

Homework 1: PAKE₀ – A Password Authenticated Key Exchange protocol

Margot Catinaud margot.catinaud@lmaf.cnrs.fr

Due date: December 8, 2025

In this homework, we will study a Password Authenticated Key Exchange protocol, namely the PAKE₀ protocol, defined as follows:

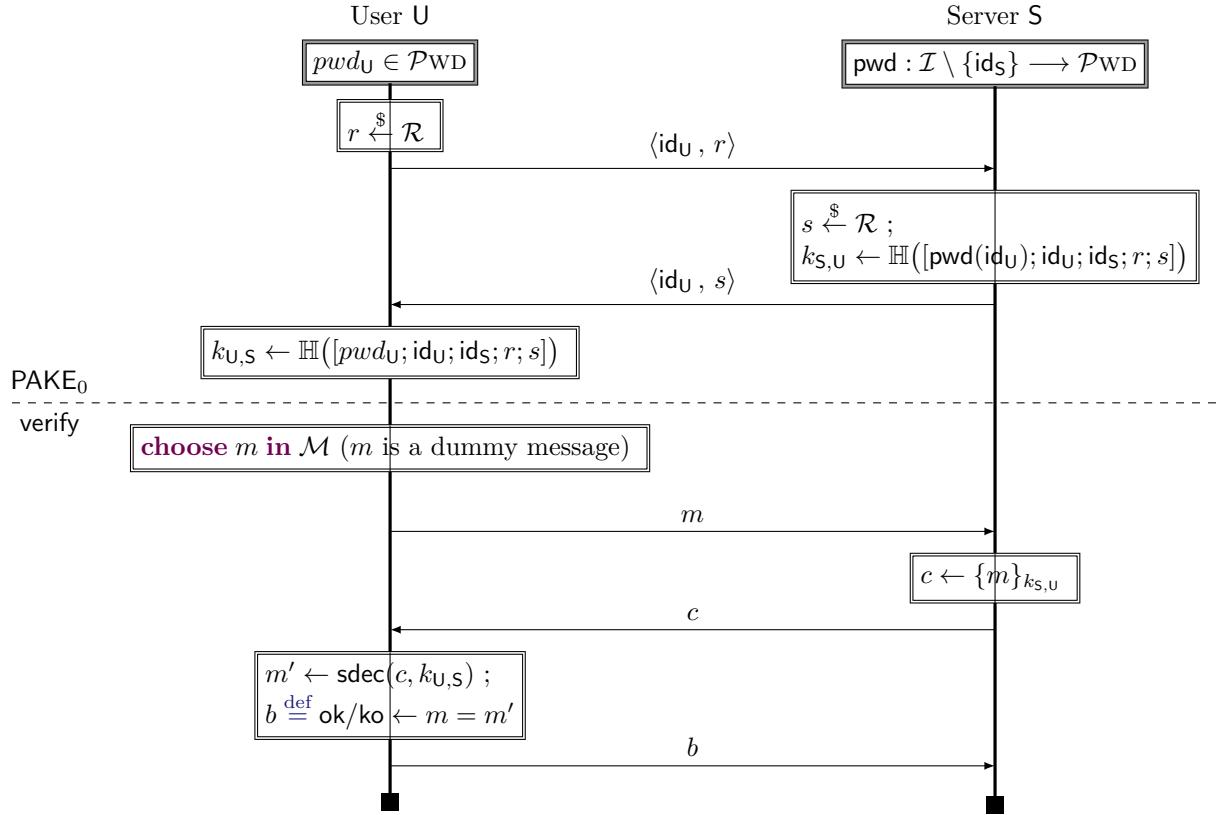


Figure 1: The PAKE₀ protocol.

Notations

- \mathcal{M} is a set of messages ;
- \mathcal{R} is a finite set of random values ("large enough") ;
- \mathcal{I} a finite set of identities such that $\text{Card}(\mathcal{I}) \geq 2$: we suppose there is at least the server identity $id_S \in \mathcal{I}$ and an agent $id_U \in \mathcal{I}$;
- $\mathcal{PWD} \subset \{0,1\}^*$ a finite set of passwords ;
- \mathcal{K} a set of key ("large enough") ;
- $\mathbb{H} : \{0,1\}^* \longrightarrow \mathcal{K}$ a secure¹ hash function ;

¹By secure we mean that \mathbb{H} is a "one-way function", i.e. given $\mathbb{H}(x)$ it is hard to retrieve x and is "collision-resistant", meaning that, for $x, x' \in \{0,1\}^*$, if $\mathbb{H}(x) = \mathbb{H}(x')$ then $x = x'$. These security properties can be achieved by model \mathbb{H} as a random oracle model such that the two following distributions are equal:

$$[\mathbb{H}(x) \mid x \xleftarrow{\$} \{0,1\}^*] = [k \mid k \xleftarrow{\$} \mathcal{K}].$$

Warning: Except for questions where it is **explicitly** said otherwise, we will **not** consider the **verify** part.

- For all natural numbers $n \in \mathbb{N}$, $n \geq 2$, and for all n sets $(X_i)_{i=1}^n$, we define a function

$$[\cdot ; \dots ; \cdot]_n : (X_i)_{i=1}^n \longrightarrow \{0,1\}^*$$

corresponding to the concatenation of elements $x_i \in X_i$, $i \in \llbracket 1; n \rrbracket$, seen as bitstrings in $\{0,1\}^*$. When n is clear from context, we denote $[\cdot ; \dots ; \cdot]$ instead of $[\cdot ; \dots ; \cdot]_n$;

- $\{m\}_k$ is a symmetric encryption of message m with key k ; sdec is the corresponding symmetric decryption.

