Input: A permutation π ∈ ΠN (F(pη)) and a
vector of random values s

$← F(pη)N such
that a = ComMatN (F(pη))(ck, π ; s). A

vector of random values r
$← F(pη)N such

that, for all i ∈ J1;NK,
c′π(i) = φCS(pk, ci ; ri).

Begin protocol
1) (Commitment message) The prover P(φCS)

on (e)
defines e′ = π · e ∈ F(pη)N , k = 〈s | e〉 ∈ F(pη),
and u = 〈r | s〉 ∈ F(pη). Then, P(φCS)

on (e) chooses
a vector of random values s′

$← F(pη)N and a
random value sµ

$← F(pη). At this step, P(φCS)
on (e)

computes the following values

λ = α
(φCS)
map

(
pk, (c~ e, c′ ~ e′), u

)
,

and µ = gsµ
N∏
i=1

g
s′i
i .

Finally, P(φCS)
on (e) hands to the verifier V(φCS)

on (e)
the commitment message α = (λ, µ).

2) (Challenge message) V(φCS)
on (e) chooses uniformly

at random a challenge γ $← F(pη)∗ and sends it to
P(φCS)

on (e).
3) (Response message) P(φCS)

on (e) computes the
following values in F(pη):

dλ = z
(φCS)
map

(
pk, (c~ e, c′ ~ e′), u, λ, γ

)
,

dµ = γk + sµ, and ∀ i ∈ J1;NK, d′i = γe′i + s′i.
(1)

Finally, P(φCS)
on (e) sends to V(φCS)

on (e) the response
z =

(
dλ, (d

′
i)
N
i=1, dµ

)
.

4) (Conclusion’s bit) The verifier V(φCS)
on (e) accepts

if and only if the following equations hold:

v
pk, (c~e, c′~e′)
map

(
〈λ, γ, dλ〉

)
= 1,

and
(
a~ e

)γ
µ = gdµ

N∏
i=1

g
d′i
i

End

C. 9-move protocol of the Terelius-Wikström shuffle

Based on the two Σ-protocols families
(
Σoff(e)

)
e∈F(pη)N

,

proving the relation Roff, and
(
ΣφCS

on (e)
)
e∈F(pη)N

, proving the
relationRon

φCS
, we define a 9-move shuffle protocol (Protocol 4)

following the definition given in [4].
This 9-move protocol achieves both of security properties

we expect from a shuffle protocol used by mix-servers of a
mixnet protocol2, namely the permutation secrecy and the ver-
ifiability properties. Now, we give the complete cryptographic
definition of both security properties for a shuffle protocol.

1) Permutation secrecy property: Informally, we ask A to
generate two permutations π0 and π1 in SN and send them
to the mix-server. Then, the mix-server secretely chooses one
of them, depending on a secret random bit β ∈ {0, 1}, and
mixes the ballots with the permutation πβ . At this step, A
takes all the mix-server outputs and tries to guess the secret
bit β. A wins the permutation secrecy game SecrecyA

(
1η ; β

)
if they correctly guess the secret bit β. If they cannot win the
game with significant probability, then we consider that the
permutation secrecy is guaranteed.

Let v(N)
CS : PKCS × CNCS × {0, 1}∗ −→ {0, 1} a function

of valid ciphertexts for the cryptosystem CS (i.e. verifying
the property given in Eq. (Φ)). For an adversary A =(
Asetup,Aguess

)
, a security parameter η ∈ N∗, a random tape

ρ ∈ T, and a secret bit β ∈ {0, 1}, we define the cryptographic
permutation secrecy game SecrecyAZK(4)[RTW

φCS
], v

(N)
CS

(
η, ρ ; β

)
to

be the cryptographic game defined in Game 12.
We define the advantage of the adversary A against the

permutation secrecy game to be the following function

∀ η ∈ N∗,AdvSecrecy

[
A
∣∣ ZK(4)[RTW

R ]
]

(η)
def
=∣∣∣∣ Prρ∈T

[
1← SecrecyAZK(4)[RTW

φCS
], v

(N)
CS

(
η, ρ ; β = 0

) ]
− Prρ∈T

[
1← SecrecyAZK(4)[RTW

φCS
], v

(N)
CS

(
η, ρ ; β = 1

) ] ∣∣∣∣.
Hence, we say that the Terelius-Wikström shuffle protocol
achieves permutation secrecy when, for all function of valid
ciphertexts v

(N)
CS : PKCS × CNCS × {0, 1}∗ −→ {0, 1}, for

all adversary A, the function AdvSecrecy

[
A
∣∣ ZK(4)[RTW

R ]
]

is
negligible in the security parameter η ∈ N∗.

2) Verifiability property: Roughly speaking, the verifiabil-
ity property means that A first outputs a vector a ∈ F(pη)N

along with a proof transcript poff(eπ) showing the relation
Rcom(eπ) for some vector eπ ∈ F(pη)N computed by the
verifier V . Then, A outputs two ciphertexts lists c, c′ ∈ CNCS
of length N and a secret key sk ∈ F(pη) along with a proof
transcript pon(eφ) showing the relation Rshuffle

φCS
(eφ) for some

other vector eφ ∈ F(pη)N . A wins the verifiability game

2While we do not prove it here for reasons of conciseness, it follows
from the proof that the 9-move protocol ZK(4)[RTW

φCS
] actually satisfies the

computational completeness, the knowledge soundness [29] and the perfect
Honest-Verifier Zero-Knowledge properties. It is therefore an argument of
knowledge of the computable relation RTW

φCS
.
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Secrecy(Asetup,Aguess)

ZK(4)[RTW
φCS

], v
(N)
CS

(
η, (ρh, ρa) ; β

)
– Permutation secrecy property

ck ← GenMatN (F(pη))(η ; ρh) ; (sk, pk)← KeyGenCS(η ; ρh) ;(
(c, v), (π0, π1), ρ

)
← Asetup(η, (ck, pk) ; ρa) ;

if
(
¬
(
v

(N)
CS
(
pk, c, v

)))
then return 0 ;

−→mπβ ←
(
P(φCS)

TW

(
ρh
[ (
π ∈ MatN (F(pη))

)
7→ πβ

])

(4)

RTW
φCS
V(φCS)

TW (ρ)
)

((ck, pk), c) ;

b← Aguess(−→mπβ ; ρa) ;
return (1− b⊕ β).

Game 12. Cryptographic game of permutation secrecy for the Terelius-Wikström shuffle protocol

VerifA
(
1η
)

when the proofs are accepted by the verifier, but
the decryption of the output ciphertexts list c′ leads to a
different decryption than the decryption of the input cipher-
texts list c. For an adversary A =

(
Asetup,Aprove

)
, a security

parameter η ∈ N∗, and a random tape ρ ∈ T, we define the
cryptographic verifiability game VerifiabilityAZK(4)[RTW

φCS
]

(
η, ρ
)

to be the cryptographic game defined in Game 13.

Verifiability(Asetup,Aprove)

ZK(4)[RTW
φCS

]

(
η, (ρh, ρa)

)
– Verifiability property

ck ← GenMatN (F(pη))(η ; ρh) ;
(sk, c)← Asetup(η, ck ; ρa) ;

if
(
¬
(
wf

(N)
CS
(
sk, c

)))
then return 0 ;

−→m ←
(
Aprove(ρa)
(4)

RTW
φCS
V(φCS)

TW (ρh)
)

((ck, pkCS(sk)), c) ;(
a, eoff, αoff, γoff, (zoff, c

′), eon, αon, γon, zon
)
← −→m ;

boff ← v
(ck,eoff), a

Roff

(
〈αoff, γoff, zoff〉

)
;

bon ← v
(ck,pkCS(sk),eon), (a,c,c′)

Ron
φCS

(
〈αon, γon, zon〉

)
;

if (¬ (boff ∧ bon)) then return 0 ;

if

(
equal_multisets (decrypt_list sk c)

(decrypt_list sk c′)

)
then return 0 ;
else return 1 ;

Game 13. Cryptographic game of verifiability for the Terelius-Wikström
shuffle protocol

We define the advantage of the adversary A against the
verifiability game to be the following function

∀ η ∈ N∗,AdvVerifiability

[
A
∣∣ ZK(4)[RTW

φCS
]
]

(η)
def
=

Prρ∈T

[
1← VerifiabilityAZK(4)[RTW

φCS
]

(
η, ρ
) ]

.

Hence, we say that the Terelius-Wikström shuffle
protocol achieves verifiability when the function
AdvVerifiability

[
A
∣∣ ZK(4)[RTW

φCS
]
]

is negligible in the security
parameter η ∈ N∗.

APPENDIX C
GENERALISED SUBTERMS AND FRESHNESS PROPERTIES

In this section, we recall definition of generalised subterms
from [12]. Let E be an environment. We define the generalised
subterms set ST E(t) of a term t with respect to the environ-
ment E to be a set of triples (−→α , φ, t′), called occurrences,

where −→α is a sequence of typed variables that are freshly
bounded, i.e. variables bounded in −→α are not bounded in E .
Hence, we define the new environment Eα = (E ,−→α ). Then,
terms φ : bool and t′ : τ of occurrences in the set ST E(t) are
well-typed terms in the new environment Eα. For a set S of
occurrences, we define

[φ]Sdef
=
{

(−→α , ψ ∧ φ, t) | (−→α , ψ, t) ∈ S
}

(x : τ).Sdef
=
{

((−→α , x : τ), ψ, t) | (−→α , ψ, t) ∈ S
}
.

Set of generalised subterms ST E(t) is then defined as the
smallest set satisfying equations given in Fig. 14.

To give cryptographic or freshness rules in the CCSA logic,
we define several special generalised subterms set.

• (Freshness) Let n : τ0 → τ be a name and let t0 : τ0 be
a term. Informally, the term n t0 : τ is said to be fresh
in the sequence of terms u when if for all occurrences of
the form (−→α , φ,n t) ∈ ST E(u) then t 6= t0. Formally,
we first define the set of formulas in the freshness case
Φn,t0

fresh(S) for any set of occurrences S to be the set defined
by

Φn,t0
fresh(S)

def
=
{(
∀−→α . ψ → t 6= t0

)
| (−→α , ψ,n t) ∈ S

}
.

Hence, for any sequence of terms u, we denote by
Ψn,t0

fresh(u, t0) : bool, to be any well-typed bool formula
in E implying the freshness of the term n t0. Formally,
for all model M : E for the environment E , all security
parameter η ∈ N∗ and all random tape ρ ∈ T, we have

JΨn,t0
fresh(u, t)Kη , ρM : E = 1

def
=⇒

∀φ ∈ Φn,t0
fresh(ST E(u, t0)), JφKη , ρM : E = 1.

• (Good use of secret keys) Let sk : τ0 → skey be a
name which generates secret key terms. Let t0 : τ0 be a
term. Informally, the secret key term sk t0 : skey is said
to be well-used when the adversary only has access to
the corresponding public key and the decryption oracle.
More precisely, the secret key sk t0 may only appear in
terms pkCS (sk t0) or decCS (sk t0) c. Then, we define
the set ST skey

E,sk,t0(u) of generalised subterms for secret
keys for a term u recursively as the classic definition of
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ST E(x)
def
=

{
(ε,>, x)

}
when (x : τ) ∈ E or x /∈ E

ST E(x)
def
= ST E(t) when (x : τ = t) ∈ E

ST E(t t′)
def
=

{
ST E(t0{y 7→ t′}){

(ε,>, (t t′))
}
∪ ST E(t) ∪ ST E(t′)

when t = x and (x : τ = λy. t0) ∈ E
otherwise

ST E(λ(x : τ). t)
def
=

{
(ε,>, λ(x : τ). t)

}
∪ (x : τ).ST E(t) where x is taken fresh

ST E(if φ then t1 else t0)
def
=

{
(ε,>, if φ then t1 else t0)

}
∪ ST E(φ)

∪[φ]ST E(t1) ∪ [¬φ]ST E(t0)

ST E((ui)ni=1)
def
=

n⋃
i=1

ST E(ui)

Fig. 14. Generalised subterms

ST E(u) with the two following exceptions when u is a
function application

ST skey
E,sk,t0(pkCS (sk t))

def
=

{
(ε,>, pkCS (sk t)), (ε,>, pkCS)

}
∪ ST skey

E,sk,t0(t)

∪[t 6= t0]ST skey
E,sk,t0(sk t), and

ST skey
E,sk,t0(decCS (sk t) u)

def
=

{
(ε,>,decCS (sk t) u), (ε,>,decCS)

}
∪ ST skey

E,sk,t0(t) ∪ ST skey
E,sk,t0(u)

∪[t 6= t0]ST skey
E,sk,t0(sk t).

Hence, for any sequence of terms u, we denote by
Ψsk,t0

skey (u, t) : bool to be any well-typed bool formula
in E implying the good use of the secret key term sk t0.
Formally, for all model M : E for the environment E , all
security parameter η ∈ N∗, and all random tape ρ ∈ T,
we have

JΨsk,t0
skey (u, t)Kη , ρM : E = 1

def
=⇒

∀ (−→α , ψ, sk t′) ∈ ST skey
E,sk,t0(u, t),

J∀−→α . ψ → t′ 6= t0K
η , ρ
M : E = 1.

