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Soit ¥ un alphabet fini.

Exercice 1:
Soit u et v deux mots de ¥*. Démontrer par récurrence sur |u| + |v| que uv = vu =
Jw € ¥* {u,v} C w*.

Exercice 2:
Soit m et n des entiers naturels > 0. Résoudre dans ¥* ’équation u™ = v™.

Exercice 3:
Soit ¥ un alphabet fini. Deux mots u et v de ¥* sont dits conjugués s’il existe deux mots x
et y tels que u = xy et v = yx. Démontrer que les mots w et v sont conjugués si et seulement
si il existe un mot z tel que uz = zw.

Exercice 4:
Soit 3 un alphabet fini. On considére trois mots x,y, z dans X* tels que 22y = 22. Justifier
qu’il existe un mot w dans ¥ et des entiers p et ¢ tels que z = wP, y = w? et z = wPTI.

Exercice 5:
Si M est un monoide et K, L deux parties de M, onnote L 'K = {z € M | 3y € L,yz € K}.

1. Soit L un sous-monoide de X*. Démontrer que L est un monoide libre si et seulement
si L' LNLL™ ' = L.

2. Soit L un sous-monoide de >*. On définit par récurrence : Mg = L, My+1 = M, M, n
M, M, ~!. Démontrer qu’on définit ainsi une suite croissante de monoides et que Un M,
est le plus petit sous-monoide libre contenant L.

Monoides finis

Exercice 6:
Démontrer qu'un monoide fini est le quotient d’un monoide libre.

Exercice 7:
Soit M un monoide fini et soit z € M.

1. Démontrer qu’il existe deux entiers naturels m et n avec m < n et ™ = x™.

2. On choisit alors [ minimal parmi les entiers n tels qu’il existe m < n vérifiant ™ = z".

-1

(a) Démontrer que 1,z,...,2'~" sont des éléments distincts.

(b) Démontrer que le monoide < z > est de cardinal .

(c) Soit k < I tel que 2* = z!. Soit r 1'unique entier compris entre k et I — 1 divisible
par | — k. Démontrer que z¥, ..., 2! =1 est un groupe cyclique d’ordre [ — k d’élément

neutre x".

(d) Démontrer que x admet une puissance qui est un idempotent(i.e. un élément y tel
que 42 = 7). Y en a-t-il plusieurs ?
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Monoide syntaxique et Langages sans étoile

Exercice 8 (Définition du monoide syntaxique) :
Soit L C ¥* un langage. Il définit une relation d’équivalence sur %* :

w~pw & Yu,v €Y, uwv € L& uw'v €L

Justifier que ~ est une congruence sur *. On définit alors le monoide syntaxique M7,
comme le quotient X*|., .

Exercice 9 (Langage reconnu par un monoide) :
Soit L C ¥* un langage. Soit M un monoide. On dit que le langage L est reconnu par M
s’il existe un morphisme de monoides ¢ de ¥* dans M et une partie X de M tels que
L=yp 1 (X).

1. Démontrer qu’un langage reconnu par un monoide fini est rationnel.
. Démontrer qu'un langage L est reconnu par son monoide syntaxique.

2
3. Démontrer qu’'un langage L est reconnu par un monoide M si et seulement si My, est
isomorphe & un quotient d’un sous-monoide de M.

4. En déduire une caractérisation des langages rationnels portant sur leurs monoides syn-
taxiques.

Exercice 10 (Langages sans étoile) :
Soit X un alphabet fini. La famille des langages sans étoile est la plus petite famille contenant
le langage vide, les singletons et stable par union, passage au complémentaire et concaténa-
tion.

1. Démontrer que l'intersection de deux langages sans étoile est sans étoile.
2. Démontrer que ¥* est sans étoile.
3. Soit a,b € ¥ distincts. Démontrer que (ab)* est sans étoile.
On dit qu’un monoide fini est apériodique si le seul groupe qu’il contient est le groupe trivial
{1}.
4. Soit M un monoide fini. Démontrer I’équivalence des assertions :
(a) Le monoide M est apériodique.
(b) Pour tout m dans M, il existe un entier naturel non nul n tel que m"*! = m",

(c) 11 existe un entier naturel non nul n tel que pour tout m dans M, m"+! = m".

5. Soit L un langage rationnel et soit Mj son monoide syntaxique. Par définition du
monoide syntaxique, on déduit de la question précédente que M;j est apériodique si
et seulement si, pour tout mot w, il existe un entier naturel non nul n tel que pour
tous mots v,w, vu"w € L < vu™tw € L. Dans ce cas, on appelle indice de L
et on note i(L) le plus petit entier naturel non nul n tel que pour tous mots v, w,
vuw € L < vu™tw € L.

