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Exercice 1 :
Soit E un ensemble avec un ordre partiel noté 4. On dit que 4 est un beau préordre (well
quasi-order, ou wqo) si pour toute suite d’éléments de E, on peut extraire une suite in-
fini croissante ; c’est-à-dire que ∀(xi)i∈N ∈ EN, il existe une sous-suite croissante d’indices
i0 < i1 < · · · < in < · · · telle que (xin)n∈N est croissante : xi0 4 xi1 4 · · · 4 xin 4 · · · .
1. Montrer que si l’ordre 4 est total, alors c’est un wqo si et seulement si tout sous-

ensemble non vide de E a un plus petit élément. (Déjà traitée au TD9)
2. Donner un exemple d’un ordre total qui n’est pas un wqo.
3. Montrer que les propositions suivantes sont équivalentes :

(1) L’ensemble ordonné (E,4) est un wqo.
(2) Pour toute suite (xi)i∈N, on peut trouver i < j tels que xi 4 xj .
(3) (i) Il n’y a pas de suite infinie strictement décroissante dans E,

(ii) Il n’y a pas d’antichaine infini.

4. Soit (E,4) un ensemble (partiellement) ordonné, on dit qu’il est bien fondé s’il n’y a
de suite infinie décroissante. Supposons que E est dénombrable. Montrer que l’ordre
est un wqo si et seulement si l’ensemble de toutes les antichaines est dénombrable.

5. Lemme de Dickson : Soit (E1,41) et (E2,42) deux wqo. Montrer que (41,42) est un
wqo pour E1 × E2.

6. Lemme de Higman : Soit 4 un wqo sur Σ. On définit sur Σ∗ la relation suivante :

a1...am ≤sw b1b2...bn ⇔
{
∃1 ≤ i1 < i2 < · · · < im ≤ n
a1 4 bi1 ∧ a2 4 bi2 · · · am 4 bim

(a) Montrer que ≤sw est un ordre (sw pour subword).
(b) Démontrer que ≤sm est un bel ordre.

7. Soit 4 un bel ordre sur E. Soit F une partie de E telle que : ∀y ∈ E, s’il existe x ∈ F
tel que x 4 y, alors y ∈ F (on dit que F est fermée supérieurement).
(a) Démontrer que toute suite croissante de parties fermées supérieurement est sta-

tionnaire.
(b) Démontrer que si F est une partie fermée supérieurement, il existe un nombre fini

d’éléments x1, ..., xn dans F tels que F = ∪i{y ∈ E, xi 4 y}.

Exercice 2 :
Soit (E,≤) un ensemble ordonné tel que toute paire à une borne supérieure. Soit f, g : E → E
telles que g(x) := sup(x, f(x)). Montrer que si f est Scott continue, g l’est aussi.

Exercice 3 :
Soit (E,≤) un treillis complet et f, g : E → E telles que g(x) = sup{f(y)|y ≤ x}.
1. Alors g est la plus petite fonction qui soit croissante et supérieure à f .
2. Si f est progressive, alors g aussi et les points fixes de g sont aussi points fixes de f .

Exercice 4 :
Soit (E,≤) un treillis complet et f, g : E → E telles que g(x) = inf{f(y)|x ≤ y}.
1. Alors g est la plus grande fonction qui soit croissante et inférieure à f .
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2. Si f est progressive, alors g aussi.

Exercice 5 (Théorème de Cantor-Bernstein (Pour année suivante : était déjà vu en Prog la même semaine)) :
Soit A et B deux ensembles et f : A→ B et g : B → A deux injections. Soit H l’application :

P(A)→ P(A)

X 7→ A \ g[B \ f [X]]

1. En utilisant le théorème de Knaster-Tarski, montrer que H admet un point fixe.
2. En déduire que A et B sont équipotents.

Exercice 6 :
Soit R ∈ P(E × E). Soit t l’application :{

P(E × E) → P(E × E)
Q 7→ R ∪Q ∪Q2

où Q2 := {(x, z) ∈ E × E | ∃y ∈ E, xQy ∧ yQz}.
Montrer que t est continue au sens de Scott pour l’inclusion.

