

TD 6: Provable cryptography - cryptographic assumptions

Margot Catinaud `margot.catinaud@lmdf.cnrs.fr`

A function $f : \mathbb{N}^* \rightarrow [0, 1]$ is *negligible*¹ when we have :

$$\forall P \in \mathbb{R}[X], \exists n_P \in \mathbb{N}^*, \forall n \geq n_P, 0 \leq f(n) \leq \frac{1}{|P(n)|}.$$

Exercise 1 (IND – CPA and advantage definitions)

The goal of this exercise is to present different ways to define the advantage of an adversary against a cryptographic game. We will illustrate those on the IND – CPA security game for asymmetric encryption with only one challenge². For a security parameter $\eta \in \mathbb{N}^*$, we define the *set of random tapes* Ω_η to be a pair of two random tape sets $\Omega_\eta \stackrel{\text{def}}{=} (\Omega_\eta^h, \Omega_\eta^a) \subset \{0, 1\}^* \times \{0, 1\}^*$ where

- The set Ω_η^h of *honest random tapes* is defined by

$$\Omega_\eta^h \stackrel{\text{def}}{=} \{0, 1\}^{\text{poly}(\eta)} \text{ such that } \forall \rho_h \in \Omega_\eta^h, \exists P_{\rho_h} \in \mathbb{R}[X], \text{len}(\rho_h) \leq |P(\eta)|.$$

Said otherwise, Ω_η^h is the set of honest random tapes of length polynomial in the security parameter η . Besides, we suppose that all random values generated with the honest random tape ρ_h are *independent and chosen uniformly at random*:

$$n \xleftarrow{\rho_h} \mathcal{N} \iff n \xleftarrow{\$} \mathcal{N}.$$

Where $\cdot \xleftarrow{\$} \mathcal{N}$ denote the uniform distribution on \mathcal{N} .

- The set Ω_η^a of *adversarial random tapes* is defined by

$$\Omega_\eta^a \stackrel{\text{def}}{=} \{0, 1\}^{\text{poly}(\eta)}.$$

Besides, no constraints are made on an adversarial random tape ρ_a , meaning that $\cdot \xleftarrow{\rho_a} \mathcal{N}$ follows any probability distribution the adversary choose to use. In particular, any random value computed with the random tape ρ_a can depend of any previously generated values.

The IND – CPA security game for an asymmetric encryption scheme $\text{AES} = (\text{keygen}_{\text{AES}}, \text{aenc}_{\text{AES}}, \text{adec}_{\text{AES}})$ with randomness set \mathcal{R}_{AES} is defined as follows in [Game 1](#).

IND – CPA _{AES} ^A ($\eta, (\rho_h, \rho_a); \beta$) – IND – CPA game for the AES scheme
$(\text{sk}, \text{pk}) \xleftarrow{\text{keygen}_{\text{AES}}(\eta)};$
$(m_0, m_1, \text{st}_1) \xleftarrow{\mathcal{A}(\eta, \text{pk}; \rho_a)};$
$r \xleftarrow{\rho_h} \mathcal{R}_{\text{AES}};$
$c_\beta \xleftarrow{\text{aenc}_{\text{AES}}(\text{pk}, m_\beta; r)};$
$b \xleftarrow{\mathcal{A}(c_\beta; \rho_a, \text{st}_1)};$
return b .

Game 1: INDistinguishability under Chosen Plaintext Attack cryptographic game

Now, we defines some variants of the *advantage of \mathcal{A} against the IND – CPA game* as follows.

- (*find-then-guess* model) Given an asymmetric encryption scheme AES , the *advantage of \mathcal{A} against the IND – CPA game for AES* in the *find-then-guess* model is given by :

$$\forall \eta \in \mathbb{N}^*, \text{Adv}_{\text{AES}}[\text{IND – CPA} \mid \mathcal{A}](\eta)$$

$$\stackrel{\text{def}}{=} \left| 2 \cdot \mathbb{P}_{(\rho_h, \rho_a) \in \Omega_\eta} \left[\beta \xleftarrow{\text{G}} \text{IND – CPA}_{\text{AES}}^{\mathcal{A}}(\eta, \rho; \beta) \mid \beta \xleftarrow{\rho_h} \{0, 1\} \right] - 1 \right|$$

¹Notice that all polynomial function $P \in \mathbb{R}[X]$ have a **finite** set of roots. Thus, we implicitly suppose that $n_P \in \mathbb{N}^*$ is such that

$$n_P > \max \{x \in \mathbb{R} \mid P(x) = 0\}.$$

²Notice that there exists also a multiple challenges definition of the IND – CPA game, but we will not consider this multiple challenges to make this exercise easier. For the multiple challenges definition, we need to state the IND – CPA game with a challenge oracle which can be called multiple times by the adversary.