(a) Démontrer les propriétés suivantes :
ioi(fa}) =1,
ii. i(LUL") <max(i(L),i(L")),
iii. 4(LL) < i(L) +i(L') +1,
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iv. ¢(X*\ L) =1i(L).
(b) En déduire que le monoide syntaxique d’un langage sans étoile est apériodique.
6. Soit M un monoide fini apériodique. Démontrer les propriétés suivantes :
(a) Regles de simplification : Pour tous k,l,m dans M, m = kml = m = km = ml.
(b) 1 est le seul élément inversible & droite ou & gauche
(c) Yme M,(mMNMm)\{ke M |m¢ MkM} = {m}.
7. Soit M un monoide fini apériodique. Soit m € M. On définit p(m) = [MmM|.
(a) Démontrer que le seul m tel que p(m) = |M| est m = 1.
(b) Sim et n vérifient : m € nM et n ¢ mM, alors p(n) > p(m).
(c) Si m et n vérifient : il existe a,b dans M tels que m € ManM N MnbM et
m & ManbM , alors p(n) > p(m).
8. Soit p un morphisme de ¥* dans un monoide apériodique fini M. Soit m € M. On
pose :

v=U (a,n) e ¥ x N poima  V=U (a,n) e ¥ x N ap”(n)

nu(a)M = mM Mu(a)n = Mm
W={ae¥|m¢MaM} U U ap~t(n)b

(a,b,n) €L XXX N
m € Mu(a)nM N Mnu(b)M
m & Mp(a)np(b) M

(a) Soit m € M tel que m # 1. Soit x € ¥* tel que u(x) € mM. Démontrer que z se
factorise sous la forme uay, avec p(u) ¢ mM, p(ua) € mM. On pose n = p(u).
Etablir une réciproque.

(b) On démontre de la méme fagon que x € ¥* est tel que u(x) € Mm si et seulement
s’il se factorise sous la forme u'a’v’ avec p(v') ¢ Mm et p(a’v') € Mm. Démontrer
que m ¢ Mu(z)M si et seulement si x ¢ X*WE*.

(c) Conclure par récurrence sur p(M).

Exercice 11 (Groupes libres) :
Soit ¥ un alphabet fini. On note ¥ une copie de ¥; ¥ = {a | a € X}. Pour chaque lettre
a € 3, on note a = a. L’application x — T ainsi définit une involution de ¥ 1LIY qui échange

Y et 3.
On note L le monoide libre sur 'alphabet ¥ L 3.
On appelle opération élémentaire sur un mot w = ujua...up, u; € X L I

o Une insertion : uiu..u; U Ui4+1...up pour un ¢ entre 0 et p et u € X U >,

o Une suppression : ujua..ui—1%;+2...up pour un ¢ entre 1 et p — 1 tel que u; 41 = ;.

1. On définit sur L une relation en posant w ~ w’ s’il existe une suite finie de mots
W) = W, W3, ..., Ws_1, W, = w tels que w;;1 est obtenu & partir de w; par une opération
élémentaire.

Démontrer que ~ est une congruence.

2. On dit qu'un mot w est réduit si on ne peut pas faire de suppression dans w.
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(a) Démontrer que toute classe de congruence contient un mot réduit.

(b) On se propose de justifier que toute classe de congruence contient un unique mot
réduit. Soit w et w’ deux mots réduits congruents. Soit w; = w, wa, ..., Wp_1, Wy =
w’ tels que w;y1 est obtenu & partir de w; par une opération élémentaire et tels
que Y, |w;| est minimal parmi les suites finies de mots vérifiant cette propriété.
On suppose w # w’ donc n > 1.

i. Justifier que |w| < |wa| et |w'| < |wy—1].

ii. En déduire qu’il existe ¢ tel que w; obtenu & partir de w;—1 & partir d’une
insertion et w;11 est obtenu a partir de w; & partir d’une suppression.

iii. Soit a,b € X UY et s,t tels que : wj_q1 = ULUL. Up, Wi = UTU2. UsQAUs}1 ... Up =
V1. Upg2 €6 Wi 1 = V1...04—1V41...Vp42 avec vy = b et Vi1 = b. En étudiant les
cas otl ces deux opérations se chevauchent ou non, aboutir & une contradiction.

3. On note GF le monoide L/ ~ et 7 la surjection canonique de L sur GF.
(a) Démontrer que 7 injecte ¥ dans GF.
(b) Démontrer que GF est un groupe engendré par 7(X%).
(¢) Quel est ce groupe lorsque ¥ est un singleton ?

4. Soit ¢ une application de I'ensemble ¥ dans un groupe G. On étend ¢ sur ¥ en posant
phi() = ¢(u)~1, pour tout u dans . Démontrer qu'il existe un unique morphisme de
groupes de GF dans G prolongeant ¢.

5. On note Lg 'ensemble des mots réduits.
(a) Démontrer que tout facteur d’'un mot réduit est réduit.

(b) Soit u € X. Justifier qu’on peut définir une application o, de Lgr dans lui-méme
en posant :

uww sl uw € Lp,
Oy W — . _
v siw=uw.

(c) Démontrer que o, est une permutation de Lg.

(d) Soit o : ¥ — L lapplication telle que o(u) = o0,. On note ¢ le morphisme de
groupes prolongement de o de L dans G(LR). Siw € Lg, démontrer que oy,(g) = w.

(e) Retrouver ainsi I'unicité du mot réduit dans une classe de congruence.
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