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Monoides finis

Exercice 1:
Démontrer qu'un monoide fini est le quotient d’'un monoide libre.

Exercice 2:
Soit M un monoide fini et soit x € M.

1. Démontrer qu’il existe deux entiers naturels m et n avec m < n et '™ = z™.

2. On choisit alors [ minimal parmi les entiers n tels qu’il existe m < n vérifiant ™ = ™.

-1

(a) Démontrer que 1,z,...,x'~" sont des éléments distincts.

(b) Démontrer que le monoide < z > est de cardinal /.

(c) Soit k < I tel que 2* = z!. Soit r I'unique entier compris entre k et [ — 1 divisible
par | — k. Démontrer que z¥, ..., 2!~! est un groupe cyclique d’ordre [ — k d’élément
neutre x”.

émontrer que x admet une puissance qui est un idempotent(i.e. un élément y te
d) Dé t dmet i iest id tent (i 6lé t y tel
que 42 = 7). Y en a-t-il plusieurs ?

Monoide syntaxique et Langages sans étoile

Exercice 3 (Définition du monoide syntaxique) :
Soit L C ¥* un langage. Il définit une relation d’équivalence sur ¥* :

w~pw e Yu,veX, uwv € L& uw'veL

Justifier que ~j est une congruence sur ¥*. On définit alors le monoide syntaxique M7,
comme le quotient ¥*|., .

Exercice 4 (Langage reconnu par un monoide) :
Soit L C ¥* un langage. Soit M un monoide. On dit que le langage L est reconnu par M
s’il existe un morphisme de monoides ¢ de ¥* dans M et une partie X de M tels que
L= {(X).
1. Démontrer qu’un langage reconnu par un monoide fini est rationnel.

2. Démontrer qu'un langage L est reconnu par son monoide syntaxique.

3. Démontrer qu’'un langage L est reconnu par un monoide M si et seulement si My, est
isomorphe & un quotient d’un sous-monoide de M.

4. En déduire une caractérisation des langages rationnels portant sur leurs monoides syn-
taxiques.

Exercice 5 (Langages sans étoile) :
Soit X un alphabet fini. La famille des langages sans étoile est la plus petite famille contenant

le langage vide, les singletons et stable par union, passage au complémentaire et concaténa-
tion.
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1. Démontrer que l'intersection de deux langages sans étoile est sans étoile.

2. Démontrer que ¥* est sans étoile.

3. Soit a,b € ¥ distincts. Démontrer que (ab)* est sans étoile.
On dit qu’un monoide fini est apériodique si le seul groupe qu’il contient est le groupe trivial
{1}.

4. Soit M un monoide fini. Démontrer 1’équivalence des assertions :

(a) Le monoide M est apériodique.

+1

(b) Pour tout m dans M, il existe un entier naturel non nul n tel que m"™ = m™,

(c) Tl existe un entier naturel non nul n tel que pour tout m dans M, m"+! = m".

5. Soit L un langage rationnel et soit My son monoide syntaxique. Par définition du
monoide syntaxique, on déduit de la question précédente que My est apériodique si
et seulement si, pour tout mot wu, il existe un entier naturel non nul n tel que pour
tous mots v, w, vu"w € L < vuTlw € L. Dans ce cas, on appelle indice de L
et on note i(L) le plus petit entier naturel non nul n tel que pour tous mots v, w,
vuw € L < vutw € L.

(a) Démontrer les propriétés suivantes :
i i(fa)) =1,
ii. i(LUL") <max(i(L),i(L")),
i, (LL') < i(L) +i(L') + 1,
iv. i(X*\ L) =i(L).
(b) En déduire que le monoide syntaxique d’un langage sans étoile est apériodique.
6. Soit M un monoide fini apériodique. Démontrer les propriétés suivantes :
(a) Regles de simplification : Pour tous k,l,m dans M, m = kml = m = km = ml.
(b) 1 est le seul élément inversible & droite ou & gauche
(c) Yme M,(mMNMm)\{ke M |m¢ MkM} = {m}.
7. Soit M un monoide fini apériodique. Soit m € M. On définit p(m) = [MmM|.
(a) Démontrer que le seul m tel que p(m) = |M| est m = 1.
(b) Sim et n vérifient : m € nM et n ¢ mM, alors p(n) > p(m).

(c) Si m et n vérifient : il existe a,b dans M tels que m € ManM N MnbM et
m ¢ ManbM, alors p(n) > p(m).