• (Good use of commitment key parameters) Let ck :
τ0 → comkey be a name which generates commitment
key parameter terms. Let n : τ0 be a term. Informally,
the commitment key parameter term ck n : comkey is
said to be well-used when the adversary only has access
to the commit oracle. More precisely, the commitment
key parameter term ck n may only appear in the term
com (ck n) m r. To do so, we define the set ST comkey

E,ck,n (u)
of generalised subterms for commitment key parameters
for a term u recursively as the classic definition of
ST E(u) with the following exception

ST comkey
E,ck,n (com (ck n′) m r)

def
={

(ε,>,m), (ε,>, r), (ε,>, n′)
}
∪[n′ 6= n]ST comkey

E,ck,n (ck n′).

Hence, for any sequence of terms u, we denote by
Ψck,n

comkey(u, t) : bool to be any well-typed bool formula
in E implying the good use of the commitment key
parameter ck n. Formally, for all model M : E for the

environment E , all security parameter η ∈ N∗, and all
random tape ρ ∈ T, we have

JΨck,n
comkey(u, t)Kη , ρM : E = 1

def
=⇒

∀ (−→α , ψ, ck n0) ∈ ST comkey
E,ck,n (u, t),

J∀−→α . ψ → n0 6= nKη , ρM : E = 1.

APPENDIX D
PROOF SYSTEM

Global and local judgements about logical reasoning (and in
particular proofs of soundness for these rules) can be mostly
found in [12], or in [30] for concrete security variants. More
precisely, the rule G.∼:FRESH comes from [30] in the case
where the term ε of the concrete security version of the rule is
a negligible function. Besides, the rule G.¬̃:CHARAC is a new
rule we add in our case, which is immediately sound by the
semantics of the predicate non-negl/1. All other rules come
from the paper [12]. Nevertheless, we remind several useful
rules used in this paper in Fig. 15.

A. Soundness of low-bound rules

In this subsection, we prove the soundness of rules about
low-bound predicate. Let E be an environment and Θ be
a context of global formulas. Let g : real with E ; Θ `
non-negl(g) ∧̃ det(g) be a non-negligible parameter. Let
φ : τ1 → · · · → τn → bool be a formula with n parameters.
• (G.LB:ELIM) We proceed by contraposition, i.e. we

suppose E ; Θ ` ¬̃ [φ r → ψ r]. Hence, by classi-
cal logic operations, we have E ; Θ ` ¬̃ [¬ (φ r ∧
¬ (ψ r))]. Therefore, by characterization of non-
negligibility, we conclude by the rule G.¬̃:CHARAC the
existency of a non-negligible parameter g : real such that
E ′; Θ′ ` g[(φ ∧ ¬ ψ) r] where E ′def

=E ∪ {(g : real)} and

Θ′
def
=Θ, non-negl(g). Actually, without loss of generality,

we suppose that parameter g is deterministic, i.e. we add
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Global judgements: equivalence rules

G.∼:REFL

E; Θ ` u, t ∼ u, t

G.∼:CS
E; Θ ` ul, bl, sl ∼ ur, br, sr E; Θ ` ul, bl, tl ∼ ur, br, sr

E; Θ ` ul, if bl then sl else tl ∼ ur, if br then sr else tr

G.∼:FA
E; Θ ` ul, tl ∼ ur, tr E; Θ ` adv(f)

E; Θ ` ul, f tl ∼ ur, f tr

G.∼:DUP
E; Θ ` ul, tl ∼ ur, tr

E; Θ ` ul, tl, tl ∼ ur, tr, tr

G.∼:FRESH
E; Θ ` [Ψn,t

fresh(u, C(nfresh ()), t)]

E; Θ ` u, C(n t) ∼ u, C(nfresh ())

G.∼:SIMPL
E; Θ ` ul ∼ ur

E; Θ ` ul,nfresh () ∼ ur,nfresh ()

G.∼:TRANS
E; Θ ` u ∼ v E; Θ ` v ∼ w

E; Θ ` u ∼ w

Other rules
L.BYGLOB
E; Θ ` [φ]

E; Θ; Γ ` φ

G.BYLOC
E; Θ;∅ ` φ
E; Θ ` [φ]

L.REWRITE
E; Θ; Γ ` φ[s] E; Θ; Γ ` s = t

E; Θ; Γ ` φ[t]

G.REWRITE
E; Θ ` F [φ] E; Θ ` [φ↔ ψ]

E; Θ ` F [ψ]

G.R-∃̃
E; Θ ` F {x 7−→ t} E ` (t : τ)

E; Θ ` ∃̃ (x : τ). F

G.¬̃:CHARAC

E; Θ ` ¬̃ [¬φ] ↔̃ ∃̃ (g : real). non-negl(g) ∧̃ g [φ]

Fig. 15. Structural local and global rules in the CCSA logic

the property det(g) to the context Θ′. Then, by the intro-
duction rule G.LB:INTRO of the predicate low-bound,
we conclude
E ′; Θ′ ` g/2[low-bound (g/2) (φ ∧ ¬ ψ)]. As parameter
g is deterministic and by the rule G.LB:OUT, we con-
clude

E ′; Θ′ ` g2/4[low-bound (g/2) (φ ∧ ¬ ψ) ∧ (φ ∧ ¬ ψ) r].

Therefore, as we have E ′; Θ′ ` 1[(φ ∧ ¬ ψ) r→ φ r], we
conclude by the global transitivity rule G.LB:TRANS the
following property

E ′; Θ′ ` g2/4[low-bound (g/2) φ ∧ (φ ∧ ¬ ψ) r].

However, by logical operations, we have

low-bound (g/2) φ ∧ (φ ∧ ¬ ψ) r
= low-bound (g/2) φ ∧ ¬ (¬ φ ∨ ψ) r
= low-bound (g/2) φ ∧ ¬ (φ r→ ψ r)
= ¬ (¬ low-bound (g/2) φ ∨ (φ r→ ψ r))
= ¬ (low-bound (g/2) φ→ φ r→ ψ r)

Besides, as E ′; Θ′ ` non-negl(g), we have E ′; Θ′ `
non-negl(g2/4) (the same holds for det predicate) by
operations on non-negligible real terms. Hence, by the
rule G.R-∃̃, we conclude the following property

E ′; Θ′ ` ∃̃ (hg : real). non-negl(hg) ∧̃ det(hg) ∧̃

hg
[¬ (low-bound (g/2) φ→ φ r→ ψ r)].

By characterization of non-negligibility, we conclude by
the rule G.¬̃:CHARAC the property

E ′; Θ′ ` ¬̃ [low-bound (g/2) φ→ φ r→ ψ r].

Finally, as E ′ ` (g : real) and by the rule G.R-∃̃, we
conclude

E ; Θ ` ∃̃ (g′ : real). non-negl(g′) ∧̃ det(g′)
→̃ ¬̃ [low-bound g′ φ→ φ r→ ψ r]

Which achieves the proof of soundness of the rule
G.LB:ELIM by contraposition.

• (G.LB:INTRO) We suppose the property E ; Θ `
g[φ r1 . . . rn], i.e. by definition of the predicate g[φ]
semantics, we suppose the following property

∀ η ∈ N∗,Prρ∈T

[
Jφ r1 . . . rnK

η , ρ
M : E

]
> Eρ∈T

(
JgKη , ρM : E

)
.

(∗)
We have to prove the following property

∀ η ∈ N∗,Prρ∈T

[
Jlow-bound (g/2) φKη , ρM : E

]
> Eρ∈T

(
Jg/2Kη , ρM : E

)
.

Let η ∈ N∗. By definition of the predicate low-bound
semantics, we have

Prρ∈T

[
Jlow-bound (g/2) φKη , ρM : E

]
=

Prρ∈T

[
Prri∈JτiK

η
M,i∈J1;nK

[
JφKη , ρM : E(r1, . . . , rn)

]
> Eρ′∈T

(
Jg/2Kη , ρ

′

M : E
)

]
.

Moreover, by semantics of real terms, we have
Jg/2Kη , ρM : E = 1

2JgKη , ρM : E . Therefore, by linearity of the
function Eρ

(
X(ρ)

)
, we have

Eρ∈T
(
Jg/2Kη , ρM : E

)
=

1

2
Eρ∈T

(
JgKη , ρM : E

)
.

We denote by pφ the function defined by

pφ(η, ρ)
def
= Prri∈JτiK

η
M,i∈J1;nK

[
JφKη , ρM : E(r1, . . . , rn)

]
.

and we denote by eg the function defined by

eg(η)
def
= Eρ∈T

(
JgKη , ρM : E

)
.

Consequently, we have to prove the following property

Prρ∈T

[
pφ(η, ρ) >

1

2
eg(η)

]
>

1

2
eg(η).

24



Rules for low-bound predicate

G.LB:ELIM
E; Θ ` ∀̃ g : real. non-negl(g) ∧̃ det(g) →̃ [low-bound g φ→ φ r→ ψ r]

E; Θ ` [φ r→ ψ r]

G.LB:INTRO
E; Θ ` g [φ r1 . . . rn]

E; Θ ` g/2[low-bound (g/2) φ]

G.LB:OUT
E; Θ ` det(h) E; Θ ` g [low-bound h φ]

E; Θ ` g·h[(low-bound h φ) ∧ (φ r1 . . . rn)]

L.LB:TRANS
E; Θ ` non-negl(g)

E; Θ ` 1[(φ r1 . . . rn)→ (ψ r1 . . . rn)]

E; Θ;∅ ` low-bound g φ→ low-bound g ψ

G.LB:TRANS
E; Θ ` 1[(φ r1 . . . rn)→ (ψ r1 . . . rn)]

E; Θ ` g [(low-bound h φ) ∧ χ]

E; Θ ` g [(low-bound h ψ) ∧ χ]

Probabilistic rule
G.SEL

E; Θ ` det(k) ∧̃ pbound(k) E; Θ ` [φ (rs 1) . . . (rs n)]

E; Θ ` [∀ (t : nat). (rs t) ∈ select(n)rand k rs → (rs t) ∈ {rs 1, . . . , rs k}]

E; Θ ` [n 6 k → φ (select(n)rand k rs)]

Predicates correctness rules
L.EQM:CHARAC

E; Θ; Γ ` permN π E; Θ; Γ `
N∧
i=1

(〈x | i〉 = 〈x | π · i〉)

E; Θ; Γ ` eqmN x y

L.WF:VALID
E; Θ; Γ ` valid (pkCS sk) c v

E; Θ; Γ ` wf ctxt sk c

L.π:INJ
E; Θ; Γ ` permN π

E; Θ; Γ `
N∧
i=1

N∨
j=1

(π · i = j)

L.DECLIST

E; Θ; Γ ` 〈dec-list(N)
CS sk x | i〉 = decCS sk 〈x | i〉

L.~:CANOVEC

E; Θ; Γ ` x ~ i = 〈x | i〉

L.~:COM

E; Θ; Γ ` (com-mat ck M s) ~ x = com-vec ck (M · x) 〈s | x〉

L.SHUFFLE

E; Θ; Γ ` c′ = shuffleφCS pk c π (r j)↔
N∧
i=1

(c′ ~ (π · i) = shuf-mapφCS
pk (c ~ i) 〈r j | i〉)

Algebraic rules For the rule L.OPEN, terms M and s are defined by (M, s)
def
=solve a (ei)

N
i=1 (e′i, ki)

N
i=1.

L.π:CHARAC
E; Θ; Γ `M · 1 = 1

E; Θ; Γ ` prodN (M ·X)− prodN X = 0

E; Θ; Γ ` permN M

L.OPEN
E; Θ; Γ ` basisN (ei)

N
i=1

E; Θ; Γ `
N∧
i=1

(a ~ ei = com-vec ck e′i ki)

E; Θ; Γ ` a = com-mat ck M s

L.BASIS
E ` x1, . . . xn : nat E ` es : nat→ τ

E; Θ; Γ `
∧

16i<j6n

xi 6= xj

E; Θ; Γ ` basisn (es xi)
n
i=1

L.SZ
E; Θ; Γ ` Ψx,t0

fresh(P ) E; Θ; Γ ` P (x t0) = 0

E; Θ; Γ ` P = 0

Fig. 16. CCSA rules sheet

We have, by definition of pφ(η, ρ),

Prρ∈T

[
Jφ r1 . . . rnK

η , ρ
M : E

]
=

∫
ρ∈T

pφ(η, ρ) dρ

Hence, the idea is to split the space of random tapes T
whether or not pφ(η, ρ) is greater than 1

2eg(η). To do so,
we denote by Tinf, respectively Tsup, the set of random

tapes defined by

Tsup
def
=
{
ρ ∈ T | pφ(η, ρ) > 1

2eg(η)
}

Tinf
def
=
{
ρ ∈ T | pφ(η, ρ) < 1

2eg(η)
}
.

As T = Tinf t Tsup (these two subsets form a partition
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Cryptographic rules: commitment schemes

G.COM:HIDE
E; Θ ` adv(u,m1,m2) E; Θ ` [Ψr,ifresh(u,m1,m2) ∧Ψck,ncomkey(u,m1,m2)]

E; Θ ` u, com (ck n) m1 (r i) ∼ u, com (ck n) m2 (r i)

L.COM:BIND
E; Θ ` adv(m1,m2, r1, r2) E; Θ; Γ ` Ψck,ncomkey(m1,m2)

E; Θ; Γ ` com (ck n) m1 r1 = com (ck n) m2 r2

E; Θ; Γ ` m1 = m2

Cryptographic rules: Σ-protocols For the rule L.Σ-P:SPSOUND, for i ∈ {1, 2}, the term notation p
(i)
R (ci) is an alias for p(i)R (ci)

def
=〈α, ci, z(ci)〉.

