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Monoïdes finis

Exercice 1 :
Démontrer qu’un monoïde fini est le quotient d’un monoïde libre.

Exercice 2 :
Soit M un monoïde fini et soit x ∈M .
1. Démontrer qu’il existe deux entiers naturels m et n avec m < n et xm = xn.
2. On choisit alors l minimal parmi les entiers n tels qu’il existe m < n vérifiant xm = xn.

(a) Démontrer que 1, x, ..., xl−1 sont des éléments distincts.
(b) Démontrer que le monoïde < x > est de cardinal l.
(c) Soit k < l tel que xk = xl. Soit r l’unique entier compris entre k et l − 1 divisible

par l−k. Démontrer que xk, ..., xl−1 est un groupe cyclique d’ordre l−k d’élément
neutre xr.

(d) Démontrer que x admet une puissance qui est un idempotent(i.e. un élément y tel
que y2 = y). Y en a-t-il plusieurs ?

Monoide syntaxique et Langages sans étoile

Exercice 3 (Définition du monoïde syntaxique) :
Soit L ⊂ Σ∗ un langage. Il définit une relation d’équivalence sur Σ∗ :

w ∼L w
′ ⇔ ∀u, v ∈ Σ∗, uwv ∈ L⇔ uw′v ∈ L

Justifier que ∼L est une congruence sur Σ∗. On définit alors le monoïde syntaxique ML

comme le quotient Σ∗|∼L .

Exercice 4 (Langage reconnu par un monoïde) :
Soit L ⊂ Σ∗ un langage. Soit M un monoïde. On dit que le langage L est reconnu par M
s’il existe un morphisme de monoïdes ϕ de Σ∗ dans M et une partie X de M tels que
L = ϕ−1(X).
1. Démontrer qu’un langage reconnu par un monoïde fini est rationnel.
2. Démontrer qu’un langage L est reconnu par son monoïde syntaxique.
3. Démontrer qu’un langage L est reconnu par un monoïde M si et seulement si ML est

isomorphe à un quotient d’un sous-monoïde de M .
4. En déduire une caractérisation des langages rationnels portant sur leurs monoïdes syn-

taxiques.

Exercice 5 (Langages sans étoile) :
Soit Σ un alphabet fini. La famille des langages sans étoile est la plus petite famille contenant
le langage vide, les singletons et stable par union, passage au complémentaire et concaténa-
tion.
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1. Démontrer que l’intersection de deux langages sans étoile est sans étoile.
2. Démontrer que Σ∗ est sans étoile.
3. Soit a, b ∈ Σ distincts. Démontrer que (ab)∗ est sans étoile.

On dit qu’un monoïde fini est apériodique si le seul groupe qu’il contient est le groupe trivial
{1}.
4. Soit M un monoïde fini. Démontrer l’équivalence des assertions :

(a) Le monoïde M est apériodique.
(b) Pour tout m dans M , il existe un entier naturel non nul n tel que mn+1 = mn,
(c) Il existe un entier naturel non nul n tel que pour tout m dans M , mn+1 = mn.

5. Soit L un langage rationnel et soit ML son monoïde syntaxique. Par définition du
monoïde syntaxique, on déduit de la question précédente que ML est apériodique si
et seulement si, pour tout mot u, il existe un entier naturel non nul n tel que pour
tous mots v, w, vunw ∈ L ⇔ vun+1w ∈ L. Dans ce cas, on appelle indice de L
et on note i(L) le plus petit entier naturel non nul n tel que pour tous mots v, w,
vunw ∈ L⇔ vun+1w ∈ L.
(a) Démontrer les propriétés suivantes :

i. i({a}) = 1,
ii. i(L ∪ L′) ≤ max(i(L), i(L′)),
iii. i(LL′) ≤ i(L) + i(L′) + 1,
iv. i(Σ∗ \ L) = i(L).

(b) En déduire que le monoïde syntaxique d’un langage sans étoile est apériodique.
6. Soit M un monoïde fini apériodique. Démontrer les propriétés suivantes :

(a) Règles de simplification : Pour tous k, l,m dans M , m = kml⇒ m = km = ml.
(b) 1 est le seul élément inversible à droite ou à gauche
(c) ∀m ∈M, (mM ∩Mm) \ {k ∈M | m /∈MkM} = {m}.