- (**left-or-right model**) Given an asymmetric encryption scheme AES , the *advantage of \mathcal{A} against the IND – CPA game for AES* in the *left-or-right* model is given by :

$$\forall \eta \in \mathbb{N}^*, \text{Adv}_{\text{AES}}[\text{IND} - \text{CPA} \mid \mathcal{A}](\eta) \stackrel{\text{def}}{=} \left| \begin{array}{l} \mathbb{P}_{\rho \in \Omega_\eta} \left[0 \xleftarrow{\text{g}} \text{IND} - \text{CPA}_{\text{AES}}^{\mathcal{A}}(\eta, \rho; \beta = 0) \right] \\ - \mathbb{P}_{\rho \in \Omega_\eta} \left[0 \xleftarrow{\text{g}} \text{IND} - \text{CPA}_{\text{AES}}^{\mathcal{A}}(\eta, \rho; \beta = 1) \right] \end{array} \right|.$$

- (**real-or-random model**) In this model, we redefine the IND – CPA game as follows :

$\text{IND} - \text{CPA} - \text{RoR}_{\text{AES}}^{\mathcal{A}}(\eta, (\rho_h, \rho_a); \beta)$ – Real-or-random IND – CPA game
$(\text{sk}, \text{pk}) \xleftarrow{\text{keygen}_{\text{AES}}} \text{keygen}_{\text{AES}}(\eta);$
$(m_0, \text{st}_1) \xleftarrow{\text{A}} \mathcal{A}(\eta, \text{pk}; \rho_a);$
$r \xleftarrow{\rho_h} \mathcal{R}_{\text{AES}}; m_1 \xleftarrow{\rho_h} \{0, 1\}^{\text{len}(m_0)};$
$c_\beta \xleftarrow{\text{aenc}_{\text{AES}}} \text{aenc}_{\text{AES}}(\text{pk}, m_\beta; r);$
$b \xleftarrow{\text{A}} \mathcal{A}(c_\beta; \rho_a, \text{st}_1);$
return b .

Game 2: IND – CPA cryptographic game in the case of the *real-or-random* model

Then, the *advantage of \mathcal{A} against the IND – CPA – RoR game for AES* in the *real-or-random* model is given by :

$$\forall \eta \in \mathbb{N}^*, \text{Adv}_{\text{AES}}[\text{IND} - \text{CPA} - \text{RoR} \mid \mathcal{A}](\eta) \stackrel{\text{def}}{=} \left| \begin{array}{l} \mathbb{P}_{\rho \in \Omega_\eta} \left[0 \xleftarrow{\text{g}} \text{IND} - \text{CPA} - \text{RoR}_{\text{AES}}^{\mathcal{A}}(\eta, \rho; \beta = 0) \right] \\ - \mathbb{P}_{\rho \in \Omega_\eta} \left[0 \xleftarrow{\text{g}} \text{IND} - \text{CPA} - \text{RoR}_{\text{AES}}^{\mathcal{A}}(\eta, \rho; \beta = 1) \right] \end{array} \right|.$$

Let $\eta \in \mathbb{N}^*$ be a security parameter. We say that the adversary \mathcal{A} *wins the IND – CPA game* when

$$\forall \rho \in \Omega_\eta, \forall \beta \in \{0, 1\}, \beta = \text{IND} - \text{CPA}_{\text{AES}}^{\mathcal{A}}(\eta, \rho; \beta).$$

1. Show that the encryption scheme must be randomized : otherwise, there exists an attacker that wins with probability 1.
2. Prove that there exists an attacker that wins with probability $\frac{1}{2}$.
3. Show that the definitions of advantage for the find-then-guess and the left-or-right models are equal.
4. Show that the definitions of advantage for the left-or-right and the real-or-random models are related by a factor at most 2.