L.Σ-P:SPSOUND
E; Θ ` adv(x, p

(1)
R (c1), p

(2)
R (c2)) E; Θ; Γ ` c1 6= c2

E; Θ; Γ `
∧

i∈{1,2}
zkp-verifR (σ s) x p

(i)
R (ci)

E; Θ; Γ ` zkp-relR (σ s) x (zkp-extractR (σ s) x p
(1)
R (c1) p

(2)
R (c2))

G.Σ-P:HVZK
E; Θ ` adv(u, x, w) E; Θ ` [Ψr,ifresh(u, x, w)]

E; Θ ` u, zkp-proveR (σ s) x w (r i) ∼ u, zkp-simR (σ s) x (r i)

Cryptographic rules: shuffle-friendly maps

L.SFM:CORRECT
E; Θ; Γ ` wf ctxt sk c

E; Θ; Γ ` ∃ v. c′ = shuf-mapφCS
(pkCS sk) c v

E; Θ; Γ ` decCS sk c = decCS sk c′

L.SFM:CHARAC
E; Θ; Γ ` permN π E; Θ; Γ ` Ψe,t

fresh(c, c′, π)
E; Θ; Γ ` ∃ v. c′ ~ (π · (e t)) = shuf-mapφCS

pk (c ~ (e t)) v

E, (x : msg); Θ; Γ ` ∃ vx. c′ ~ (π · x) = shuf-mapφCS
pk (c ~ x) vx

G.SFM:INDCCA
E; Θ ` adv(u, c, v) E; Θ ` [Ψsk,t0skey (u, c, v) ∧Ψr,ifresh(u, c, v)]

E; Θ ` u, if valid (pkCS (sk t0)) c v then shuf-mapφCS
(pkCS (sk t0)) c (r i)

∼ u, if valid (pkCS (sk t0)) c v then shuf-mapφCS
(pkCS (sk t0)) (0 (len c)) (r i)

Fig. 17. Added axiom rules for algebraic properties and cryptographic security properties

of the random tape space T), we conclude

Prρ∈T

[
Jφ r1 . . . rnK

η , ρ
M : E

]
=∫

ρ∈Tinf

pφ(η, ρ) dρ+

∫
ρ∈Tsup

pφ(η, ρ) dρ

Besides, on the set Tinf, we have by definition of this
subset pφ(η, ρ) 6 1

2eg(η). As for the set Tsup, because
pφ(η, ρ) is a probability, we have pφ(η, ρ) 6 1. There-
fore, we have

Prρ∈T

[
Jφ r1 . . . rnK

η , ρ
M : E

]
6
∫
ρ∈Tinf

(
1
2eg(η)

)
dρ+

∫
ρ∈Tsup

dρ

=
1

2
eg(η)

∫
ρ∈Tinf

dρ+

∫
ρ∈Tsup

dρ

Now, by property on probabilities, we have∫
ρ∈Tinf

dρ 6 Prρ∈T

[
pφ(η, ρ) 6

1

2
eg(η)

]
6 1

and∫
ρ∈Tsup

dρ 6 Prρ∈T

[
pφ(η, ρ) >

1

2
eg(η)

]
Moreover, by hypothesis Eq. (∗), we conclude

eg(η) 6 Prρ∈T

[
Jφ r1 . . . rnK

η , ρ
M : E

]
6

1

2
eg(η) + Prρ∈T

[
pφ(η, ρ) >

1

2
eg(η)

]

Therefore, we have the following probability

∀ η ∈ N∗,Prρ∈T

[
pφ(η, ρ) >

1

2
eg(η)

]
>

1

2
eg(η)

which achieves the soundness proof of the rule
G.LB:INTRO.

• (G.LB:OUT) We suppose the property E ; Θ `
g[low-bound h φ] where the parameter h verifies E ; Θ `
non-negl(h) ∧̃ det(h). By definition of g[φ] semantics,
this leads to the following property

∀ η ∈ N∗,Prρ∈T

[
Jlow-bound h φKη , ρM : E

]
> Eρ∈T

(
JgKη , ρM : E

)
. (H)

Let η ∈ N∗ be a security parameter. By definition of ∧
semantics, we have

Prρ∈T

[
J(low-bound h φ) ∧ (φ r1 . . . rn)Kη , ρM : E

]
=

Prρ∈T

[
Jlow-bound h φKη , ρM : E

]
·Prρ∈T

[
Jφ r1 . . . rnK

η , ρ
M : E Jlow-bound h φKη , ρM : E

]
Besides, by definition of low-bound semantics, we have

Prri∈JτiK
η
M,i∈J1;nK

[
JφKη , ρM : E(r1, . . . , rn)

]
> Eρ′

(
JhKη , ρ

′

M : E
)
.

Moreover, for all ρ ∈ T, we have the following lower
bound

Prρ′∈T

[
Jφ r1 . . . rnK

η , ρ′

M : E

]
> Prri∈JτiK

η
M,i∈J1;nK

[
JφKη , ρM : E(r1, . . . , rn)

]
.
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Protocol 4: 9-move zero-knowledge protocol ZK(4)[RTW
φCS

]
for the Terelius-Wikström commitment-consistent proof of
shuffle using a shuffle-friendly map φCS

Public Input : A natural number N ∈ N∗. A security
parameter η ∈ N∗. A commitment key
ck = (g,g) ∈ GN+1

pη for the commitment
schemes KS[F(pη)N ] and
KS[MatN (F(pη))]. A public key
pk ∈ PKCS of the cryptosystem CS. A list
of ciphertexts c = (ci)

N
i=1 ∈ CNCS.

Begin protocol
[Offline phase]:

1) (Commitment message) The prover P(φCS)
TW chooses

a random permutation matrix π $← ΠN (F(pη)) and
a vector of random values s

$← F(pη)N . Then,
P(φCS)

TW computes the commitment value
a = ComMatN (F(pη))(ck, π ; s) and hands it to the
verifier V(φCS)

TW .
2) (Challenge message) V(φCS)

TW chooses uniformly at

random a vector challenge eoff
$← F(pη)N and sends

it to P(φCS)
TW .

(3-5) (Rest of the offline phase) Both prover P(φCS)
TW and

verifier V(φCS)
TW engage in the Σ-protocol Σoff(eoff) for

the relation Roff with public parameter
σoff =

(
ck, eoff

)
, public statement xoff = a, and

private statement woff =
(
π, s
)
. Hence, we obtain the

proof transcript τoff
(
σoff, xoff, woff

)
= 〈αoff, γoff, zoff〉.

[Online phase]:
5) (Commitment message) The prover P(φCS)

TW chooses

a vector random values r
$← F(pη)N . Then, P(φCS)

TW
computes the list of ciphertexts c′ = (c′i)

N
i=1 ∈ CNCS

defined by the following equation
∀ i ∈ J1;NK, c′π(i) = φCS(pk, ci ; ri).

Finally, P(φCS)
TW sends the freshly computed list of

ciphertexts c′ along with the response message of the
offline phase zoff.

6) (Challenge message) V(φCS)
TW chooses uniformly at

random a vector challenge eon
$← F(pη)N and sends it

to P(φCS)
TW .

(7-9) (Rest of the online phase) Both prover P(φCS)
TW and

verifier V(φCS)
TW engage in the Σ-protocol Σ

(φCS)
on (eon)

for the relation Ron
φCS

with public parameter
σon =

(
ck, pk, eon

)
, public statement xon =

(
a, c, c′

)
,

and private statement won =
(
π, s, r

)
. Hence, we

obtain the proof transcript
τ
(
σon, xon, won

)
= 〈αon, γon, zon〉.

[Conclusion]:
10) (Conclusion’s bit) The verifier V(φCS)

TW accepts if and
only if the following equations hold

v
(ck,eoff), a
off

(
〈αoff, γoff, zoff〉

)
= 1,

and v
(ck,pk,eon), (a,c,c

′)
on

(
〈αon, γon, zon〉

)
= 1.

End

Therefore, by the two previous equations, we have the
following lower bound

Prρ∈T

[
Jφ r1 . . . rnK

η , ρ
M : E Jlow-bound h φKη , ρM : E

]
> Eρ∈T

(
JhKη , ρM : E

)
.

Consequently, by hypothesis Eq. (H) and by the previous
equation, we have

Prρ∈T

[
J(low-bound h φ) ∧ (φ r1 . . . rn)Kη , ρM : E

]
> Eρ∈T

(
JgKη , ρM : E

)
· Eρ∈T

(
JhKη , ρM : E

)
As E ; Θ ` det(h) holds, we have Eρ∈T

(
JhKη , ρM : E

)
=

h (here we blend h with its deterministic semantics).
Therefore, we conclude the following lower bound by
properties on expected value

Prρ∈T

[
J(low-bound h φ) ∧ (φ r1 . . . rn)Kη , ρM : E

]
> Eρ∈T

(
Jg · hKη , ρM : E

)
which achieve proof of soundness for G.LB:OUT.

• (L.LB:TRANS) Let η ∈ N∗ be a security param-
eter and ρ ∈ T be a random tape. We suppose
Jlow-bound g φKη , ρM : E . By definition of low-bound se-
mantics, we have the following inequality

Prri∈JτiK
η
M,i∈J1;nK

[
JφKη , ρM : E(r1, . . . , rn)

]
> Eρ′∈T

(
JgKη , ρM : E

)
.

However, by hypothesis E ; Θ `
1[(φ r1 . . . rn)→ (ψ r1 . . . rn)], we conclude the
following inequality

Prri∈JτiK
η
M,i∈J1;nK

[
JφKη , ρM : E(r1, . . . , rn)

]
6 Prri∈JτiK

η
M,i∈J1;nK

[
JψKη , ρM : E(r1, . . . , rn)

]
.

Therefore, the two previous inequalities leads to the
following property

Prri∈JτiK
η
M,i∈J1;nK

[
JψKη , ρM : E(r1, . . . , rn)

]
> Eρ′∈T

(
JgKη , ρM : E

)
.

Said otherwise, for all security parameter η ∈ N∗
and for all random tape ρ ∈ T, we conclude
Jlow-bound g ψKη , ρM : E , and achieves this way the proof.

• (G.LB:TRANS) Let h : real with E ; Θ ` non-negl(h) be
another non-negligible parameter. Let ψ : τ1 → · · · →
τn → bool be a formula with n parameters. Let χ : τ →
bool be a formula. By definition of g[φ] semantics, we
have to prove

∀ η ∈ N∗,Prρ∈T

[
J(low-bound h ψ) ∧ χKη , ρM : E

]
> Eρ∈T

(
JhKη , ρM : E

)
.

Let η ∈ N∗ be a security parameter. Because we have as
hypothesis E ; Θ ` 1[(φ r1 . . . rn)→ (ψ r1 . . . rn)], we
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conclude by the rule L.LB:TRANS the following property
E ; Θ;∅ `

(
low-bound h φ∧χ

)
→
(
low-bound h ψ∧χ

)
.

Therefore, we have the following inequality

Prρ∈T

[
J(low-bound h φ) ∧ χKη , ρM : E

]
6 Prρ∈T

[
J(low-bound h ψ) ∧ χKη , ρM : E

]
.

Then, by the hypothesis E ; Θ ` g[(low-bound h φ) ∧ χ],
we conclude the property we want.

B. Soundness of property transfer under adversarial selection

Let k : nat be a polynomial bounded and deterministic
natural term. As k is deterministic, that is the semantics of
k does not depend on the random tape ρ (i.e. for all random
tapes ρ, ρ′ ∈ T and for all security parameter η ∈ N∗, we
have JkKη , ρM : E = JkKη , ρ

′

M : E ). Therefore, we denote by k the
function k : η 7−→ JkKη , ρM : E and because pbound(k) holds, the
related function k is polynomially bounded. Let rs : nat→ τ
be a random source term of uniformly distributed random
terms of type τ . Let n ∈ N∗ be a natural number and
φ : τ → · · · → τ → bool be a formula of n parameters of the
same type τ . Let select(n)

rand : nat → (nat → τ) → setn(τ)
be an adversarial selection function of n distinct terms of
type τ given by a random source term. Let η ∈ N∗ be
a security parameter. We suppose that we are in the case
where k(η) > n. By definition of the type setn(τ), we
have Card(Jselect(n)

rand k rsK
η , ρ
M : E) = n. Then, by hypothesis

E ; Θ ` [select(n)
rand k rs ⊆ {rs 1, . . . , rs k}], we conclude,

without loss of generality, the existency of n distinct natural
terms t1, . . . , tn : nat, such that 1 6 t1 < · · · < tn 6 k and
select(n)

rand k rs = {rs ti}ni=1. Therefore, we have

Prρ∈T

[
J¬ φ (select(n)

rand k rs)K
η , ρ
M : E

]
= Prρ∈T

[
∃ 1 6 j1 < · · · < jn 6 k(η),

J¬ φ (rs j1) . . . (rs jn)Kη , ρM : E

]
By property on probabilities, we have the following upper
bound

Prρ∈T

[
J¬ φ (select(n)

rand k rs)K
η , ρ
M : E

]
6

∑
{ji}ni=1 ⊆ J1;k(η)K

Prρ∈T

[
J¬ φ (rs j1) . . . (rs jn)Kη , ρM : E

]
.