7. Soit M un monoïde fini apériodique. Soit m ∈M . On définit ρ(m) = |MmM |.
(a) Démontrer que le seul m tel que ρ(m) = |M | est m = 1.
(b) Si m et n vérifient : m ∈ nM et n /∈ mM , alors ρ(n) > ρ(m).
(c) Si m et n vérifient : il existe a, b dans M tels que m ∈ ManM ∩ MnbM et

m /∈ManbM , alors ρ(n) > ρ(m).
8. Soit µ un morphisme de Σ∗ dans un monoïde apériodique fini M . Soit m ∈ M . On

pose :

U =
⋃

(a, n) ∈ Σ×N
nµ(a)M = mM

n /∈ mM

µ−1(n)a V =
⋃

(a, n) ∈ Σ×N
Mµ(a)n = Mm

n /∈Mm

aµ−1(n)

W = {a ∈ Σ | m /∈MaM} ∪
⋃

(a, b, n) ∈ Σ× Σ×N
m ∈Mµ(a)nM ∩Mnµ(b)M

m /∈Mµ(a)nµ(b)M

aµ−1(n)b

(a) Soit m ∈ M tel que m 6= 1. Soit x ∈ Σ∗ tel que µ(x) ∈ mM . Démontrer que x se
factorise sous la forme uay, avec µ(u) /∈ mM,µ(ua) ∈ mM . On pose n = µ(u).
Établir une réciproque.
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(b) On démontre de la même façon que x ∈ Σ∗ est tel que µ(x) ∈Mm si et seulement
s’il se factorise sous la forme u′a′v′ avec µ(v′) /∈Mm et µ(a′v′) ∈Mm. Démontrer
que m /∈Mµ(x)M si et seulement si x /∈ Σ∗WΣ∗.

(c) Conclure par récurrence sur ρ(M).

Exercice 6 (Groupes libres) :
Soit Σ un alphabet fini. On note Σ̄ une copie de Σ ; Σ̄ = {ā | a ∈ Σ}. Pour chaque lettre
a ∈ Σ, on note ¯̄a = a. L’application x→ x̄ ainsi définit une involution de Σt Σ̄ qui échange
Σ et Σ̄.
On note L le monoïde libre sur l’alphabet Σ t Σ̄.
On appelle opération élémentaire sur un mot w = u1u2...up, ui ∈ Σ t Σ̄ :

• Une insertion : u1u2..ui uū ui+1...up pour un i entre 0 et p et u ∈ Σ t Σ̄.

• Une suppression : u1u2..ui−1ui+2...up pour un i entre 1 et p− 1 tel que ui+1 = ūi.

1. On définit sur L une relation en posant w ∼ w′ s’il existe une suite finie de mots
w1 = w,w2, ..., wn−1, wn = w′ tels que wi+1 est obtenu à partir de wi par une opération
élémentaire.
Démontrer que ∼ est une congruence.

2. On dit qu’un mot w est réduit si on ne peut pas faire de suppression dans w.

(a) Démontrer que toute classe de congruence contient un mot réduit.

(b) On se propose de justifier que toute classe de congruence contient un unique mot
réduit. Soit w et w′ deux mots réduits congruents. Soit w1 = w,w2, ..., wn−1, wn =
w′ tels que wi+1 est obtenu à partir de wi par une opération élémentaire et tels
que

∑
i |wi| est minimal parmi les suites finies de mots vérifiant cette propriété.

On suppose w 6= w′ donc n > 1.

i. Justifier que |w| < |w2| et |w′| < |wn−1|.
ii. En déduire qu’il existe i tel que wi obtenu à partir de wi−1 à partir d’une

insertion et wi+1 est obtenu à partir de wi à partir d’une suppression.

iii. Soit a, b ∈ Σt Σ̄ et s, t tels que : wi−1 = u1u2..up, wi = u1u2..usaāus+1...up =
v1....vp+2 et wi+1 = v1...vt−1vt+1...vp+2 avec vt = b et Vt+1 = b̄. En étudiant les
cas où ces deux opérations se chevauchent ou non, aboutir à une contradiction.

3. On note GF le monoïde L/ ∼ et π la surjection canonique de L sur GF .

(a) Démontrer que π injecte Σ dans GF .

(b) Démontrer que GF est un groupe engendré par π(Σ).

(c) Quel est ce groupe lorsque Σ est un singleton ?

4. Soit φ une application de l’ensemble Σ dans un groupe G. On étend φ sur Σ̄ en posant
phi(ū) = φ(u)−1, pour tout u dans Σ. Démontrer qu’il existe un unique morphisme de
groupes de GF dans G prolongeant φ.

5. On note LR l’ensemble des mots réduits.

(a) Démontrer que tout facteur d’un mot réduit est réduit.

(b) Soit u ∈ Σ. Justifier qu’on peut définir une application σu de LR dans lui-même
en posant :

σu : w →
{
uw si uw ∈ LR,
v si w = ūv.
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(c) Démontrer que σu est une permutation de LR.
(d) Soit σ : Σ → L l’application telle que σ(u) = σu. On note σ̂ le morphisme de

groupes prolongement de σ de L dansS(LR). Si w ∈ LR, démontrer que σw(ε) = w.
(e) Retrouver ainsi l’unicité du mot réduit dans une classe de congruence.