Exercice 7 :
Soit k un entier naturel non nul. On munit Nk de la relation :

(x1, ..., xk) ≤ (y1, ..., yk)⇔ ∀i ∈ {1, ..., k}, xi ≤ yi

1. Justifier que ≤ est un bel ordre sur Nk.
2. On définit un système d’additions de vecteurs (SAV) sur Nk par la donnée d’un vecteur

(dit marquage initial) V0 ∈ Nk et d’un ensemble fini T de vecteurs dans Zk. Chaque
élément de T définit une application partielle sur Nk notée t→ : V t→ V ′ si V ′ = V + t,
pour tous V, V ′ dans Nk et t dans T (remarquez que puisque t ∈ Zk, il se peut que
V + t /∈ Nk et dans ce cas V n’a pas d’image par t). On dit qu’un vecteur V est
accessible à partir de V0 s’il existe une suite finie t1, ..., tn d’éléments de T telles que
V0

t1→ V1
t2→ · · · tn→ Vn = V .

(a) Soit U1, U2, V1 dans Nk tels que U1 ≤ U2 et V1 est accessible à partir de U1.
Démontrer qu’il existe V2 dans Nk accessible à partir de U2.

(b) On suppose qu’il existe U, V dans Nk tels que U ≤ V et V est accessible à partir de
U . On suppose que sur la j-ème composante, Uj < Vj . Démontrer qu’il existe une
suite croissante U0 = U ≤ U1 = V ≤ U2 ≤ · · · ≤ Un ≤ · · · formée de vecteurs dans
Nk accessibles à partir de U et tels que la suite des j-ème composantes {Ui,j}i∈N
tend vers +∞.

(c) On ajoute à N un plus grand élément noté ω : N̂ = N t {ω}. On étend l’addition
usuelle sur N à N̂ en posant n + ω = ω + n = ω, ∀n ∈ N̂ et la multiplication
usuelle en posant nω = ωn = ω if n ∈ N̂ \{0} et 0 sinon. Ceci permet de prolonger
l’application partielle t→ sur N̂k par : t→ : V t→ V ′ si V ′ = V + t, pour tous V, V ′

dans N̂k.
On construit un arbre, dit arbre de couverture, de la façon suivante :

• La racine de l’arbre de couverture est un sommet s0 étiqueté par le vecteur V0.
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• Si une branche de l’arbre (s0, V0) → (s1, V1) → · · · → (sn, Vn) est construite,
et t ∈ T vérifie Vn

t→ Vn+1, on prolonge éventuellement la branche par Vn+1

selon les règles suivantes :

R1 Si ∃i ≤ n tel que Vn+1 ≤ Vi, on ne prolonge pas la branche par Vn+1.

R2 Si ∃i ≤ n tel que Vn+1 ≥ Vi, on définit le vecteur ¯Vn+1 = Vi + ω(Vn+1 − Vi)
(si sur la j-ème composante, Vn+1(j) > VI(j), on la remplace par ω). On
ajoute le fils (s, ¯Vn+1) à (s0, V0)→ (s1, V1)→ · · · → (sn, Vn).

R3 Si ∀ ≤ n, Vn+1 et Vi ne sont pas comparables, on ajoute le fils (s, Vn+1) à
(s0, V0)→ (s1, V1)→ · · · → (sn, Vn).

Démontrer la terminaison de l’algorithme.

(d) Dans le cas k = 3, on considère le SAV défini par V0 = (1, 0, 1) et T = {a =
(1, 1,−1), b = (−1, 0, 1), c = (0,−1, 0)}. Justifier précisément pourquoi dans ce cas
l’ensemble des vecteurs accessibles à partir de V0 est infini. Construire l’arbre de
couverture dans le cas particulier.

(e) Démontrer que l’arbre de couverture approxime l’ensemble d’accessibilité du sys-
tème d’additions de vecteurs (V0, T ) de la façon suivante :

• ∀V accessible à partir de V0, il existe un sommet de l’arbre étiqueté par un
vecteur W tel que V ≤W .

• L’ensemble des vecteurs accessibles à partir de V0 est fini si et seulement si
l’arbre ne contient aucun vecteur possédant une composante ω.
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