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I Voyageur de commerce revisité
On suppose disposer d’un algorithme de calcul du couplage parfait minimal d’un graphe pondéré. Dans les
questions suivantes, on va s’intéresser à la démonstration de la correction de l’algorithme donné dans les
notes de cours (voir Section 4.4.3) pour ce problème dans le cas des graphes vérifiant l’inégalité triangulaire.

Question 1 Soit G′ = (V, E) un multi-graphe connexe. Montrer qu’il existe un cycle eulérien 1 si et seule-
ment si le degré 2 de tout sommet est pair.

Soit G = (V, E , ω) un graphe complet pondéré par une fonction de poids ω : E −→ R∗
+ vérifiant l’inégalité

triangulaire :
∀ s, t, u ∈ V, ω(s, u) 6 ω(s, t) + ω(t, u).

De plus, on note T = (V, E ′) un arbre couvrant de poids minimal. On note Vodd ⊆ V l’ensemble des sommets
de degré impair dans T .

Question 2 Montrer que Card
(
Vodd

)
est pair.

Question 3 On considère le sou-graphe complet Godd = (Vodd,V2
odd) dans G. Montrer qu’il admet un cou-

plage parfait. On notera Modd un couplage parfait de coût minimal dans Godd.

Question 4 On considère une solution optimale π =
((

(vi, γi)
)2n
i=1

, v1

)
, où Vodd = {vi}2ni=1 et Γ = (σi)

2n
i=1

est un chemin. Montrer que tout couplage parfait Modd de coût minimal dans Godd vérifie l’inégalité

ω(Modd) 6
1

2
ω(π).

Question 5 Soit le multi-graphe G′′ constitué de l’union de l’arbre T et du couplage parfait Modd, i.e.
G′′ = (V, E ′ ⊕Modd), où ⊕ est la somme de multi-ensembles (voir TD 9). Montrer que tout sommet de V
est de degré pair dans G′′.

Question 6 On considère un cycle de G′′ empruntant toutes les arêtes. Montrer que l’on peut en extraire
un chemin hamiltonien dans G de coût inférieur à ω(T ) + ω(Modd).

II Bin packing
Une instance du problème bin packing est donnée par n rationnels (xi)

n
i=1 avec, pour tout i ∈ J1;nK,

xi ∈ Q∩]0, 1]. On cherche le plus petit entier p ∈ N tel que l’on peut ranger les n rationnels en p paquets de
somme inférieure à 1, i.e. tel qu’il existe une fonction que l’on suppose surjective

ϕ : J1;nK −→ J1; pK, avec : ∀ b ∈ J1; pK,
∑

i∈ϕ−1(b)

xi 6 1.

1. Rappel : un cycle eulérien est un chemin Γ
def
= (γi)

p
i=0 de sommets de V tel que p = Card

(
E
)

et
{
(γi−1, γi)

∣∣ i ∈ J1; pK
}
= E :

le chemin passe une et une seule fois par chaque arête de E .
2. Rappel : Le degré deg(s) d’un sommet s ∈ V d’un graphe G = (V, E) est le nombre de liens reliant ce sommet, i.e.

deg(s)
def
= Card

({
(u, v) ∈ E

∣∣ u = s ∨ v = s
})

, avec les boucles comptées deux fois.
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II.1 Algorithme glouton

On considère l’algorithme itératif plaçant chaque élément dans le premier paquet disponible dans lequel il
peut rentrer. L’algorithme crée un nouveau paquet vide si l’élément ne peut rentrer nulle part. On note p le
résultat et ϕ l’assignation correspondante fournie par l’algorithme.

Question 7 Montrer qu’au moins p − 1 paquets sont remplis (strictement) à plus de la moitié de leur
capacité : il existe au moins p− 1 valeurs de b telles que

∑
i∈ϕ−1(b)

xi >
1
2 .

