

Homework 2: Constraint system solving

Margot Catinaud margot.catinaud@lmdf.cnrs.fr

Due date: January 5, 2026

The goal of this homework is to propose an algorithm to find a solution (if there is any) to a given deducibility constraint system. First, we want a class of constraint system where it is “easy” to show that they have a solution.

Definition 1: Solved constraint system

A constraint system \mathcal{C} is said to be *solved* if it is in the form

$$\mathcal{C} = \bigwedge_{i=1}^n (T_i \vdash^? x_i)$$

where, for all $i \in \llbracket 1; n \rrbracket$, x_i is a variable in \mathcal{X} .

Question 1

Show that any solved constraint system have a solution.

Definition 2: Simplification rules for constraint system

We will consider a set of simplification rules for constraint system:

$$\begin{aligned} \mathcal{C} \wedge (T \vdash^? u) &\rightsquigarrow \mathcal{C} & \text{if } T \cup \left\{ x \in \mathcal{X} \mid (T' \vdash^? x) \in \mathcal{C}, T' \subseteq T \right\} \vdash u & (R_1) \\ \mathcal{C} \wedge (T \vdash^? u) &\rightsquigarrow_{\sigma} \mathcal{C}\sigma \wedge (T\sigma \vdash^? u\sigma) & \text{if } t \in \text{st}(T), \sigma = \text{mgu}(t, u), t \neq u \text{ and } t, u \notin \mathcal{X} & (R_2) \\ \mathcal{C} \wedge (T \vdash^? u) &\rightsquigarrow_{\sigma} \mathcal{C}\sigma \wedge (T\sigma \vdash^? u\sigma) & \text{if } t, v \in \text{st}(T), \sigma = \text{mgu}(t, v), t \neq v & (R_3) \\ \mathcal{C} \wedge (T \vdash^? u) &\rightsquigarrow \perp & \text{if } \text{fv}(T \cup \{u\}) = \emptyset \text{ and } T \not\vdash u & (R_4) \\ \mathcal{C} \wedge (T \vdash^? f(u_1, \dots, u_n)) &\rightsquigarrow \mathcal{C} \wedge \bigwedge_{i=1}^n (T \vdash^? u_i) & \text{if } (f/n) \in \Sigma \text{ is a constructor symbol} & (R_f) \end{aligned}$$

Question 2 (Correctness)

Let \mathcal{C} be a constraint system. Suppose that $\mathcal{C} \rightsquigarrow_{\sigma} \mathcal{C}'$. Show that \mathcal{C}' is also a constraint system.

Question 3 (Termination)

Show that there is not infinite sequence $(\mathcal{C}_n)_{n \in \mathbb{N}}$ such that

$$\forall n \in \mathbb{N}, \mathcal{C}_n \rightsquigarrow_{\sigma_n} \mathcal{C}_{n+1}.$$

Hint: Use a lexicographical order on (v, s) where v is the number of variables and s is the size of the constraint system, for some good notion of size to be defined.

Question 4 (Soundness)

In this question, we will show the following theorem for completeness of the constraint system simplification algorithm.

Theorem 1: Completeness of the constraint system simplification

Let \mathcal{C} be an unsolved deducibility constraint system and let θ be a solution of \mathcal{C} . Then, there is a deducibility constraint system \mathcal{C}' , a substitution σ , and a solution θ' of \mathcal{C}' such that

$$\mathcal{C} \rightsquigarrow_{\sigma}^* \mathcal{C}' \quad \text{and} \quad \theta = \sigma\theta'.$$

First, we define the notion of *simple proofs*.

Definition 3: Left minimal proofs, Simple proofs

Let $(T_i)_{i=1}^n$ be an increasing sequence of sets of terms, i.e., for all $i \in \llbracket 1; n-1 \rrbracket$, $T_i \subseteq T_{i+1}$.

We say that a proof Π of $T_i \vdash u$ is left minimal when, if there is a proof of $T_j \vdash u$ for some $1 \leq j < i$, then Π is also a proof of $T_j \vdash u$.

Moreover, a proof Π is said to be simple when all its subproofs are left minimal and there is no repeated label on any branch.

1. Let $(T_i)_{i=1}^n$ be an increasing sequence of sets of terms, i.e., for all $i \in \llbracket 1; n-1 \rrbracket$, $T_i \subseteq T_{i+1}$. Let u be a term such that $T_i \vdash u$. Show that there exists a simple proof Π of $T_i \vdash u$.
2. Let \mathcal{C} be an unsolved constraint system. Let θ be a solution of \mathcal{C} and let $T_i \vdash^? u_i$ be a minimal unsolved constraint system of \mathcal{C} . Let u be a term. We suppose that there is a simple proof of $T_i \theta \vdash u$ having as last rule an axiom or a decomposition. Show that there exists a term $t \in \text{st}(T_i) \setminus \mathcal{X}$ such that $t\theta = u$.
3. Let $n \in \mathbb{N}$ be a natural number and let $\mathcal{C} = \{T_i \vdash^? x_i\}_{i=0}^n$ be a constraint system. Let σ be a solution of \mathcal{C} . We suppose
 - (a) T_n does not contain two distinct subterms $t_1, t_2 \in \text{st}(T_n)$ such that $t_1 \neq t_2$ and $t_1\sigma = t_2\sigma$;
 - (b) u is a non-variable subterm of T_n .
 Show that $T'_n \vdash u$ where $T'_n \stackrel{\text{def}}{=} T_n \cup \{x \in \mathcal{X} \mid (T \vdash^? x) \in \mathcal{C} \wedge T \subsetneq T_n\}$.
4. Show the completeness theorem for only one step (i.e. $\mathcal{C} \rightsquigarrow_{\sigma} \mathcal{C}'$). Conclude.