But as rs is a random source term of uniformly distributed
random terms of type τ , we have

∀ {ji}ni=1 ⊆ J1; k(η)K,

Prρ∈T

[
J¬ φ (rs j1) . . . (rs jn)Kη , ρM : E

]
= Prρ∈T

[
J¬ φ (rs 1) . . . (rs n)Kη , ρM : E

]
.

Besides, we have

Card({ji}ni=1 ⊆ J1; k(η)K) =

(
k(η)

n

)
6 k(η)n.

Therefore, we conclude the following upper bound

Prρ∈T

[
J¬ φ (select(n)

rand k rs)K
η , ρ
M : E

]
6 k(η)n︸ ︷︷ ︸

polynomial in η

·Prρ∈T

[
J¬ φ (rs 1) . . . (rs n)Kη , ρM : E

]
︸ ︷︷ ︸

negligible in η

.

By hypothesis E ; Θ ` [φ (rs 1) . . . (rs n)], we conclude the
property we want, i.e. we obtain the following property

E ; Θ ` [n 6 k → φ (select(n)
rand k rs)].

C. Soundness of algebraic rules

• (L.π:CHARAC) This rule is a model of the following
proposition:
Proposition 3 (Characterization of permutation matrix).
Let M ∈ MatN (F(pη)) be a matrix. Let e

$← F(pη)N

be a vector of N independent variables and chosen
uniformly at random. We suppose that the two following
equations, denoted by (i) and (ii) hold, for M and e.

(i) M · 1 = 1 and (ii)
∏N
i=1

(
M · e

)
i

=
∏N
i=1 ei.

Then we conclude that M is a permutation matrix with
probability at least equal to 1− N

pNη
.

A proof of this proposition can be found in [5].
• (L.OPEN) Soundness of this rule come quite straightfor-

wardly from the following lemma:
Lemma 1. Let a = (ai)

N
i=1 ∈ GNpη be a vector. Suppose

there exists a setW = {ei}Ni=1 of N linearly independent
vectors of F(pη)N such that

∀ i ∈ J1;NK,∃ e′i ∈ F(pη)N ,∃ ki ∈ F(pη),

ComF(pη)N (ck, e′i ; ki) = a~ ei.

Then a is a commitment message to a matrix MW ∈
MatN (F(pη)) using the vector of random values sW ∈
F(pη)N , i.e. we have
a = ComMatN (F(pη))(ck,MW ; sW). Besides, these open-
ing (MW , sW) can be obtained in polynomial time.

Proof. Let a = (ai)
N
i=1 ∈ GNpη be a vector of values in

the group Gpη . Let W = {ei}Ni=1 a set of N linearly
independent vectors of F(pη)N such that

∀ i ∈ J1;NK,∃ e′i ∈ F(pη)N ,∃ ki ∈ F(pη),

ComF(pη)N (ck, e′i ; ki) = a~ ei. (∗)

As the vectors of the set W = {ei}Ni=1 are linearly
independent, and because dim(F(pη)N ) = N , the family
BW =

(
e1, . . . , eN

)
is a basis of F(pη)N . Hence,

for all j ∈ J1;NK, there exists a set of scalar values
{λ(j)

i }Ni=1 ∈ F(pη)N such that
∑N
i=1 λ

(j)
i ei = uj where

uj is the j-th standard vector of F(pη)N . In fact, such
set of scalar values can be obtain in polynomial time by
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Gaussian elimination. Let j ∈ J1;NK. By basic properties
on ~, we have

aj = a~

(
N∑
i=1

λ
(j)
i ei

)
=

N∏
i=1

(
a~ ei

)λ(j)
i .

By the equation Eq. (∗), we have, for all i ∈ J1;NK,
a~ ei = ComF(pη)N (ck, e′i ; ki). Thus,

aj =

N∏
i=1

(
ComF(pη)N (ck, e′i ; ki)

)λ(j)
i

By definition of the commitment algorithm ComF(pη)N ,

we have ComF(pη)N (ck, e′i ; ki) = gki
∏N
l=1 g

(e′i)l
l . Con-

sequently,

aj =

N∏
i=1

(
gλ

(j)
i ki

N∏
l=1

g
λ
(j)
i (e′i)l
l

)

= g
∑N
i=1 λ

(j)
i ki

N∏
l=1

g
∑N
i=1 λ

(j)
i (e′i)l

l

Finally, we have, for all j ∈ J1;NK,

aj = ComF(pη)N

(
ck,

N∑
i=1

λ
(j)
i e′i ;

N∑
i=1

λ
(j)
i ki

)
.

Consequently, we conclude that a is indeed a commit-
ment message produced by the commitment algorithm
ComMatN (F(pη)), i.e. a = ComMatN (F(pη))(ck,MW ; sW)

where MW ∈ MatN (F(pη)) and sW ∈ F(pη)N are
defined as follows.

MW =

(
N∑
j=1

λ
(l)
j e′j

)N
l=1

and sW =

(
N∑
j=1

λ
(l)
j kj

)N
l=1

• (L.BASIS) Let n ∈ N∗ be a non-null natural number. Let
(ei)

n−1
i=1 be a free family of vector in F(pη)n. Let H be

the linear span of vectors set (ei)
n−1
i=1 . Hence, H defines

an hyperplane of F(pη)n. Therefore, the probability to
choose a new vector e uniformly and independently from
vectors family (ei)

n−1
i=1 such that e ∈ H is at most equal

to 1
pη

:

Pr
e

$←F(pη)n

[
e ∈ H

]
6

1

pη
.

Which achieve proof of soundness of the rule L.BASIS.
• (L.π:CHARAC) This rule is a model of the following

lemma:
Lemma 2 (Schwartz-Zippel). Let fd ∈
F(pη)[X1, . . . , XN ] be a non-zero multivariate
polynomial of total degree d ∈ N over F(pη).
Let e

$← F(pη)N be a vector chosen uniformly
at random in the vector space F(pη)N . Then
Pre∈F(pη)N

[
fd(e) = 0

]
6 d

pNη
.

A proof of this lemma can be found in [23] and [24].
• (L.~:COM) Soundness of this rule come from the fol-

lowing proposition:
Proposition 4. For ck = (g,g) ← Gen(1η, N) be a
commitment key, for all matrix M ∈ MatN (F(pη)) and
for all vectors x, s ∈ F(pη)N , we have the following
identity.

ComMatN (F(pη))(ck,M ; s)~ x =

ComF(pη)N (ck,M · x ; 〈s | x〉)

Proof. Let ck = (g, g1, . . . , gN ) ← Gen(1η, N) be a
commitment key. Let M ∈ MatN (F(pη)) be a matrix and
let x, s ∈ F(pη)N be two vectors. Then, by definitions of
both commitment schemes and of operator ~, we have

ComMatN (F(pη))(ck,M ; s)~ x

=

N∏
i=1

gsixi
N∏
j=1

g
mj,ixi
j

= g
∑N
i=1 sixi

N∏
j=1

g
∑N
i=1mj,ixi

j

= ComF(pη)N (ck,M · x ; 〈s | x〉).

D. Soundness of cryptographic rules

In this subsection, we briefly give some flavour of key
arguments to prove soundness of the cryptographic rules. More
details for these kind of proofs can be found in [12].
• (G.COM:HIDE) Soundness of this rule comes from the

hiding security property, and more precisely from the
hiding game Game 5 of the commitment scheme defined
consistently with the semantics of the function symbol
com/3. Notice that in this game, commitment key param-
eter ck is honestly computed, meaning that the adversary
can only uses this parameter. This is why we have the
global hypothesis E ; Θ ` [Ψck,n

comkey(u,m1,m2)]. Besides

the random value r
$← F(pη) is chosen uniformly at

random and independently from all other computations of
the game, r is then fresh. Thus, we have to suppose the
global hypothesis E ; Θ ` [Ψr,i

fresh(u,m1,m2)]. All other
terms (in u, and message terms m1 and m2) are computed
by the adversary.

• (L.COM:BIND) Based on the binding game Game 6, only
the commitment key parameter ck is not computed by the
adversary. Thus, we suppose the local property E ; Θ; Γ `
Ψck,n

comkey(m1,m2, r1, r2). Which gives us the soundness
of this rule.

• (L.Σ-P:SPSOUND) For this property, we only have two
accepted proof transcripts p

(i)
R (ci)

def
=〈α, ci, z(ci)〉 regard-

less the way these proofs are generated. Only require-
ments are to have the same commitment message α
and two different challenges c1 6= c2. Besides, these
transcripts prove that any statement x belongs to the
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language Lσ(R) of the relation R. Besides, the ex-
istency of the function symbol zkp-extractR/4 in the
CCSA logic and the soundness of the rule follows from
the special-soundness security property Game 10 for
the Σ-protocol given by semantics of function symbols
(zkp-proveR/4, zkp-verifR/3).

• (G.Σ-P:HVZK) By definition of the Honest-Verifier
Zero-Knowledge game given in G.Σ-P:HVZK, even if
the adversary can force the witness-statement pair (x,w)
and the challenge c used by honest prover and verifier,
they cannot distinguish between an honestly computed
proof transcript, using the witness w, from a simulated
one, which does not uses w. Moreover, the existency
of the simulator function symbol zkp-simR/3 and the
soundness of the rule follows from the Honest-Verifier
Zero-Knowledge security property.

• (L.SFM:CORRECT and G.SFM:INDCCA) As soundness
of these two rules are strongly dependent from the
definition of the shuffle-friendly map considered, these
rules have to be proved as soon as such map is defined.

• (L.SFM:CHARAC) Soundness of this rule follows from
the following lemma giving a criterion of correct shuffle.

Lemma 3 (Characterization of correct shuffle). Let φCS
be a shuffle-friendly map for a cryptosystem CS. Let c =
(ci)

N
i=1 ∈ CNCS and c′ = (c′i)

N
i=1 ∈ CNCS be two lists of

ciphertexts. Let π ∈ SN be a permutation of length N .
Let pk ∈ PKCS be a public-key for the cryptosystem CS.
We denote by Hc,c′,π ⊆ F(pη)N the following set

Hc,c′,π =

{
e ∈ F(pη)N ∃ v ∈ F(pη), c′ ~

(
Mπ · e

)
= φCS(pk, c~ e ; v)

}
Then, we have an equivalence between the following
properties.

(i) There exists a vector of random values r = (ri)
N
i=1 ∈

F(pη)N such that we have:

∀ i ∈ J1;NK, c′π(i) = φCS(pk, ci ; ri).

(ii) Hc,c′,π = F(pη)N .
(iii) Card(Hc,c′,π) > pN−1

η .

(iv) Pr
e

$←F(pη)N

[
e ∈ Hc,c′,π

]
>

1

pη
.

Proof. Let φCS be a shuffle-friendly map for a cryptosys-
tem CS. Let c = (ci)

N
i=1 ∈ CNCS and c′ = (c′i)

N
i=1 ∈ CNCS

be two lists of ciphertexts. Let π ∈ SN be a permutation
of length N . Let pk ∈ PKCS be a public-key for the
cryptosystem CS.

– (i) =⇒ (ii) Suppose there exists a vector of ran-
dom values r = (ri)

N
i=1 ∈ F(pη)N such that:

∀ i ∈ J1;NK, c′π(i) = φCS(pk, ci ; ri). We want to
prove the following inclusion: F(pη)N ⊆ Hc,c′,π .
Let e ∈ F(pη)N be a vector. Let Mπ ∈ MatN (F(pη))
be the permutation matrix representing the permuta-

tion π. We set e′ = Mπ · e. By definition of e′, we
have, for all i ∈ J1;NK,

e′i =
(
Mπ·e

)
i

=

N∑
j=1

m
(π)
i,j ej =

N∑
j=1

δiπ(j)ej = eπ−1(i).

Hence, we have

c′ ~ e′ =

N∏
i=1

(c′i)
eπ−1(i)

=

N∏
i=1

(
φCS(pk, cπ−1(i) ; rπ−1(i))

)eπ−1(i)

(by the hypothesis (i))

= φCS

(
pk,

N∏
i=1

c
eπ−1(i)

π−1(i) ;

N∑
i=1

eπ−1(i)rπ−1(i)

)
(because φCS is an homomorphism)

= φCS(pk, c~ e ; 〈e | r〉).

Thus, we have e ∈ Hc,c′,π , i.e. we have proved (ii).
– (ii) =⇒ (i) Actually, we proceed by contraposi-

tion. Hence, we suppose the existence of i0 ∈ J1;NK
such that we have the following property

∀ v ∈ F(pη), c′π(i0) 6= φCS(pk, ci0 ; v).