Exercise 2 (Hardness assumptions on cyclic groups)

The goal of this exercise is to present a bunch of cryptographic assumptions over cyclic groups. Consider a (multiplicative) cyclic group \mathbb{G}_p of prime order $p \in \mathbb{P}$ and a fixed *public* generator $g \in \mathbb{G}_p$ of \mathbb{G}_p . In provable security, we can suppose several cryptographic assumptions over a cyclic group to prove security of larger cryptographic constructions (such as asymmetric encryption schemes or signature schemes) or protocols.

For two cryptographic games \mathcal{G}_1 and \mathcal{G}_2 , we define a binary relation $\preccurlyeq_{\mathcal{G}}$ on games to be :

$$\mathcal{G}_1 \preccurlyeq_{\mathcal{G}} \mathcal{G}_2 \stackrel{\text{def}}{\iff} \mathcal{G}_1 \text{ is at least as hard as } \mathcal{G}_2.$$

More formally, $\mathcal{G}_1 \preccurlyeq_{\mathcal{G}} \mathcal{G}_2$ means that, by contraposition, if an adversary \mathcal{A} *breaks* (i.e. wins) the game \mathcal{G}_1 then there exists another adversary $\mathcal{B}(\mathcal{A})$, built over adversary \mathcal{A} , that breaks the \mathcal{G}_2 game.

1. Give, for each hardness problem HP of [fig. 3](#), a corresponding cryptographic game $\mathcal{G}_{\text{HP}}[\mathbb{G}_p]$.
2. Show the following relations between hardness assumptions over cyclic groups:

$$\mathcal{G}_{\text{DL}}[\mathbb{G}_p] \preccurlyeq_{\mathcal{G}} \mathcal{G}_{\text{CDH}}[\mathbb{G}_p] \preccurlyeq_{\mathcal{G}} \left\{ \begin{array}{l} \mathcal{G}_{\text{DDH}}[\mathbb{G}_p] \\ \mathcal{G}_{\text{GDH}}[\mathbb{G}_p] \end{array} \right\}$$

<p>Problem 1: Discrete Logarithm (DL)</p> <p>problem Discrete Logarithm for group \mathbb{G}_p is: given $y \in \mathbb{G}_p$. computes $x \in \mathbb{F}_p$ such that $y = g^x$.</p>	<p>Problem 2: Computational Diffie-Hellman (CDH)</p> <p>problem Computational DH for group \mathbb{G}_p is: given $(\alpha \stackrel{\text{def}}{=} g^a, \beta \stackrel{\text{def}}{=} g^b) \in \mathbb{G}_p^2$. computes $\gamma \in \mathbb{G}_p$ such that $\gamma = g^{ab}$.</p>
<p>Problem 3: Decisional Diffie-Hellman (DDH)</p> <p>problem Decisional DH for group \mathbb{G}_p is: given $(\alpha \stackrel{\text{def}}{=} g^a, \beta \stackrel{\text{def}}{=} g^b, \gamma \stackrel{\text{def}}{=} g^c) \in \mathbb{G}_p^3$. decides whether $\gamma = g^{ab}$.</p>	<p>Problem 4: Gap Diffie-Hellman (GDH)</p> <p>problem Gap DH for group \mathbb{G}_p is: given $(\alpha \stackrel{\text{def}}{=} g^a, \beta \stackrel{\text{def}}{=} g^b) \in \mathbb{G}_p^2$. computes $\gamma \in \mathbb{G}_p$ such that $\gamma = g^{ab}$ with oracle access to \mathcal{O}_{DDH} solving the DDH problem.</p>

Figure 3: Bunch of hardness assumptions over cyclic groups.

Exercise 3 (A zoo of cryptographic games)

For the next description of security games, try to write it down properly. Be careful to the case where the adversary \mathcal{A} can do an arbitrary number of challenges : we need oracles³.