At the end of an interaction of the PAKE_0 protocol between an agent U (with identity $\text{id}_{\mathsf{U}} \in \mathcal{I}$) and the server S , both agents U and S are agreed on a same session key k , *i.e.* $k_{\mathsf{U}, \mathsf{S}} = k_{\mathsf{S}, \mathsf{U}} \stackrel{\text{def}}{=} k$. Notice that in the PAKE_0 protocol, we simplify the knowledge of passwords by the server as a map $\text{pwd} : \mathcal{I} \setminus \{\text{id}_{\mathsf{S}}\} \longrightarrow \mathcal{PWD}$ between agent identities and their respective clear password.

Question 1

Provide a trace $\tau_{\mathsf{U} \leftarrow \mathsf{S}}$ (of the PAKE_0 protocol with the verify part) that leads to U accepting.

Question 2

Formally write the PAKE_0 protocol in the process calculus for the case of an interaction between only one user U and the server S (in this question, we have $\text{Card}(\mathcal{I}) = 2$).

Question 3

Formally write the PAKE_0 protocol in the process calculus for the case of an interaction between multiple users and the server (in this question, we have $\text{Card}(\mathcal{I}) \stackrel{\text{def}}{=} n + 1 > 2$).

In this homework, we consider these two following security properties, and we will study them with perfectly secure cryptography², *i.e.* the security analysis is performed in the *symbolic model*. Besides, we suppose we are in a presence of a *honest-but-curious* adversary \mathcal{A} : \mathcal{A} sees all messages exchanged on the network and can compute any functions but **can not** participate to the protocol : $\text{id}_{\mathcal{A}} \notin \mathcal{I}$.

- **(Authentication)** The key k , if it is shared with anyone, is shared between an instance of the server S and an instance of user U ; and this instance of S *should think* he is talking to an instance of user U .
- **(Secrecy of key k)** Any adversary *can not* retrieve the session key k between an instance of user U and one of the server S .

Question 4

Express the two intended security properties.

Question 5

Show that the authentication property is always satisfied by the PAKE_0 protocol.

Question 6

Suppose that we have *strong* passwords: that is adversary \mathcal{A} can not guess any password $\text{pwd} \in \mathcal{PWD}$.

Show that in this setting, secrecy of key k is ensured.

Question 7

Suppose that we have *weak* passwords: the set of passwords \mathcal{PWD} is a subset of some relatively small dictionary \mathcal{D} of common passwords. Moreover, suppose that after the PAKE_0 protocol, agent U chooses a message $m \in \mathcal{M}$ and sends it along with its encryption $c \leftarrow \{m\}_k$ under the session key k .

Show how to compromise the secrecy property of the key k with a honest-but-curious adversary \mathcal{A} in this setting.

²Study them without this assumption leads to more concrete analysis, for example with the interpretation we seen in [Exercise 2 – TD2](#).

Bonus question – A fix for the [Question 7](#) attack

In this bonus section, we will propose a fix to the attack you have found in [Question 7](#). Consider the PAKE₁ protocol, defined as follows:

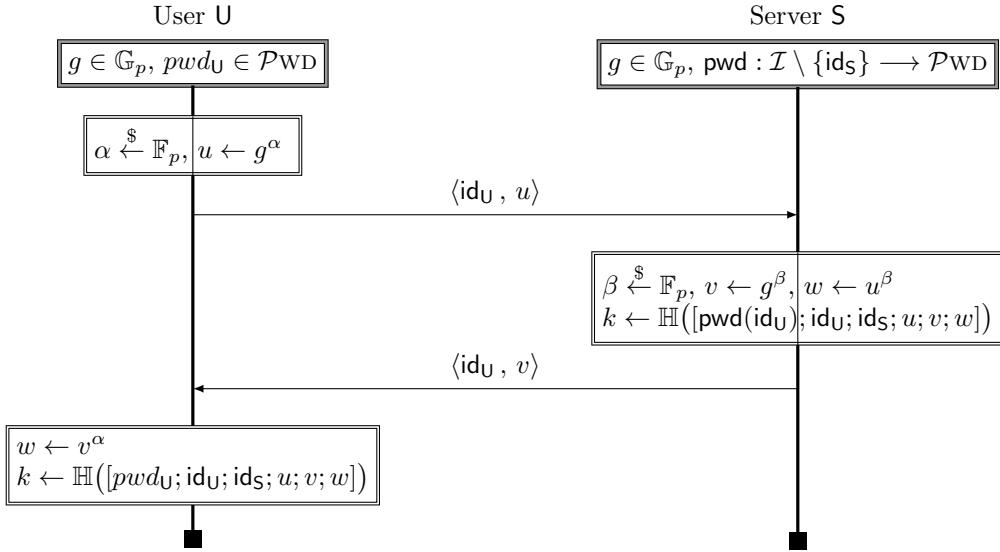


Figure 2: The PAKE₁ protocol.

Notations

- $p \in \mathbb{N}$ a prime number ;
- \mathbb{F}_p the finite field of p elements ;
- \mathbb{G}_p a cyclic group of prime order p where $g \in \mathbb{G}_p$ is a generator of \mathbb{G}_p .

Bonus question 1

We suppose same settings as in [Question 7](#) but on the PAKE₁ protocol. Try to find the property the secrecy of key k reduces to in the case of a honest-but-curious adversary \mathcal{A} .