We show that ui0 /∈ Hc,c′,π . Let v ∈ F(pη). Hence,
we have.

c′ ~
(
Mπ · ui0

)
= c′π(i0) 6= φCS(pk, ci0 ; v)

(by definition of ¬ (i))

= φCS(pk, c~ ui0 ; v)

Consequently, we have Hc,c′,π ( F(pη)N .
– (ii) ⇐⇒ (iii) In fact, we prove that Hc,c′,π is a

subgroup of
(
F(pη)N ,+

)
. Let e1, e2 ∈ Hc,c′,π . By

definition of Hc,c′,π , there exists v1, v2 ∈ F(pη) such
that {

c′ ~
(
Mπ · e1

)
= φCS(pk, c~ e1 ; v1)

c′ ~
(
Mπ · e2

)
= φCS(pk, c~ e2 ; v2)

Then, we have

c′ ~
(
Mπ · (e1 − e2)

)
= c′ ~

(
Mπ · e1

)
·
(
c′ ~

(
Mπ · e2

))−1

= φCS(pk, c~ e1 ; v1) ·
(
φCS(pk, c~ e2 ; v2)

)−1

(because e1 ∈ Hc,c′,π and e2 ∈ Hc,c′,π)
= φCS(pk, c~ (e1 − e2) ; v1 − v2)

(by a basic property of φCS)

Consequently, we have e1 − e2 ∈ Hc,c′,π . Thus,
Hc,c′,π is a subgroup of

(
F(pη)N ,+

)
. However, by

the Lagrange’s theorem, the cardinal Card(Hc,c′,π)
divides the cardinal Card(F(pη)N ) = pNη . There-
fore, we have (ii) ⇐⇒ (iii).
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– (iii) ⇐⇒ (iv) As the vector e $← F(pη)N is chosen
uniformly at random, we have

Pr
e

$←F(pη)N

[
e ∈ Hc,c′,π

]
=

Card(Hc,c′,π)

pNη
.

Consequently, we have (iii) ⇐⇒ (iv).

Hence, to obtain soundness of the L.SFM:CHARAC rule,
as we have the hypothesis E ; Θ; Γ ` Ψe,t

fresh(c, c′, π), we
can use the equivalence (ii) ⇐⇒ (iv).

Notice that all these rules hold regardless whether the cryp-
tographic property considered is perfect or computational.

APPENDIX E
REWINDING ALGORITHMS

The procedure of witness extraction for the Σ-protocol ΣR
is given by Algorithm 5.

Algorithm 5: Witness extraction procedure using the
rewinding technique

Input : A security parameter η ∈ N∗. An adversary A.
A Σ-protocol ΣR = (S,P,V) for a computable
binary relation R. An extractor ER for ΣR. A
public parameter σ for the relation R. A
statement xη ∈ LR(σ) of bit-size polynomial in
the security parameter η, i.e. |xη |= ηO(1).

Output: A witness w ∈ WR such that (σ, xη, w) ∈ R.
1 let extract-sigpR σ xη =
2 The adversary A begins by computing some

commitment message for the statement xη which
updates their state and sends it to the verifier:
(st

(1)
A , α)← A(σ, xη) ;

3 repeat
4 The verifier V chooses a first challenge

c1 ← V(σ, xη, α) ;
5 A produces a response for this challenge, which

also updates their state:
(st

(2)
A , z1(c1))← A(σ, xη, α, c1 ; st

(1)
A ) ;

6 Then, we rewind A to their previous state st
(1)
A ;

7 One more time, V chooses a second challenge
c2 ← V(σ, xη, α) and A produces another
response for this challenge:
(st

(2′)
A , z2(c2))← A(σ, xη, α, c2 ; st

(1)
A ) ;

8 Finally, the verifier V check whether or not the
two produced proofs are valid
bi ← V(σ, xη, 〈α, ci, zi(ci)〉) ;

9 until both Boolean b1 and b2 are true (b1 = b2 = 1)
and the challenges are different (c1 6= c2).;

10 Finally, at this point, we finally extract the witness
from the two proof transcripts p

(i)
R (ci)

def
=〈α, ci, zi(ci)〉:

11 return w ← ER(σ, xη, p
(1)
R (c1), p

(2)
R (c2))

The procedure given in Algorithm 6 defines an adversarial
selection function select(n)

rand : nat→ (nat→ τ)→ setn(τ).

Algorithm 6: Adversarial selection function for rewinding
Input : A natural number k ∈ N∗ and a source of

uniformly distributed and independent random
values rs : N∗ −→ X . (implicit inputs) A natural
number n ∈ N∗ such that n 6 k and a formula
φη,ρ : X −→ {0, 1} evaluable in polynomial
time.

Output: n random values (rs(ij))
n
j=1 ⊆ Xn with

1 6 i1 < . . . < in 6 k.
1 let select(n)

rand k rs =
2 t← 1 ; l← 1 ; L← [] ;
3 while (l 6 n ∧ t 6 k) do
4 il

$← J1; kK \ {ij}l−1
j=1 ;

5 if φη,ρ(rs(il)) then
6 L← rs(il) :: L ;
7 l← l + 1 ;
8 t← t+ 1 ;
9 end

10 return L

APPENDIX F
FULL VERSION OF SECURITY PROPERTIES PROOF

Before giving security properties proofs, a disclaimer. In
this section, we present pen-and-paper proofs of security
properties. Therefore, to ease readability, we won’t precise
when we use CCSA rules about logical reasoning, i.e. when
we use the following rules: G.∼:TRANS, G.BYLOC, and
G.REWRITE. Moreover, when b : bool is a Boolean term and
t : τ is a term of any type, the term if b then t is a macro for
if b then t else (). Meaning that, in the case where b is false,
no term is output, even if this term is deep in another term.
Besides, in the case where bc, bt : bool are Boolean terms,
the term if bc then bt is a macro for if bc then bt else ⊥.
In the case of application of the function application rule
G.∼:FA, we precise only the main relevant function symbols
on which we apply the rule, but the rule may be applied to
other function symbols like n-tuple ones. Finally, if we want
to implement this proof in the Squirrel prover, we may want
to adapt some rules to match exactly the structure of the goals.
For example, in the case of the honest-verifier zero-knowledge
rule G.Σ-P:HVZK, we put proof transcript and the simulated
transcript term under an if condition.

A. Proof of permutation secrecy

Lemma 4. Let E be an environment, let Θ be a context of
global formulas and let Γ be a context of local formulas. Let
i ∈ J1;nK be an index. We have an equivalence between this
two following different properties

E ; Θ; Γ ` 〈c′σ | (σ · i)〉
= shuf-mapφCS

(pkCS (sk k)) 〈c | i〉 〈r l | i〉
↔ 〈c′σ | i〉 = shuf-mapφCS

(pkCS (sk k)) 〈c | (σ−1 · i)〉
〈r l | (σ−1 · i)〉
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Proof. Let η ∈ N∗ be a security parameter. Let ρ ∈ T be a
random tape. Let pk = JpkCS (sk k)Kη , ρM : E ∈ PKCS, (ci)

n
i=1 =

JcKη , ρM : E ∈ CNCS, (c′i)
n
i=1 = Jc′σK

η , ρ
M : E ∈ CNCS, σ = JσKη , ρM : E , and

(ri)
n
i=1 = Jr lKη , ρM : E ∈ (RCS)N . Besides, by definition of the

scalar product CCSA function and of the term j, for j ∈ J1;nK,
we have:

∀ j ∈ J1;nK,∀x : vectn, J〈x | j〉Kη , ρM : E = xj

where (xi)
n
i=1 = JxKη , ρM : E .

Let i ∈ J1;nK be an index. Hence, the following equations
holds

J〈c′σ | (σ · i)〉K
η , ρ
M : E = c′σ(i) J〈c′σ | i〉K

η , ρ
M : E = c′i

J〈c | i〉Kη , ρM : E = ci J〈c | (σ−1 · i)〉Kη , ρM : E = cσ−1(i)

J〈r l | i〉Kη , ρM : E = ri J〈r l | (σ−1 · i)〉Kη , ρM : E = rσ−1(i).

However, as we have the following equation

c′σ(i) = φCS(pk, ci ; ri) ⇐⇒ c′i = φCS(pk, cσ−1(i) ; rσ−1(i)),

which achieves this way the proof.

Lemma 5. Let E be an environment and let Θ be a context of
global formulas. We suppose the following global judgement

E ; Θ ` [Ψr,l
fresh(u, l)] (H)

Then, the following property holds for all i ∈ J1;nK

E ; Θ ` u, 〈r l | i〉 ∼ u, rfresh ().

Proof. Actually, we will only give key elements of this proof,
a full detailed version of the proof can be found in [12] with
the proof of soundness of the freshness rule G.∼:FRESH.
Let E be an environment and let Θ be a context of global
formulas. Let i ∈ J1;nK be an index. By property Eq. (H), we
have in particular the property [Ψr,l

fresh(l)]. Hence, conclude the
following property, for all security parameter η ∈ N∗[

J〈r l | i〉Kη , ρM : E
∣∣ ρ ∈ T

]
=
[
Jrfresh ()Kη , ρM : E

∣∣ ρ ∈ T
]
.

Besides, by Eq. (H), we have [Ψr,l
fresh(u)], meaning that, for all

security parameter η ∈ N∗, the three following distributions
are independent[

JuKη , ρM : E
∣∣ ρ ∈ T

]
,
[
J〈r l | i〉Kη , ρM : E

∣∣ ρ ∈ T
]
,[

Jrfresh ()Kη , ρM : E
∣∣ ρ ∈ T

]
.

Therefore, the following property holds

E ; Θ ` u, 〈r l | i〉 ∼ u, rfresh ().

Theorem 1 (Permutation secrecy property). Let frameinit the
initial knowledge of the adversary and let Θinit be the initial
global context of formulas defined by

frameinit
def
=(ck n), (pkCS (sk k)), π, id, c, v and

Θinit
def
=[Ψck,n

comkey(frameinit)], [Ψ
sk,k
skey (frameinit)]

Then, the Terelius-Wikström shuffle protocol achieves the per-
mutation secrecy property, i.e. the following property holds

E ; Θinit ` frameinit,mixφCS π (ck n) (pkCS (sk k)) (c, v)

∼ frameinit,mixφCS id (ck n) (pkCS (sk k)) (c, v)

Proof. We denote by terms aσ , c′σ , poff(σ) and pon(σ) the
following terms

aσ
def
=com-mat (ck n) σ (s i)

c′σ
def
=shuffleφCS (pkCS (sk k)) c σ (r l)

poff(σ)
def
=zkp-proveRoff (ck n, eoff t1) aσ woff(σ) (roff j)

pon(σ)
def
=zkp-proveRon

φCS
(ck n, pkCS (sk k), eon t2)

(aπ, c, c
′
π) won(σ) (ron p).

Let frameend(σ) the frame at the very end of the protocol
execution defined by

frameend(σ)
def
= frameinit,aσ, (eoff t1), (roff j), poff(σ),

if validN (pkCS (sk k)) c v then
(
c′σ, (eon t2), (ron p), pon(σ)

)
By unfolding the definition of the mix predicate mixφCS , one
has to prove the following indistinguishability

E ; Θinit ` frameend(π) ∼ frameend(id).

Notice that if b then 〈t1, t2, t3〉 is a macro for
〈if b then t1, if b then t2, if b then t3〉. Hence, by the case
study rule for the indistinguishability predicate G.∼:CS, and
by the elimination rule of duplicates G.∼:DUP, we have to
prove the following property

E ; Θinit ` (ck n), pkCS (sk k), (c, v),aπ, (eoff t1), poff(π),(
if validN (pkCS (sk k)) c v then c′π

)
,

(validN (pkCS (sk k)) c v), (eon t2), (pon(π))

∼ (ck n), pkCS (sk k), (c, v),aid, (eoff t1), poff(id),(
if validN (pkCS (sk k)) c v then c′id

)
,

(validN (pkCS (sk k)) c v), (eon t2), (pon(id))

.

Let frame0(σ) be the sequence of terms such that

frameend(σ)
def
=frame0(σ), pon(σ).

By the rule G.Σ-P:HVZK applied to the online relation Ron
φCS

,
we have the following indistinguishability

E ; Θinit ` frame0(σ), pon(σ)

∼ frame0(σ), zkp-simRon
φCS

(ck n, pkCS (sk k), eon t2)

(aσ, c, c
′
σ) (ron p).

Hence, by the function application rule G.∼:FA applied to
the function zkp-simRon

φCS
/3, and by the duplicates elimination

rule G.∼:DUP, we have to prove the following property

E ; Θinit ` frame0(π) ∼ frame0(id)
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Let frame1(σ) be the sequence of terms such that

frame0(σ)
def
=frame1(σ),

(
if validN (pkCS (sk k)) c v then c′σ

)
,

(validN (pkCS (sk k)) c v), (eon t2).

By the freshness rule G.∼:FRESH applied to the term eon t2,
by simplification of fresh name rule G.∼:SIMPL, by the
function application rule G.∼:FA applied to the function
validN/3, by the elimination rule of duplicates G.∼:DUP, and
by definition of the ciphertexts list term c′σ , we have to prove
the following property

E ; Θinit ` frame1(π), if validN (pkCS (sk k)) c v

then shuffleφCS (pkCS (sk k)) c π (r l)

∼ frame1(id), if validN (pkCS (sk k)) c v

then shuffleφCS (pkCS (sk k)) c id (r l). (∗)

However, by the characterization rule of the shuffleφCS predi-
cate L.SHUFFLE, we have

E ; Θinit ` [c′σ = shuffleφCS (pkCS (sk k)) c σ (r l)↔
N∧
i=1

(
c′σ~(σ·i) = shuf-mapφCS

(pkCS (sk k)) (c~i) 〈r l | i〉
)
].

Therefore, the goal given by Eq. (∗) becomes the following

E ; Θinit ` frame1(π), if validN (pkCS (sk k)) c v then
N∧
i=1

(
c′π~ (π ·i) = shuf-mapφCS

(pkCS (sk k)) (c~ i) 〈r l | i〉
)

∼ frame1(id), if validN (pkCS (sk k)) c v then
N∧
i=1

(
c′id ~ i = shuf-mapφCS

(pkCS (sk k)) (c~ i) 〈r l | i〉
)

We denote by b : bool the Boolean term defined by

b
def
=validN (pkCS (sk k)) c v.