1. **INDistinguishability under Chosen-Plaintext Attacks** (IND – CPA) Give the multiple challenges version of the IND – CPA game.
2. **One-Wayness under Chosen-Plaintext Attacks** (OW – CPA) Here, the adversary wants to recover the whole plaintext from just the ciphertext and the public key.
3. **One-Wayness under Plaintext-Checking Attacks** (OW – PCA) Same as OW – CPA but additionally, it now has access to an oracle that tell her if a given ciphertext c is the encryption of a message m . Be careful, some restrictions must occur to avoid trivial wins for the adversary.
4. **INDistinguishability under Validity-Checking Attacks** (IND – VCA) Same as IND – CPA. Additionally, it now has access to an oracle that tells her if a given bitstring is a valid ciphertext or not.
5. **INDistinguishability under non-adaptive Chosen-Ciphertext Attacks** (IND – CCA1) Same as IND – CPA but additionally, it now has access to an oracle that decrypts ciphertext for her before the call to the challenge oracle.
6. **INDistinguishability under adaptive Chosen-Ciphertext Attacks** (IND – CCA2) Same as IND – CPA but additionally, it now has access to an oracle that decrypts ciphertext for her. Be careful, some restrictions must occur to avoid trivial wins for the adversary.

Exercise 4 (Hardness relations between IND – CPA, IND – CCA1 and IND – CCA2 games)

In this exercise, we will try to give security relationship between IND – CPA, IND – CCA1 and IND – CCA2 games⁴. Recall the $\preccurlyeq_{\mathcal{G}}$ relations between games see in exercise 2. We say that a game \mathcal{G} is *secure* when, for all adversary \mathcal{A} (modelled as Probabilistic Polynomial-time Turing Machine), we have:

$$\eta \mapsto \mathbf{Adv}[\mathcal{G} \mid \mathcal{A}](\eta) \text{ is negligible in } \eta.$$

1. Let \mathcal{G}_1 and \mathcal{G}_2 be two cryptographic games such that $\mathcal{G}_1 \preccurlyeq_{\mathcal{G}} \mathcal{G}_2$. In this question, we will show the following property:

$$\mathcal{G}_2 \text{ is secure} \implies \mathcal{G}_1 \text{ is also secure.} \quad (\Sigma)$$

To do so, we proceed by contraposition. Suppose that \mathcal{G}_1 is not secure: meaning that there exists an adversary \mathcal{A} such that the function $\mathbf{Adv}[\mathcal{G}_1 \mid \mathcal{A}]$ is *non-negligible* in η .

Using $\mathcal{G}_1 \preccurlyeq_{\mathcal{G}} \mathcal{G}_2$, show that \mathcal{G}_2 is not secure.

2. Give and prove relations between games IND – CPA, IND – CCA1 and IND – CCA2 for the relation $\preccurlyeq_{\mathcal{G}}$ using the property eq. (Σ).

³**Note:** Do not hesitate to ask how we write cryptographic games in the case of arbitrary number of calls to oracles.

⁴To learn more about hierarchy between indistinguishability security notions in the case of *Fully Homomorphic Encryption* (FHE) schemes, see the thesis of Marc Renard:

3. Do we have relations in the opposite direction?

Exercise 5 (About the RSA encryption scheme)

The RSA encryption scheme $\text{RSA} = (\text{keygen}_{\text{RSA}}, \text{aenc}_{\text{RSA}}, \text{adec}_{\text{RSA}})$ is defined as follows:

- $\text{keygen}_{\text{RSA}}(\eta)$ takes as input a security parameter $\eta \in \mathbb{N}^*$. Computes two random primes $p, q \in \mathbb{P}$ such that $\log_2 p \geq \eta$ and $\log_2 q \geq \eta$. Then, computes $n = pq$ and $\phi(n) = (p-1)(q-1)$ (the Euler function). Chooses some exponent $e \in \mathbb{Z}_n$ such that $e \wedge \phi(n) = 1$ and $e \leq \phi(n)$. Finally, outputs (sk, pk) where $\text{sk} \stackrel{\text{def}}{=} e^{-1} \pmod{\phi(n)}$ is the secret key and $\text{pk} \stackrel{\text{def}}{=} (n, e)$ is the public key.
- $\text{aenc}_{\text{RSA}}(m, \text{pk} = (n, e))$ returns $m^e \pmod{n}$ on inputs a message $m \in \mathbb{Z}_n$ and a public key $\text{pk} \in \mathbb{N} \times \mathbb{Z}_n$.

