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A function f: N* — [0, 1] is negligible! when we have :

VP eR[X], 3np e N, Vn > np, 0< f(n) <

Exercise 1 (IND — CPA and advantage definitions)

The goal of this exercise is to present different ways to define the advantage of an adversary against a cryptographic
game. We will illustrate those on the IND — CPA security game for asymmetric encryption with only one challenge?.

For a security parameter n € N*, we define the set of random tapes €, to be a pair of two random tape sets
Q, & (QEI,Q%) C {0,1}* x {0,1}* where

,'7:

e The set QE] of honest random tapes is defined by

08 0,137 such that Vpj, € OB, 3P, € RIX], len(py) < [P(n)].

n?

Said otherwise, Q22 is the set of honest random tapes of length polynomial in the security parameter 1. Besides,
we suppose that all random values generated with the honest random tape p, are independent and chosen
uniformly at random:

n N &L E N
Where - ¢- N denote the uniform distribution on A/

e The set Q"? of adversarial random tapes is defined by
a def oly(n
Q”I = {0, I}P ( )

Besides, no constraints are made on an adversarial random tape p,, meaning that - 2o N follows any probability
distribution the adversary choose to use. In particular, any random value computed with the random tape p,
can depend of any previously generated values.

The IND — CPA security game for an asymmetric encryption scheme AES = (keygen,ps, aencags, adecaygs) with ran-
domness set Rags is defined as follows in Game 1.

IND — CPA% e (77, (Ph, Pa) ; 5) — IND — CPA game for the AES scheme
(sk, pk) < keygen,pg(n) ;

(m07m17 Stl) — A(na pk; pa) ;

r & Rags

cg < aencAES(pk, mg; ’I") )

b+ Alcg; pa, sti1) ;

return b.

Game 1: INDistinguishability under Chosen Plaintext Attack cryptographic game

Now, we defines some variants of the advantage of A against the IND — CPA game as follows.

e (find-then-guess model) Given an asymmetric encryption scheme AES, the advantage of A against the
IND — CPA game for AES in the find-then-guess model is given by :

Vn € N*, Advags [IND — CPA | A] (n)

def

2- Pr(pm/h;)GQ,, |: 6 g IND — CPA;Q]ES(nap7 ﬁ) | 6 @ {07 1} :| - 1’

INotice that all polynomial function P € R[X] have a finite set of roots. Thus, we implicitly suppose that np € N* is such that
np > max{ac eRrR |P(z) = 0}.
2Notice that there exists also a multiple challenges definition of the IND — CPA game, but we will not consider this multiple challenges

to make this exercise easier. For the multiple challenges definition, we need to state the IND — CPA game with a challenge oracle which can
be called multiple times by the adversary.
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o (left-or-right model) Given an asymmetric encryption scheme AES, the advantage of A against the IND — CPA
game for AES in the left-or-right model is given by :

o | Pr Q[O%QIND—CPAA n,p; =0 }
¥ € N*, Advgs [IND — CPA | A] (n) < £E Res ( " )
_]P’I’pgg,7 [ 0 ¢ IND — CPAA]ES(UaP? 8= 1) }

e (real-or-random model) In this model, we redefine the IND — CPA game as follows :

IND — CPA — RoR{%s (7, (pn. pa) ; B) — Real-or-random IND — CPA game
(sk, pk) < keygen,gs(n) ;

(mo, st1) < A(n, pk; pa) ;

r & Rags ; my & {0, 1}lenCmo) .

cg < aencags(pk,mg; ) ;

b Alcg; pa, st1)

return b.

Game 2: IND — CPA cryptographic game in the case of the real-or-random model

Then, the advantage of A against the IND — CPA — RoR game for AES in the real-or-random model is given by

of | Proco [OegIND—CPA—RoRA n,p; B=0 }
Wn € N*, Advss[IND — CPA — RoR | A] () & |~ 7 2 )
,]P’Fpegn { 0 <—g IND — CPA — RORﬁES (77, p; B= 1) }

Let n € N* be a security parameter. We say that the adversary A wins the IND — CPA game when

Vp e, VBe{0,1}, B=1IND—CPAs(n, p; B).

1. Show that the encryption scheme must be randomized : otherwise, there exists an attacker that wins with
probability 1.

1
2. Prove that there exists an attacker that wins with probability 3

3. Show that the definitions of advantage for the find-then-guess and the left-or-right models are equal.

4. Show that the definitions of advantage for the left-or-right and the real-or-random models are related by a
factor at most 2.

Exercise 2 (Hardness assumptions on cyclic groups)

The goal of this exercise is to present a bunch of cryptographic assumptions over cyclic groups. Consider a (mul-
tiplicative) cyclic group G, of prime order p € P and a fixed public generator g € G, of G,. In provable security,
we can suppose several cryptographic assumptions over a cyclic group to prove security of larger cryptographic
constructions (such as asymmetric encryption schemes or signature schemes) or protocols.
For two cryptographic games G; and G5, we define a binary relation g on games to be :

G1 <¢g G2 PLUN Gy is at least as hard as Gs.

More formally, G; <g G2 means that, by contraposition, if an adversary A breaks (i.e. wins) the game Gy then there
exists another adversary B(A), built over adversary A, that breaks the G, game.