For σ ∈ {π, id} and i ∈ J1;NK, we denote by ψσ,i : bool the
following Boolean term

ψσ,i
def
=
(
c′σ ~ (σ · i) =

shuf-mapφCS
(pkCS (sk k)) (c~ i) 〈r l | i〉

)
.

Hence, by operations on Boolean terms and properties over
the function if then /2, we have

if b then
N∧
i=1

ψσ,i = b ∧
N∧
i=1

ψσ,i =

N∧
i=1

(
b ∧ ψσ,i

)
=

N∧
i=1

(
if b then ψσ,i

)
Besides, as we have, for all sequence of N Boolean terms
(bi : bool)Ni=1

N∧
i=1

bi = if b1 then
(
if b2 then

(
if . . . then

(
if bN then >

)))

then, by N applications of the case study rule G.∼:CS3, the
goal given by Eq. (∗) becomes the following

E ; Θinit ` frame1(π),
(

if validN (pkCS (sk k)) c v then(
c′π~(π·i) = shuf-mapφCS

(pkCS (sk k)) (c~i) 〈r l | i〉
))N
i=1

∼ frame1(id),
(

if validN (pkCS (sk k)) c v then(
c′id~ i = shuf-mapφCS

(pkCS (sk k)) (c~ i) 〈r l | i〉
))N
i=1

Let i ∈ J1;NK be an index. We denote by frame 6=i(σ) the
following frame

frame 6=i(σ)
def
=
(

if validN (pkCS (sk k)) c v then(
c′σ~(σ·i) = shuf-mapφCS

(pkCS (sk k)) (c~j) 〈r l | j〉
))
j∈J1;NK\{i}

By the characterization rule for canonical vectors
L.~:CANOVEC, we want to prove the following property

E ; Θinit ` frame1(π), frame 6=i(π),

if validN (pkCS (sk k)) c v then(
〈c′π | (π · i)〉 = shuf-mapφCS

(pkCS (sk k)) 〈c | i〉 〈r l | i〉
)

∼ frame1(id), frame 6=i(id),

if validN (pkCS (sk k)) c v then(
〈c′id | i〉 = shuf-mapφCS

(pkCS (sk k)) 〈c | i〉 〈r l | i〉
)

(∗i)

However, by Lemma 4, the i-th goal Eq. (∗i) becomes the
following

E ; Θinit ` frame1(π), frame6=i(π),

if validN (pkCS (sk k)) c v then(
〈c′π | i〉 = shuf-mapφCS

(pkCS (sk k)) 〈c | (π−1·i)〉 〈r l | (π−1·i)〉
)

∼ frame1(id), frame 6=i(id),

if validN (pkCS (sk k)) c v then(
〈c′id | i〉 = shuf-mapφCS

(pkCS (sk k)) 〈c | i〉 〈r l | i〉
)

Let rfresh : unit → rand be a name such that rfresh does not
appear in E , and frame1(σ) for σ ∈ {π, id}. Therefore, by

3Actually, for all j ∈ J1;NK, we have to prove the goal

E; Θinit ` frame1(π),
(

if validN (pkCS (sk k)) c v then(
c′π ~ (π · i) = shuf-mapφCS

(pkCS (sk k)) (c ~ i) 〈r l | i〉
))j
i=1

∼ frame1(id),
(

if validN (pkCS (sk k)) c v then(
c′id ~ i = shuf-mapφCS

(pkCS (sk k)) (c ~ i) 〈r l | i〉
))j
i=1

which are all subsumed by the case where j = N .
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the Lemma 5, and by the case study rule G.∼:CS, the goal
property Eq. (∗i) becomes the following

E ; Θinit ` frame1(π), frame6=i(π),

if validN (pkCS (sk k)) c v then(
〈c′π | i〉 = shuf-mapφCS

(pkCS (sk k)) 〈c | (π−1·i)〉 (rfresh ())
)

∼ frame1(id), frame 6=i(id),

if validN (pkCS (sk k)) c v then(
〈c′id | i〉 = shuf-mapφCS

(pkCS (sk k)) 〈c | i〉 (rfresh ())
)

However, by definition of the predicate validN , we have the
following property

validN (pkCS (sk k)) c v →
N∧
j=1

N∧
k=1

(
len 〈c | j〉 = len 〈c | k〉

)
.

We denote this common value by the term m : nat, i.e. m is
such that

∀ j ∈ J1;NK,m = len 〈c | j〉.

Besides, by definition of the predicate validN , we have the
following property

validN (pkCS (sk k)) c v → valid (pkCS (sk k)) 〈c | π−1·i〉 v.

Therefore, by the indistinguishability of φCS output rule
G.SFM:INDCCA, the goal property Eq. (∗i) becomes the
following

E ; Θinit ` frame1(π), frame6=i(π),

if validN (pkCS (sk k)) c v then(
〈c′π | i〉 = shuf-mapφCS

(pkCS (sk k)) (0 m) (rfresh ())
)

∼ frame1(id), frame 6=i(id),

if validN (pkCS (sk k)) c v then(
〈c′id | i〉 = shuf-mapφCS

(pkCS (sk k)) 〈c | i〉 (rfresh ())
)

Hence, by the function application rule G.∼:FA for the
indistinguishability predicate ∼ applied to functions = /2,
validN/3 and shuf-mapφCS

/3, by the case study rule G.∼:CS,
by simplification of fresh names G.∼:SIMPL, and by the
duplicates elimination rule G.∼:DUP, we have to prove the
following property

E ; Θinit ` frame1(π) ∼ frame1(id).

By definition of the frame frame1(σ), we have to prove the
following property

E ; Θinit ` frameinit,aπ, (eoff t1), poff(π)

∼ frameinit,aid, (eoff t1), poff(id).

By the rule G.Σ-P:HVZK applied to the offline relation
Roff, by the function application rule G.∼:FA applied to
the function zkp-simRoff/3, by the duplicates elimination rule
G.∼:DUP, by the freshness rule G.∼:FRESH applied to terms
roff j and eoff t1, by simplification of fresh names G.∼:SIMPL,

and by definition of the term aσ , we have to prove the
following property

E ; Θinit ` frameinit, com-mat (ck n) π (s i)

∼ frameinit, com-mat (ck n) id (s i).

By the hiding property for the commitment predicate
com-mat, we conclude the proof by applying the correspond-
ing rule G.COM:HIDE.

B. Rewinding axiom proof

To prove the rewinding CCSA axiom, we need the Chernoff
bound, which we recall here:

Lemma 6 (Chernoff bound). Let X1, . . . , Xn : N −→ {0, 1}
be n independent and identically distributed random variables,
i.e. there exists a number p ∈ [0, 1] such that, for all i ∈ J1;nK,
Pr[Xi = 1] = p. Then we have

∀ δ ∈ ]0, 1[,Pr
[ n∑
i=1

Xi 6 (1− δ)np
]
6 exp

(
−δ

2

2
np

)
.

Let n ∈ N, with n > 2, be a natural number. In what
follows, we fix a source of random values rs : nat → τ , i.e.
semantics of rs is given by

∀ η ∈ N∗,∀ ρ ∈ T,∀ (i : nat), Jrs iKη , ρM : E
$← JτKηM.

Besides, we consider the function symbol select(n)
rand : nat →

(nat→ τ)→ setn(τ) with semantics given by Algorithm 6.

Axiom 2 (Rewinding). For all polynomial-time property
φ

def
=λx. (φ x) : τ → bool [ptime], for all non-negligible

parameter g : real with non-negl(g), the following rule to
catch the rewinding argument is sound

E ; Θ ` ∃̃ select(n)rand. ∃̃ kg : nat. det(kg) ∧̃ pbound(kg) →̃
[low-bound g φ → ∀ (t : nat). (rs t ∈ select(n)rand kg rs) →

φ (rs t)] ∧̃ [∀ (t : nat). (rs t) ∈ select(n)rand kg rs →
(rs t) ∈ {rs 1, . . . , rs kg}]

Next, we use the same notation between the natural number
i ∈ N and its corresponding term i : nat. Besides, notice that
in the rewinding axiom, the natural number kg ∈ N depends
only on the non-negligible real parameter g : real.

Proof. Let g : real with E ; Θ ` non-negl(g) be a non-
negligible parameter. Let η ∈ N∗ be a security parameter and
let ρ ∈ T be a random tape. Let Yη,ρ : N −→ {0, 1} be the
following random variable

∀ i ∈ N, Yη,ρ(i)
def
=Jφ (rs i)K

η , ρ
M : E ∈ {0, 1}

Let k(η) ∈ N be a natural number. We consider the family of
random variables

(
Y η,ρj

)k(η)

j=1
such that we have

∀ j ∈ J1; k(η)K, Y η,ρj = 1
def⇐⇒ Yη,ρ(ij) = 1, ij

$← J1; k(η)K.

As rs is a source of uniformly distributed and independent ran-
dom variables, the random variables Y η,ρj , for all j ∈ J1;nK,
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are mutually independent. Besides, we suppose that we are in
the case where Jlow-bound g φKη , ρM : E = 1, meaning that we
have the following lower bound

pY (η, ρ)
def
= Prr∈JτKηM

[
JφKη , ρM : E(r) = 1

]
> Eρ′∈T

(
JgKη , ρM : E

)
.

We want to prove that the function η 7−→
Prρ∈T

[ ∑k
j=1 Y

η,ρ
j > n

]
is overwhelming. In fact,

we show that, for all security parameter η ∈ N∗,
Prρ∈T

[ ∑k
j=1 Y

η,ρ
j < n

]
6 1

2η , which is equivalent
to the property we want to show. To prove this property, we
use the Chernoff bound which states the following property

∀ δ ∈]0, 1[,Prρ∈T

[ k∑
j=1

Y η,ρj 6 (1− δ)kpY (η, ρ)
]

6 exp

(
−δ

2

2
kpY (η, ρ)

)
.

Therefore, to obtain the property we want, we have to find a
pair (δ(η), k(η)) ∈ ]0, 1[ × N∗ such that

(1− δ(η))k(η)pY (η, ρ) < n

and exp

(
−δ(η)2

2
k(η)pY (η, ρ)

)
6

1

2η
(I)

By monotonic increasing of the logarithm function, the second
equation becomes

δ(η)2

2
k(η)pY (η, ρ) > η ln 2.

In fact, the system of inequalities Eq. (I) can be solved by
solving the following system of equations where we have to
find a pair (δ(η), x(η)) ∈ ]0, 1[ × R+ such that

(1− δ(η))x(η)pY (η, ρ) = n (1)

and
δ(η)2

2
x(η)pY (η, ρ) = η ln 2. (2)

Indeed, if we have found a solution (δ(η), x(η)) of the second
system of equations, the pair (δ(η), dx(η)e) is a solution of
the first system Eq. (I). The second equation Eq. (2) leads to

x(η) =
2η ln 2

δ(η)2pY (η, ρ)
. (∗)

Hence, by equations Eq. (∗) and Eq. (1) leads to the following
quadratic equation

nδ(η)2 + (2η ln 2)δ(η)− 2η ln 2 = 0. (Eδ)

The solutions of this quadratic equation are given by

δ±(η)
def
=
−2η ln 2±

√
∆

2n

where ∆ = (2η ln 2)2 + 8nη ln 2 > 0. Moreover, we have
δ−(η) < 0 and δ+(η) > 0. Besides, we have

δ+(η) < 1 ⇐⇒
√

1 +
2n

η ln 2
<

n

η ln 2
+ 1

⇐⇒ 1 +
2n

η ln 2
<

(
n

η ln 2
+ 1

)2

⇐⇒
(

n

η ln 2

)2

> 0.

Therefore, only the solution δ+(η) interest us and the partnered
solution x(η) is given by

x(η) =
2n2

ηpY (η, ρ) ln 2

(
1−

√
1 +

2n

η ln 2

)−2

.

Therefore, we denote by fn : N∗ −→ R∗+ such that

∀ η ∈ N∗, x(η)
def
=

fn(η)

pY (η, ρ)
.

To conclude, we have to study the asymptotic behavior of
the function fn, to show this function is at least polynomial
bounded in the security parameter η. By series expansion, we
have the following results.

∀ η ∈ N∗, fn(η) =
n2

η ln 2

(
1−

√
1 +

2n

η ln 2
+

n

η ln 2

)−1

=
n2

η ln 2

(
2
( n

2 ln 2

)2 1

η2
+ oη→+∞

(
1
η2

))−1

= 2(ln 2)η
(
1 + oη→+∞

(
1
))
.

Therefore, the asymptotic analysis of function fn gives us the
following result

fn(η) ∼η→+∞ 2(ln 2)η . (Θ)

Moreover, by hypothesis on pY (η, ρ) given by the hypothesis
low-bound g φ, we have x(η) 6 fn(η)

Eρ∈T
(
JgKη , ρM : E

) . Therefore, if

we denote by k(η) ∈ N∗ the quantity

k(η) =

⌈
fn(η)

Eρ
(
JgKη , ρM : E

)⌉ ,
we conclude, as g is a non-negligible parameter and because
of result Eq. (Θ) that k is polynomial in the security parameter
η.