1. Find the decryption algorithm adec_{RSA} .

2. Prove that this encryption scheme verifies the functional correctness property⁵.

The security of the RSA encryption scheme relies on a specific assumption called the RSA assumption.

Problem 5: RSA assumption

problem RSA for group \mathbb{Z}_n is:

given $(n \stackrel{\text{def}}{=} pq, e, y) \in \mathbb{N} \times \mathbb{N} \times \mathbb{Z}_n^*$ such that $p, q \in \mathbb{P}$ and $e \wedge \phi(n) = 1$.
computes $x \in \mathbb{Z}_n$ such that $y = x^e \pmod{n}$.

3. Is RSA OW – CPA-secure under the RSA assumption?
4. Is RSA OW – PCA-secure under the RSA assumption?
5. Is RSA IND – CPA-secure under the RSA assumption?

Exercise 6 (About the El-Gamal encryption scheme)

For all security parameter η , let \mathbb{G}_{p_η} be a cyclic group of prime order $p_\eta \in \mathbb{P}$ such that $\log_2 p_\eta \geq \eta$ and let $g_\eta \in \mathbb{G}_{p_\eta}$ be a generator of this group. The family of pairs $\mathfrak{G} \stackrel{\text{def}}{=} (\mathbb{G}_{p_\eta}, g_\eta)_{\eta \in \mathbb{N}^*}$ of group and generator are considered to be public knowledge. The *El-Gamal encryption scheme* $\text{EG} \stackrel{\text{def}}{=} (\text{keygen}_{\text{EG}}, \text{aenc}_{\text{EG}}, \text{adec}_{\text{EG}})$ for the public parameters \mathfrak{G} is defined as follows:

- $\text{keygen}_{\text{EG}}(\eta)$ takes as input a security parameter $\eta \in \mathbb{N}^*$ and generates a key pair $(\text{pk}, \text{sk}) \in \mathbb{G}_{p_\eta} \times \mathbb{F}_{p_\eta}$ such that $\text{pk} \stackrel{\text{def}}{=} g_\eta^{\text{sk}}$;
- $\text{aenc}_{\text{EG}}(\text{pk}, m; r)$ takes as input a public key $\text{pk} \in \mathbb{G}_{p_\eta}$, a message $m \in \mathbb{G}_{p_\eta}$ and a random value $r \in \mathbb{F}_{p_\eta}$. Then, outputs a ciphertext pair $(g^r, m \cdot \text{pk}^r) \in \mathbb{G}_{p_\eta}^2$. Notice that we can also write $\text{aenc}_{\text{EG}}(\text{pk}, m)$ which implies that this algorithm generates uniformly at random a public coin $r \in \mathbb{F}_{p_\eta}$ and becomes this way probabilistic.

1. Find the decryption algorithm adec_{EG} .

2. Prove that this encryption scheme verifies the functional correctness property.

3. Prove that, for all public key $\text{pk} \in \mathbb{G}_{p_\eta}$, the following function is a group homomorphism:

$$\begin{aligned} \varphi_{\text{pk}} : \quad \mathbb{G}_{p_\eta} &\longrightarrow \mathbb{G}_{p_\eta}^2 \\ m &\longmapsto \text{aenc}_{\text{EG}}(\text{pk}, m) \end{aligned}$$

Thus, we say that the El-Gamal encryption scheme is *homomorphic*⁶.

4. Prove that EG is OW – CPA-secure under the CDH assumption.

5. Prove that EG is IND – CPA-secure under the DDH assumption.

6. Is EG IND – CCA1-secure?

⁵The functional correctness property for an asymmetric encryption scheme $(\text{aenc}, \text{adec})$ is given by:

$$\text{adec}(\text{aenc}(\text{pk}(\text{sk}), m, r), \text{sk}) = m.$$

⁶In this exercise, EG is a multiplicative homomorphic encryption scheme. We can also make this scheme additively homomorphic. When a homomorphic encryption scheme HS is simultaneously multiplicative and additive, we say that HS is *fully homomorphic*.