8. Soit g un morphisme de ¥* dans un monoide apériodique fini M. Soit m € M. On
pose :

v=U (a,n) € X x N pima V= (a,n) € X x N ap~(n)

nu(a)M = mM Mu(a)n = Mm
W={aeX|m¢MaM} U U apH(n)b

(a,b,n) € X x ¥ x N
m € Mu(a)nM O Mnu(b) M
m & M p(a)np(b) M

(a) Soit m € M tel que m # 1. Soit x € ¥* tel que p(x) € mM. Démontrer que x se
factorise sous la forme way, avec pu(u) ¢ mM, p(ua) € mM. On pose n = pu(u).
Etablir une réciproque.
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(b) On démontre de la méme fagon que x € ¥* est tel que pu(x) € Mm si et seulement
s’il se factorise sous la forme v'a’v" avec p(v') ¢ Mm et u(a’v') € Mm. Démontrer

que m ¢ Mu(z)M si et seulement si x ¢ S*WE*.

(c¢) Conclure par récurrence sur p(M).

Exercice 6 (Groupes libres) :
Soit ¥ un alphabet fini. On note ¥ une copie de ¥; ¥ = {a | a € X}. Pour chaque lettre
a € ¥, on note @ = a. L’application x — Z ainsi définit une involution de ¥ LU qui échange
Y et 3.
On note L le monoide libre sur 'alphabet ¥ U 3.

On appelle opération élémentaire sur un mot w = ujus...up, u; € 3 U ¥

o Une insertion : ujug..u; Ut u;t1...up pour un ¢ entre 0 et p et u € X U 3.

e Une suppression : ujua..ui—1%;42...up pour un ¢ entre 1 et p — 1 tel que u; 41 = 4;.

1.

On définit sur L une relation en posant w ~ w’ §’il existe une suite finie de mots
w) = W, W, ..., Wy_1, W, = w tels que w;;1 est obtenu a partir de w; par une opération
élémentaire.

Démontrer que ~ est une congruence.

On dit qu'un mot w est réduit si on ne peut pas faire de suppression dans w.

(a) Démontrer que toute classe de congruence contient un mot réduit.

(b) On se propose de justifier que toute classe de congruence contient un unique mot
réduit. Soit w et w’ deux mots réduits congruents. Soit wy = w, wa, ..., Wp_1, Wy =
w’ tels que w;y1 est obtenu a partir de w; par une opération élémentaire et tels
que Y, |w;| est minimal parmi les suites finies de mots vérifiant cette propriété.
On suppose w # w’ donc n > 1.
i. Justifier que |w| < |wg| et |w'| < |wp_1].
ii. En déduire qu’il existe i tel que w; obtenu & partir de w;_1 a partir d’une
insertion et w;41 est obtenu a partir de w; & partir d’'une suppression.
iii. Soit a,b € YUY et s,t tels que : wj_1 = ULU. Up, Wi = UTU2.. UsAOUs41... Up =
V1. Upg2 €6 Wit = V1. 041V 41...0p42 avec vy = b et Vi1 = b. En étudiant les
cas ou ces deux opérations se chevauchent ou non, aboutir & une contradiction.
On note GF' le monoide L/ ~ et 7 la surjection canonique de L sur GF.
(a) Démontrer que 7 injecte X dans GF.
(b) Démontrer que GF est un groupe engendré par 7(X).
(c) Quel est ce groupe lorsque ¥ est un singleton ?

Soit ¢ une application de I’ensemble ¥ dans un groupe G. On étend ¢ sur 3 en posant
phi() = ¢(u)~!, pour tout u dans . Démontrer qu'il existe un unique morphisme de
groupes de GF' dans G prolongeant ¢.

. On note Ly 'ensemble des mots réduits.

(a) Démontrer que tout facteur d’un mot réduit est réduit.

(b) Soit u € X. Justifier qu’on peut définir une application o, de Lr dans lui-méme
en posant :
{ uw siuw € Lpg,
Ou: W —> . _
v sl w=av.
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(c) Démontrer que o, est une permutation de Lp.
(d) Soit o : ¥ — L lapplication telle que o(u) = o0,. On note ¢ le morphisme de
groupes prolongement de o de L dans G(LR). Siw € Lg, démontrer que oy,(g) = w.

(e) Retrouver ainsi I'unicité du mot réduit dans une classe de congruence.

Groupes

Exercice 7 (7) :
On note ¢ la fonction d’Euler.