Consequently, we have proved that if k : nat is the natural
term for whose semantics is given by

∀ η ∈ N∗,∀ ρ ∈ T,

JkKη , ρM : E
def
=

⌈
1

Eρ′
(
JgKη , ρ

′

M : E
) 2n2

η ln 2

(
1−

√
1 +

2n

η ln 2

)−2
⌉
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then k is polynomial in the security parameter η and is
deterministic. Let ψ : τ → . . .→ τ︸ ︷︷ ︸

n times

→ bool be a property

defined by

∀ (x1, . . . , xn : τ). ψ x1 . . . xn
def
=

n∧
i=1

(φ xi).

Moreover, we denote by Φ and H the functions in N∗×T −→
{0, 1} respectively defined by

Φ(η, ρ)
def
=J∀ (t : nat). (rs t) ∈ select(n)

rand k rs → φ (rs t)K
η , ρ
M : E

and H(η, ρ)
def
=Jlow-bound g φKη , ρM : E .

Hence, by what precedes, we have shown the following result

∀ η ∈ N∗,Prρ∈T

[
Jψ (rs 1) . . . (rs n)Kη , ρM : E H(η, ρ)

]
> 1− 1

2η
.

Thus, we have shown the following global judgement

E ; Θ ` [low-bound g φ→ ψ (rs 1) . . . (rs n)].

Consequently, by using the property transfer under adversarial
selection function G.SEL, we conclude

E ; Θ ` [low-bound g φ→ ψ (select(n)
rand k rs)].

Thus, by definition of ψ, we have shown the following result

∀ η ∈ N∗,Prρ∈T

[
Φ(η, ρ) H(η, ρ)

]
> 1− 1

2η
.

And finally, by definition of the function select(n)
rand given in

Algorithm 6, we have, for all natural number term t : nat, if
(rs t) ∈ select(n)

rand k rs then (rs t) ∈ {rs i}ki=1 and then we
conclude

∀ η ∈ N∗,Prρ∈T

[
J∀ (t : nat). (rs t) ∈ select(n)

rand k rs →

(rs t) ∈ {rs 1, . . . , rs k}Kη , ρM : E

]
= 1.

Consequently, those results achieves the proof of the rewinding
CCSA axiom.

C. Verifiability proof

Let frameverif be a trace of the Terelius-Wikström shuffle
protocol defined by

frameverif
def
=(ck n),a, (eoff t1), αoff, (roff l), zoff,

〈sk, c, c′〉, (eon t2), αon, (ron p), zon.

and such that

zkp-verifRoff (ck n, eoff t1) a 〈αoff, (roff l), zoff〉
∧ zkp-verifRon

φCS
(ck n, pkCS sk, eon t2)

(a, c, c′) 〈αon, (ron p), zon〉
∧ wf ctxtN sk c.

1) Extraction of the committed matrix: To be able to
rebuild the committed matrix, we have to extract N witnesses
(e′i, ki)

N
i=1 for the relations of correct commitment Rcom(ei),

where (ei)
N
i=1 is a free family of F(pη)N . Consequently, there

is two steps of rewinding, one on the vectors ei, for i ∈ J1;NK
and the other one is when we obtain a candidate vector ei,
we have to rewind the challenge r ∈ F(pη) to be able to use
the special-soundness axiom. Therefore, in that case, we have
to use two times the predicate low-bound, one states there is
enough random vectors to rewind and the second one states
that for a chosen vector, there is enough random challengs to
rewind. Hence, if we denote by ψoff the formula

ψoff
def
=λe. λr. zkp-verifRoff (ck n, e) a 〈αoff, r, zoff(r)〉,

we have to suppose the following property

low-bound g (λe. low-bound g′ (ψoff e))

for two parameters g, g′ : real with non-negl(g) and
non-negl(g′).

Lemma 7. Let E be an environment, let Θ be a context of
global formulas and let Γ be a context of local formulas. We
denote by ψoff the formula

ψoff
def
=λe. λr. zkp-verifRoff (ck n, e) a 〈αoff, r, zoff(r)〉.

We suppose

E ; Θ; Γ ` low-bound g (λe. low-bound g′ (ψoff e)), (He,r)

with

E ; Θ ` non-negl(g) ∧̃ det(g)

and E ; Θ ` non-negl(g) ∧̃ det(g)

Then, the property E ; Θ; Γ ` a = com-mat (ck n) M s holds,
where there exists a name es : nat → msg and N terms
t1, . . . , tN : nat pairwise distincts such that there exists a name
rs : nat → msg and 2 terms ri,1, ri,2 : nat with ri,1 6= ri,2

such that if we denote, for all i ∈ J1;NK, e′i
def
=π2 woff(i) and

ki
def
=π3 woff(i) with

woff(i)
def
=zkp-extractRoff (ck n, es ti) a

〈αoff, rs ri,1, zoff(rs ri,1)〉 〈αoff, rs ri,2, zoff(rs ri,2)〉

then terms M and s are defined by M
def
=π1 u and s

def
=π2 u

where u
def
=solve a (es ti)

N
i=1 (e′i, ki)

N
i=1.

Proof. Firstly, we have to obtain N vectors such that the
adversary produces at least two different proof transcripts
but for the same commitment message to be able to apply
the special-soundness axiom. Let es : nat → vectN be an
uniform source of random vectors with semantics defined by
the honest verifier of the Terelius-Wikström shuffle protocol.
Then, we apply the rewinding axiom (Axiom 1) to the for-
mula ψ

def
=λe. low-bound g′ (ψoff e). Hence, there exists a
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ck a
select(N)

rand ke es . . .

es t1 απ
select(2)

rand kr rs
rs u1 zπ(rs u1)

rs u2 zπ(rs u2)

es tN απ
select(2)

rand kr rs
rs w1 zπ(rs w1)

rs w2 zπ(rs w2)

Fig. 18. Skeleton of committed matrix extraction proof

polynomial bounded and deterministic term ke : nat such that
N 6 ke and the following property holds

E ; Θ ` [low-bound g ψ →
∀ (t : nat). (es t) ∈ select(N)

vect ke es → ψ (es t)]

∧̃ [∀ (t : nat). (rs t) ∈ select(N)
vect ke es →

(rs t) ∈ {es 1, . . . , es ke}]

Therefore, by hypothesis Eq. (He,r), we conclude

E ; Θ; Γ ` ∀ (t : nat). (es t) ∈ select(N)
vect ke es → ψ (es t).

On another hand, we have the following global formula by the
rule L.BASIS

E ; Θ ` [basisN (es i)
N
i=1].

Therefore, by the second conclusion of the rewinding axiom
and by the transfer of properties by adversarial selection rule
G.SEL, we have

E ; Θ ` [N 6 ke → basisN (select(N)
vect ke es)] (β)

Moreover, by the second conclusion of the rewinding axiom,
and because Card(Jselect(N)

vect ke esK
η , ρ
M : E) = N by definition

of the semantics of the type setN (msg), we conclude the
existence of N pairwise distinct terms t1, . . . , tN : nat such
that 1 6 t1 < . . . < tN 6 ke (without loss of generality
for the order of terms ti) and select(N)

vect ke es = {es ti}Ni=1.
Therefore, for all i ∈ J1;NK, we have

E ; Θ; Γ ` low-bound g′ (ψoff (es ti)) (Hr)

Now we have obtain those N vectors, we apply the rewind-
ing axiom for each vector to obtain two different proof
transcripts but for the same commitment message in the
goal of extract a witness by the special-soundness property.
Let i ∈ J1;NK. Let rs : nat → challRoff be an uniform
source of random values with semantics given by the honest
verifier of the offline relation VRoff . By the rewinding axiom
(Axiom 1) applied to the formula ψoff (es ti) the existency of

a polynomial bounded and deterministic term kr : nat such
that 2 6 kr and the following property holds

E ; Θ ` [low-bound g′ (ψπ (es ti))→
∀ (t : nat). (rs t) ∈ select(2)

chall kr rs → ψoff (es ti) (rs t)]

∧̃ [∀ (t : nat). (rs t) ∈ select(2)
chall kr rs →

(rs t) ∈ {rs 1, . . . , rs kr}]

Therefore, by hypothesis Eq. (Hr), we conclude

E ; Θ; Γ ` ∀ (t : nat). (rs t) ∈ select(2)
chall kr rs

→ ψoff (es ti) (rs t).

By the second conclusion of the rewinding axiom, and because
Card(Jselect(2)

chall kr rsK
η , ρ
M : E) = 2, we conclude the existency

of 2 distinct terms ri,1, ri,2 : nat with, without loss of
generality, 1 6 ri,1 < ri,2 6 kr and select(2)

chall kr rs =
{rs ri,1, rs ri,2}. Therefore, for all i ∈ J1;NK and for all
j ∈ {1, 2}, we have

E ; Θ; Γ ` zkp-verifRoff (ck n, es ti) a 〈αoff, rs ri,j , zoff(rs ri,j)〉

By the special-soundness property L.Σ-P:SPSOUND applied
to the relation for the offline phase Roff, we conclude the
existency of an extractor function zkp-extractRoff such that

E ; Θ; Γ ` zkp-relRoff σoff(i) a

(zkp-extractRoff σoff(i) a poff(i, 1) poff(i, 2))

where, for all i ∈ J1;NK and j ∈ {1, 2}, σoff(i)
def
=(ck n, es ti)

and poff(i, j)
def
=〈αoff, rs ri,j , zoff(rs ri,j)〉. Hence, for all i ∈

J1;NK, we denote by woff(i) the witness given by

woff(i)
def
=zkp-extractRoff σoff(i) a poff(i, 1) poff(i, 2).

Besides, let e′i and ki be the terms defined by e′i
def
=π2 woff(i)

and ki
def
=π3 woff(i). Therefore, by definition of the predicate

zkp-relRoff , we have in particular

E ; Θ; Γ `
N∧
i=1

a~ (es ti) = com-vec (ck n) e′i ki. (∗)

Hence, by properties Eq. (β), Eq. (∗) and by the commitment
opening rule L.OPEN, we conclude

E ; Θ; Γ ` a = com-mat (ck n) M s
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where v
def
=solve a (es ti)

N
i=1 (e′i, ki)

N
i=1, M def

=π1 v, and
s

def
=π2 v.

2) M represents a permutation:

Lemma 8. Let E be an environment, let Θ be a
context of global formulas and let Γ be a context
of local formulas. We denote by ψ the function
ψ

def
=λr. zkp-verifRoff (ck n, eoff t1) a 〈αoff, r, zoff(r)〉.

We suppose

E ; Θ ` non-negl(g) ∧̃ det(g) (Hg)
E ; Θ; Γ ` low-bound g ψ, (H1)
E ; Θ; Γ ` a = com-mat (ck n) M s, (H2)

Then, we conclude E ; Θ; Γ ` permN M .

Proof. Let rs : nat → challRoff be an uniform source of
random values with semantics given by the honest verifier of
the offline relation Roff. By the rewinding axiom (Axiom 1)
applied to the formula ψ, there exists a polynomial bounded
and deterministic term kr : nat such that 2 6 kr and the
following property holds

E ; Θ ` [low-bound g ψ →
∀ (t : nat). (rs t) ∈ select(2)

chall kr rs → ψ (rs t)]

∧̃ [∀ (t : nat). (rs t) ∈ select(2)
chall kr rs →

(rs t) ∈ {rs 1, . . . , rs kr}]

Therefore, by hypothesis Eq. (H1), we conclude

E ; Θ; Γ ` ∀ (t : nat). (rs t) ∈ select(2)
chall kr rs → ψ (rs t).

Hence, there exists 2 distinct terms r1, r2 : nat with, without
loss of generality, 1 6 r1 < r2 6 kr and select(2)

chall kr rs =
{r1, r2}. Therefore, we have

E ; Θ; Γ `
∧

j∈{1,2}

zkp-verifRoff (ck n, eoff t1) a

〈αoff, rs rj , zoff(rs rj)〉.

By the special-soundness property L.Σ-P:SPSOUND applied
to the offline relation Roff, we conclude the existency of an
extractor function zkp-extractRoff such that

E ; Θ; Γ ` zkp-relRoff (ck n, eoff t1) a woff.

where woff is the witness term defined by

woff
def
= zkp-extractRoff (ck n, eoff t1) a

〈αoff, rs r1, zoff(rs r1)〉 〈αoff, rs r2, zoff(rs r2)〉.

Hence, let t, e′ and k be the terms defined respectively by
t

def
=π1 woff, e′

def
=π2 woff and k

def
=π3 woff. By definition of

the offline relation predicate zkp-relRoff , we have the three
following properties

E ; Θ; Γ ` a~ 1 = com-vec (ck n) 1 t (i)
E ; Θ; Γ ` a~ (eoff t1) = com-vec (ck n) e′ k (ii)
E ; Θ; Γ ` prodN e′ = prodN (eoff t1) (iii)

label=–
• By Eq. (i), and by hypothesis Eq. (H2), we have
E ; Θ; Γ ` (com-mat (ck n) M s) ~ 1 =
com-vec (ck n) 1 t. Next, by action of ~ on
commitments and by transitivity, the rule L.~:COM
applied to the previous identity leads to E ; Θ; Γ `
com-vec (ck n) (M · 1) 〈s | 1〉 = com-vec (ck n) 1 t.
Finally, as the commitment scheme KS[F(pη)N ] is com-
putationally binding, we conclude, thanks to the related
rule L.COM:BIND, the following equality

E ; Θ; Γ `M · 1 = 1. (∗1)

• Similarly, using equation Eq. (ii) and by hypothesis
Eq. (H2), we conclude by the binding rule L.COM:BIND
the following judgement E ; Θ; Γ ` M · (eoff t1) = e′.
Hence, by the last equation Eq. (iii), the last identity
leads to

E ; Θ; Γ ` prodN (M · (eoff t1)) = prodN (eoff t1).