Question 8 Montrer que toute solution p du problème bin packing est au moins égale à S =
p∑

i=1
xi.

Question 9 En déduire que l’algorithme glouton présente une garantie de performance de 2.

II.2 Algorithme glouton avec données ordonnées

On considère l’algorithme suivant :
(1) On trie les éléments par ordre décroissant : ∀ i ∈ J1;n− 1K, xi > xi+1 ;
(2) On applique l’algorithme glouton précédent en considérant les rationnels dans cet ordre.

Question 10 Supposons que le paquet numéro b contient un élément xi, i.e. i ∈ ϕ−1(b), tel que xi >
1
2 .

Montrer que la solution optimale p∗ vérifie p∗ > b.

Question 11 On suppose dans cette question que le paquet b ne contient aucun élément de poids supérieur
à 1

2 .
1. En déduire que les paquets suivants b′ ∈ Jb; p− 1K contiennent au total plus de 2(p− b) éléments.
2. Sous-cas 1 : On suppose de plus que b 6 2(p− b). Montrer que S > b− 1 ;
3. Sous-cas 2 : On suppose cette fois b > 2(p− b). Montrer que S > 2(p− b).

Question 12 En déduire que l’algorithme possède cette fois-ci une garantie de performance égale à 3
2 .

II.3 Non-approximabilité

On suppose dans cette section disposer d’un algorithme d’approximation résolvant le problème de bin packing
en temps polynomial avec une garantie de performance égale à δ. On introduit le problème partition défini
comme suit :

• Entrée : n ∈ N∗ entiers (ai)
n
i=1 ;

• Sortie : Existe-t-il une partie A ⊆ J1;nK tel que
∑
i∈A

ai =
∑
i/∈A

ai ?

On admet que ce problème est NP-complet.

Question 13 Montrer que le problème partition n’admet pas de solution lorsque :

∃ i ∈ J1;nK, ai >
n∑

j=1, j 6=i

aj .

Question 14 Convertir toute instance I de partition en une instance I ′ du problème de bin packing, telle
que I admet une solution si et seulement si I ′ admet une solution à 2 paquets.

Question 15 En déduire que δ > 3
2 (à moins que P = NP).
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II.4 Schéma d’approximation asymptotique

Dans cet section, on va montrer qu’il est toujours possible de concevoir un algorithme d’approximation pour
bin packing dont la garantie de performance asymptotique reste "bonne".

Question 16 On fixe ε > 0 et d ∈ N. Montrer qu’il existe un algorithme polynomial résolvant bin packing
de taille n dans le cas d’instances contenant moins de d valeurs différentes, toutes supérieures à ε. Pour
cela, on pourra dénombrer le nombre de solutions.

On suppose l’instance I triée par poids croissants, tous supérieurs à ε > 0. On fixe un entier q ∈ N∗ et on
note Q

def
=
ö
n
q

ù
. On construit les instances H et J de bin packing de taille n définies comme suit :

H def
=

(Ç
(j+1)Q

min
i=jQ+1

xi

åb(n−1)/Qc−1

j=0

,
n

min
i=b(n−1)/QcQ+1

xi

)
.

J def
=

ÇÅ
(j+1)Q
max

i=jQ+1
xi

ãb(n−1)/Qc−1

j=0

,
n

max
i=b(n−1)/QcQ+1

xi

å
.

Intuitivement, on regroupe I par groupe de taille Q et on donne le même poids à tous les objets d’un même
groupe : le poids le plus faible (resp. le plus élevé) parmi les éléments du groupe dans le cas de H (resp. J ).

Devoir maison 11 1. Montrer que p∗(H) 6 p∗(I) 6 p∗(J ) ;
2. Montrer que p∗(J ) 6 p∗(H) +Q 6 p∗(I) +Q ;
3. En déduire un algorithme d’approximation polynomial à garantie de performance 1 + ε dans le cas :

∀ i ∈ J1;nK, xi > ε > 0.
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