Soit n un entier naturel > 1. On note d(n) le nombre d’entiers naturels diviseurs de n.

1. Soit m un entier naturel compris entre 1 et n. Soit H,, l'ensemble des éléments de
Z/nZ dont l'ordre est un diviseur de m, c’est-a-dire 'ensemble des éléments x de Z/nZ
tels que mx = x + x4+ --- + = 0. Démontrer :

N———
m
(a) H,, est un sous-groupe de Z/nZ.
(b) H,, est un sous-groupe cyclique de Z/nZ de cardinal pged(m,n).
(c) Montrer que l’ensemble des sous-groupes de Z/nZ est exactement l’ensemble des
sous-groupes Hy pour d € N, d diviseur de n.
2. On considére 'application suivante :

v o (Z/nZ)* xZ/nZ — Z/nZ
(m, x) — Tz

(a) Justifier que le groupe (Z/nZ)* opére ainsi sur Z/nZ.
(b) Démontrer I'égalité :

S pgedm—1,n) = p(n)d(n)
me{l,....,n}
pged(m,n) =1

Exercice 8 (Décomposition en cycles disjoints d’une permutation) :
Rappels de vocabulaire : Soit {i1,...,i} une partie de {1,...,n} de cardinal k£ La permu-
tation notée (i1, ...,ix) est la permutation o telle que o (i1) = ig,- -0 (ix_1) = ix, o(ix) = i1
et o(i) = i,Yi ¢ {i1,...,ix}. Une telle permutation est appelée un k-cycle (une transposi-
tion si k = 2) et 'ensemble {i1,...,i;} est appelé son support. On vérifiera que 'ordre de
(1,...,1%) dans &,, est k.
Plus généralement, on appelle support d’une permutation o le complémentaire de ses points
fixes, i.e, {i € {1,...,n}; o(i) #i}.
On fait opérer le groupe symétrique &,, naturellement sur 'ensemble {1,...,n} :

S, x{l,...,n} — {1,...,n}
(0,i) +— o(i)

On pourra remarquer qu’il s’agit simplement de l'opération définie par le morphisme de
groupes :

K2

G, — 6,

avec le seconde définition.
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1.

Soit ¢ une permutation de {1,...,n}. En faisant opérer le sous-groupe < ¢ > par
restriction sur {1,...,n}, démontrer que o se décompose de fagon unique (a l'ordre
prés) comme une composition de cycles a supports disjoints. On remarquera que sur
chaque orbite de cette opération, o agit comme une permutation circulaire.

. Comment calculer 'ordre de o 7

3. Déterminer le maximum des ordres des permutations de Sg.

4. Un mélange dit parfait d’'un jeu de cartes se fait en prenant les 26 cartes du dessus

du paquet, les 26 suivantes et les entrelagant. En ayant numéroté les 52 cartes de 1 a
52, du haut vers le bas du paquet, on peut représenter ce mélange par l'action de la
permutation sur {1,...,52} :

o(z) = 2z — 1, size{l,...,26}
T\ 2z —26), sizexe{27,...,52}

(a) Déterminer la décomposition en cycles disjoints de la permutation o.

(b) En déduire l'ordre de la permutation o.

Exercice 9 (Parties génératrices du groupe symétrique) :
On remarque que 'exercice 1 assure que &, est engendré par les cycles.

1. Démontrer que G,, est engendré par les transpositions.

2. Démontrer que &,, est engendré par les transpositions (1,2),(2,3),...,(n — 1,n).
3.
4

. Soit E un sous-ensemble de {1,...,n}. On note Sg le sous-groupe de &,, formé par les

Démontrer que &,, est engendré par les transpositions (1,2),(1,3),...,(1,n).
permutations qui fixent tous les points de {1,...,n} \ E. Soit (7,) une transposition
de &,,. Démontrer que :

v | SEx<(i,j)> sii¢Eetj¢E
<8, (1,7) >_{ SEu{j} siite Fetj¢FE

. Soit X une famille de transpositions dans &,. On note Gx le graphe dont ’ensemble des

sommets est 'ensemble {1,...,n} et dont I’ensemble des arétes est {(i,7) | (¢,7) € X}.
(a) Dessiner les graphes correspondant aux trois parties génératrices ci-dessus.

(b) Démontrer que X est une partie génératrice du groupe symétrique &, si et seule-
ment si Gx est connexe.

. Démontrer qu’une partie génératrice du groupe symétrique &,, formée de transpositions

contient au moins n — 1 transpositions.
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