Let PN [M ] be the polynomial defined by
PN [M ]

def
=prodN (M · X) − prodN X . As (eoff t1) is

a fresh name, we apply the Schwartz-Zippel lemma to
the polynomial PN [M ] and conclude by the related rule
L.SZ

E ; Θ; Γ ` prodN (M ·X) = prodN X. (∗Π)

Consequently, as equations Eq. (∗1) and Eq. (∗Π) hold,
we conclude by the characterization of permutation matrix
that M represents a permutation, i.e. by applying the rule
L.π:CHARAC, the following judgement holds E ; Θ; Γ `
permN M . Therefore, the vector a is a commitment message
to a permutation matrix, i.e. we have

E ; Θ; Γ ` a = com-mat (ck n) M s

and E ; Θ; Γ ` permN M.

3) M has been used to shuffle the input ciphertexts list with
the shuffle-friendly map φCS:

Lemma 9. Let E be an environment, let Θ be a context of
global formulas and let Γ be a context of local formulas. We
denote by ψon the formula defined by

ψon
def
= λr. zkp-verifRon

φCS
(ck n, pkCS sk, eon t2) (a, c, c′)

〈αon, r, zon(r)〉

We suppose

E ; Θ ` non-negl(g) ∧̃ det(g) (Hg)
E ; Θ; Γ ` low-bound g ψon (Hr)
E ; Θ; Γ ` a = com-mat (ck n) M s (Ha)
E ; Θ; Γ ` permN M (Hπ)
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Then, we conclude the following property

E ; Θ; Γ `
N∧
i=1

(
∃ vi. c′ ~ (M · i) =

shuf-mapφCS
(pkCS sk) (c~ i) vi

)
.

Proof. For ease of notation, we denote by σon the public
parameter defined by σon

def
=(ck n, pkCS sk, eon t2) and by

xon the statement defined by xon
def
=(a, c, c′). Let rs : nat →

challRon
φCS

be an uniform source of random values defined by
the verifier of the online relationRon

φCS
. By hypothesis Eq. (Hr)

and by the rewinding axiom (Axiom 1) applied to the function
ψon, we conclude the existency of a term kr : nat such that
2 6 kr and there exists 2 distinct terms t1, t2 : nat with
1 6 t1 < t2 6 kr such that select(2)

chall kr rs = {rs t1, rs t2}
and

E ; Θ; Γ `
∧

j∈{1,2}

(zkp-verifRon
φCS

σon xon 〈αon, rs tj , zon(rs tj)〉).

By the special-soundness property L.Σ-P:SPSOUND applied
to the relation for the online phase Ron

φCS
, we conclude the

existency of an extractor function zkp-extractRon
φCS

such that

E ; Θ; Γ ` zkp-relRon
φCS

σon xon won

where won is the witness term defined by

won
def
= zkp-extractRon

φCS
σon xon 〈αon, rs t1, zon(rs t1)〉

〈αon, rs t2, zon(rs t2)〉.
Hence, let e′, k and u be the terms defined respectively by
e′

def
=π1 won, kdef

=π2 won and u
def
=π3 won. By definition of the

correct shuffle relation predicate zkp-relRon
φCS

, we have the two
following properties

E ; Θ; Γ ` a~ (eon t2) = com-vec (ck n) e′ k (i)
E ; Θ; Γ ` c′ ~ e′ = shuf-mapφCS

(pkCS sk) (c~ (eon t2)) u
(ii)

By the first equation Eq. (i), by the hypothesis Eq. (Ha) and
by the binding rule L.COM:BIND applied to the commitment
scheme KS[F(pη)N ], we conclude E ; Θ; Γ `M ·(eon t2) = e′.
Therefore, the second equation Eq. (ii) becomes

E ; Θ; Γ ` c′ ~ (M · eφ) =

shuf-mapφCS
(pkCS sk) (c~ (eon t2)) u

Besides, as eon t2 is a fresh name, we have E ; Θ; Γ `
Ψeon,t2

fresh (c, c′,M). Moreover, by hypothesis Eq. (Hπ), M is a
permutation matrix, i.e. the following property holds E ; Θ; Γ `
permN M . Thus, by characterization of shuffle-friendly maps
given by the rule L.SFM:CHARAC, the following property
holds

E , (x : msg); Θ; Γ ` ∃ vx. c′ ~ (M · x) =

shuf-mapφCS
(pkCS sk) (c~ x) vx

In particular, this property holds for all vectors i where i ∈
J1;NK and achieve this way the proof.

4) Proof of the verifiability property under conditions: Now
we have obtain the 3 key lemmas to show that we extract a
permutation matrix π from the commitment message a sent by
the adversary and show that this matrix π was indeed used to
shuffle the input ciphertexts list c to form the output ciphertexts
list c′, we present the lemma proving the verifiability property
we want but under some conditions needed to rewind parts of
the protocol trace.

Lemma 10. Let E be an environment, let Θ be a context of
global formulas and let Γ be a context of local formulas. We
denote by H the function defined by

Hdef
=λe. λr. λr′. zkp-verifRoff (ck n, e) a 〈αoff, r, zoff(r)〉
∧ zkp-verifRon

φCS
(ck n, pkCS sk, eon t2) (a, c, c′)

〈αon, r
′, zon(r′)〉

∧ wf ctxtN sk c.

We suppose

E ; Θ ` non-negl(g) ∧̃ det(g) (Hg)
E ; Θ ` non-negl(g′) ∧̃ det(g′) (Hg′ )

E ; Θ; Γ ` low-bound g (λe. low-bound g′ (H e)) (H1)
E ; Θ; Γ ` low-bound g′ (H (eoff t1)) (H2)
E ; Θ; Γ ` H (eoff t1) (roff l) (ron p) (H3)

Therefore, we conclude the following property

E ; Θ; Γ ` wf ctxtN sk c′

∧ eqmN (dec-list(N)
CS sk c) (dec-list(N)

CS sk c′).

Proof. Let ψoff be the formula defined by

ψoff
def
= λe. λr. zkp-verifRoff (ck n, e) a 〈αoff, r, zoff(r)〉

By definition of ψoff and H, we have the following global
judgement

E ; Θ ` 1[H e r r′ → ψoff e r]. (∗π)

Hence, because E ` g′ : real with E ; Θ ` non-negl(g′),
we conclude E ; Θ;∅ ` low-bound g′ (H e) →
low-bound g′ (ψoff e) for all vector e. In fact, this last
property is true with probability 1, i.e. we have E ; Θ `
1[low-bound g′ (H e)→ low-bound g′ (ψoff e)]. Therefore,
because E ` g : real and E ; Θ ` non-negl(g), we conclude

E ; Θ;∅ ` low-bound g (λe. low-bound g′ (H e))

→ low-bound g (λe. low-bound g′ (ψoff e)).

Hence, by this last judgement and by hypothesis Eq. (H1), we
conclude E ; Θ; Γ ` low-bound g (λe. low-bound g′ (ψoff e)).
Therefore, by the first key lemma (Lemma 7), we conclude
the existency of two terms π and s such that E ; Θ; Γ ` a =
com-mat (ck n) π s.

Next, by global property Eq. (∗π), because E ` g′ : real
and E ; Θ ` non-negl(g′) and by hypothesis Eq. (H2), we
conclude E ; Θ; Γ ` low-bound g′ (ψoff (eoff t1)). Therefore,
by the second key lemma (Lemma 8), the rebuild matrix π
previously obtained is a permutation matrix, i.e. we have the
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property E ; Θ; Γ ` permN π. Hence the vector a sends by the
adversary can be open to a permutation matrix:

E ; Θ; Γ ` a = com-mat (ck n) π s and E ; Θ; Γ ` permN π.
(Γ)

Now, let ψon be the formula defined by

ψon
def
= λr′. zkp-verifRon

φCS
σon xon 〈αon, r

′, zon(r′)〉

where σon is the public parameter defined by
σon

def
=(ck n, pkCS sk, eon t2) and xon is the statement

defined by xon
def
=(a, c, c′). Hence, by definition of ψon and

H, we have the following global judgement

E ; Θ ` 1[H e r r′ → ψon r
′]. (∗φ)

Hence, by global property Eq. (∗φ), because E ` g′ : real and
E ; Θ ` non-negl(g′) and by the second hypothesis Eq. (H2),
we conclude E ; Θ; Γ ` low-bound g′ ψon. Therefore, by this
last property and by the conclusion Eq. (Γ), we apply the third
key lemma (Lemma 9) and conclude the following property

E ; Θ; Γ `
N∧
i=1

(
∃ vi. c′ ~ (π · i) =

shuf-mapφCS
(pkCS sk) (c~ i) vi

)
.

By conclusion E ; Θ; Γ ` permN π given by Eq. (Γ) and
by the injectivity rule for permutations L.π:INJ, we have, for
all i ∈ J1;NK, the existency of an index ji ∈ J1;NK such
that the property E ; Θ; Γ ` π · i = ji holds. Hence, by the
action rule of ~ on canonical vectors applied to i and ji, we
conclude E ; Θ; Γ ` c~ i = 〈c | i〉 and E ; Θ; Γ ` c′~ (π · i) =
c′ ~ ji = 〈c′ | ji〉 = 〈c′ | π · i〉. Then, the equation obtained
in the previous step becomes

E ; Θ; Γ ` ∃ vi. 〈c′ | π · i〉 =

shuf-mapφCS
(pkCS sk) 〈c | i〉 vi. (Φ)

As the input ciphertexts list c is well-formed for the secret
key sk by the third hypothesis Eq. (H3), i.e. E ; Θ; Γ `
wf ctxt sk c, we have by the characterization of the predicate
wf ctxt rule L.WF:VALID, for all i ∈ J1;NK, E ; Θ; Γ `
wf ctxt sk 〈c | i〉. Therefore, by the correctness rule for
shuffle-friendly maps L.SFM:CORRECT, and by the equation
Eq. (Φ), we have

E ; Θ; Γ `
N∧
i=1

(
decCS sk 〈c′ | π · i〉 = decCS sk 〈c | i〉

)
.

Next, by application of the characterization rule of dec-list(N)
CS

L.DECLIST and by the rewrite rule, the previous equation
becomes E ; Θ; Γ `

∧N
i=1

(
〈dec-list(N)

CS sk c′ | (π · i)〉 =

〈dec-list(N)
CS sk c | i〉

)
. Finally, using this property and

because the property E ; Θ; Γ ` permN π holds, the char-
acterization of multisets equality rule L.EQM:CHARAC leads
to

E ; Θ; Γ ` eqmN (dec-list(N)
CS sk c′) (dec-list(N)

CS sk c)

5) Proof of the verifiability property: Now, we finally prove
the verifiability property. We denote by H and Goal the
functions defined by

Hdef
=λe. λr. λr′. zkp-verifRoff (ck n, e) a 〈αoff, r, zoff(r)〉
∧ zkp-verifRon

φCS
(ck n, pkCS sk, eon t2) (a, c, c′)

〈αon, r
′, zon(r′)〉

∧ wf ctxtN sk c.

and

Goal def
= wf ctxtN sk c′

∧ eqmN (dec-list(N)
CS sk c) (dec-list(N)

CS sk c′).

Hence, the verifiability property consists in proving the fol-
lowing global formula

E ;∅ ` [H (eoff t1) (roff l) (ron p) → Goal].

Therefore, by the elimination rule G.LB:ELIM of predicate
low-bound applied to the hypothesis function H (eoff t1) and
to the goal Goal, we have to prove

E ;∅ ` ∀̃ (g′ : real). non-negl(g′) ∧̃ det(g′) →̃
[low-bound g′ (H (eoff t1))→

H (eoff t1) (roff l) (ron p) → Goal].

Let g′ : real be a non-negligible deterministic parameter such
that non-negl(g′) and det(g′). We define Θg′ be the following
context of global formulas

Θg′
def
= non-negl(g′), det(g′).

By another use of the elimination rule G.LB:ELIM of
predicate low-bound applied to the hypothesis function
H′g′

def
= λe. low-bound g′ (H e) and to the goal

Goal′ def
= λe. H (eoff t1) (roff l) (ron p) → Goal, we have to

prove

E , (g′ : real); Θg′ ` ∀̃ (g : real). non-negl(g) ∧̃ det(g) →̃
[low-bound g H′g′ → H′g′ (eoff t1)→ Goal′ (eoff t1)].

Let g : real be a non-negligible deterministic parameter such
that non-negl(g) and det(g). We define Θg to be the following
global context

Θg
def
= non-negl(g), det(g).

By putting notations back together, we have to prove the
following judgement

E , (g, g′ : real); Θg′ ,Θg `
[low-bound g (λe. low-bound g′ (H e))→

low-bound g′ (H (eoff t1))→
H (eoff t1) (roff l) (ron p)→ Goal]

Which is exactly the statement of the last key lemma
(Lemma 10). Therefore, this achieves the proof of the veri-
fiability property.
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