Groupes

Exercice 7 (7) :
On note ϕ la fonction d’Euler.
Soit n un entier naturel > 1. On note d(n) le nombre d’entiers naturels diviseurs de n.

1. Soit m un entier naturel compris entre 1 et n. Soit Hm l’ensemble des éléments de
Z/nZ dont l’ordre est un diviseur de m, c’est-à-dire l’ensemble des éléments x de Z/nZ
tels que mx = x+ x+ · · ·+ x︸ ︷︷ ︸

m

= 0. Démontrer :

(a) Hm est un sous-groupe de Z/nZ.
(b) Hm est un sous-groupe cyclique de Z/nZ de cardinal pgcd(m,n).
(c) Montrer que l’ensemble des sous-groupes de Z/nZ est exactement l’ensemble des

sous-groupes Hd pour d ∈ N, d diviseur de n.
2. On considère l’application suivante :

ψ : (Z/nZ)∗ × Z/nZ → Z/nZ
(m,x) → mx

(a) Justifier que le groupe (Z/nZ)∗ opère ainsi sur Z/nZ.
(b) Démontrer l’égalité : ∑

m ∈ {1, . . . ., n}
pgcd(m,n) = 1

pgcd(m− 1, n) = ϕ(n)d(n)

Exercice 8 (Décomposition en cycles disjoints d’une permutation) :
Rappels de vocabulaire : Soit {i1, . . . , ik} une partie de {1, . . . , n} de cardinal k La permu-
tation notée (i1, . . . , ik) est la permutation σ telle que σ(i1) = i2, · · ·σ(ik−1) = ik, σ(ik) = i1
et σ(i) = i,∀i /∈ {i1, . . . , ik}. Une telle permutation est appelée un k-cycle (une transposi-
tion si k = 2) et l’ensemble {i1, . . . , ik} est appelé son support. On vérifiera que l’ordre de
(i1, . . . , ik) dans Sn est k.
Plus généralement, on appelle support d’une permutation σ le complémentaire de ses points
fixes, i.e, {i ∈ {1, . . . , n} ; σ(i) 6= i}.
On fait opérer le groupe symétrique Sn naturellement sur l’ensemble {1, . . . , n} :

Sn × {1, . . . , n} → {1, . . . , n}
(σ, i) 7→ σ(i)

On pourra remarquer qu’il s’agit simplement de l’opération définie par le morphisme de
groupes :

Sn
id→ Sn

avec le seconde définition.
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1. Soit σ une permutation de {1, . . . , n}. En faisant opérer le sous-groupe < σ > par
restriction sur {1, . . . , n}, démontrer que σ se décompose de façon unique (à l’ordre
près) comme une composition de cycles à supports disjoints. On remarquera que sur
chaque orbite de cette opération, σ agit comme une permutation circulaire.

2. Comment calculer l’ordre de σ ?

3. Déterminer le maximum des ordres des permutations de S6.
4. Un mélange dit parfait d’un jeu de cartes se fait en prenant les 26 cartes du dessus

du paquet, les 26 suivantes et les entrelaçant. En ayant numéroté les 52 cartes de 1 à
52, du haut vers le bas du paquet, on peut représenter ce mélange par l’action de la
permutation sur {1, . . . , 52} :

σ(x) =

{
2x− 1, si x ∈ {1, . . . , 26}
2(x− 26), si x ∈ x ∈ {27, . . . , 52}

(a) Déterminer la décomposition en cycles disjoints de la permutation σ.

(b) En déduire l’ordre de la permutation σ.

Exercice 9 (Parties génératrices du groupe symétrique) :
On remarque que l’exercice 1 assure que Sn est engendré par les cycles.

1. Démontrer que Sn est engendré par les transpositions.

2. Démontrer que Sn est engendré par les transpositions (1, 2), (2, 3), . . . , (n− 1, n).

3. Démontrer que Sn est engendré par les transpositions (1, 2), (1, 3), . . . , (1, n).

4. Soit E un sous-ensemble de {1, . . . , n}. On note SE le sous-groupe de Sn formé par les
permutations qui fixent tous les points de {1, . . . , n} \ E. Soit (i, j) une transposition
de Sn. Démontrer que :

< SE , (i, j) >=

{
SE× < (i, j) > si i /∈ E et j /∈ E
SE∪{j} si i ∈ E et j /∈ E

5. SoitX une famille de transpositions dansSn. On noteGX le graphe dont l’ensemble des
sommets est l’ensemble {1, . . . , n} et dont l’ensemble des arêtes est {(i, j) | (i, j) ∈ X}.
(a) Dessiner les graphes correspondant aux trois parties génératrices ci-dessus.

(b) Démontrer que X est une partie génératrice du groupe symétrique Sn si et seule-
ment si GX est connexe.

6. Démontrer qu’une partie génératrice du groupe symétriqueSn formée de transpositions
contient au moins n− 1 transpositions.
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