1. Give, for each hardness problem HP of fig. 3, a corresponding cryptographic game Gyp [(Gp}.

2. Show the following relations between hardness assumptions over cyclic groups:

gDDH
gGDH

Gy

GoL [Gp] <g Geon I:Gp} <g { G }
P
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Problem 1: Discrete Logarithm (DL) Problem 2: Computational Diffie-Hellman (CDH)

problem Discrete Logarithm for group G, is: problem Computational DH for group G, is:

L given y € G,. L given (a def g%, B ef gb) € Gf,.

computes z € F, such that y = ¢”. computes v € G, such that v = g*.

Problem 4: Gap Diffie-Hellman (GDH)

Problem 3: Decisional Diffie-Hellman (DDH)
problem Decisional DH for group G, is: . def o o def g )
given (Ot g BE gy d:efgc) €G3 given (O‘ =98 =y ) € Gy
computes v € G, such that y = g*°
with oracle access to Oppy solving the DDH problem.

problem Gap DH for group G, is:

decides whether v = g,

Figure 3: Bunch of hardness assumptions over cyclic groups.

Exercise 3 (A zoo of cryptographic games)

For the next description of security games, try to write it down properly. Be careful to the case where the adversary
A can do an arbitrary number of challenges : we need oracles®.

1. IND:istinguishability under Chosen-Plaintext Attacks (IND — CPA) Give the multiple challenges version
of the IND — CPA game.

2. One-Wayness under Chosen-Plaintext Attacks (0W — CPA) Here, the adversary wants to recover the
whole plaintext from just the ciphertext and the public key.

3. One-Wayness under Plaintext-Checking Attacks (OW — PCA) Same as OW — CPA but additionally, it now
has access to an oracle that tell her if a given ciphertext ¢ is the encryption of a message m. Be careful, some
restrictions must occur to avoid trivial wins for the adversary.

4. INDistinguishability under Validity-Checking Attacks (IND — VCA) Same as IND — CPA. Additionally,
it now has access to an oracle that tells her if a given bitstring is a valid ciphertext or not.

5. INDistinguishability under non-adaptive Chosen-Ciphertext Attacks (IND — CCA1) Same as IND — CPA
but additionally, it now has access to an oracle that decrypts ciphertext for her before the call to the challenge
oracle.

6. INDistinguishability under adaptive Chosen-Ciphertext Attacks (IND — CCA2) Same as IND — CPA
but additionally, it now has access to an oracle that decrypts ciphertext for her. Be careful, some restrictions
must occur to avoid trivial wins for the adversary.

Exercise 4 (Hardness relations between IND — CPA, IND — CCA1 and IND — CCA2 games)

In this exercise, we will try to give security relationship between IND — CPA, IND — CCA1 and IND — CCA2 games®.
Recall the <g relations between games see in exercise 2. We say that a game G is secure when, for all adversary A
(modelled as Probabilistic Polynomial-time Turing Machine), we have:

n+— Adv[G | A] (n) is negligible in 7.

1. Let G; and G2 be two cryptographic games such that G; <g Go2. In this question, we will show the following
property:

‘QQ is secure = @G is also secure. (%)

To do so, we proceed by contraposition. Suppose that G; is not secure: meaning that there exists an adversary
A such that the function Adv [Ql | .A] is non-negligible in 7.
Using G1 =g G2, show that Gy is not secure.

2. Give and prove relations between games IND — CPA, IND — CCA1 and IND — CCA2 for the relation <g using the
property eq. (X).

3Note: Do not hesitate to ask how we write cryptographic games in the case of arbitrary number of calls to oracles.
4To learn more about hierarchy between indistinguishability security notions in the case of Fully Homomorphic Encryption (FHE)
schemes, see the thesis of Marc Renard:

https://theses.hal.science/tel-05421880v1/file/157007_RENARD_2025_archivage.pdf


https://theses.hal.science/tel-05421880v1/file/157007_RENARD_2025_archivage.pdf

M1 — Introduction to Security 2025-2026

3. Do we have relations in the opposite direction?

Exercise 5 (About the RSA encryption scheme)
The RSA encryption scheme RSA = (keygenggy, aencrsa, adecgsa ) is defined as follows:

e keygenps, (17) takes as input a security parameter n € N*. Computes two random primes p,q € P such that
log, p > n and log, ¢ = 1. Then, computes n = pg and ¢(n) = (p—1)(¢—1) (the Euler function). Chooses some

exponent e € Z, such that e A ¢(n) =1 and e < ¢(n). Finally, outputs (sk, pk) where sk el mod [@(n)]
is the secret key and pk def (n, e) is the public key.

® aencpsa (m, pk = (n, e)) returns m® mod [n] on inputs a message m € Z, and a public key pk € N x Z,.
1. Find the decryption algorithm adecgrgy .
2. Prove that this encryption scheme verifies the functional correctness property’.

The security of the RSA encryption scheme relies on a specific assumption called the RSA assumption.

Problem 5: RSA assumption

problem RSA for group Z, is:
L given (n d:Equ,e,y) € Nx N x Z* such that p,g e Pand e A ¢(n) = 1.

computes x € Z, such that y = 2° mod [n].

3. Is RSA OW — CPA-secure under the RSA assumption?
4. Is RSA OW — PCA-secure under the RSA assumption?
5. Is RSA IND — CPA-secure under the RSA assumption?

Exercise 6 (About the El-Gamal encryption scheme)
For all security parameter 7, let G, be a cyclic group of prime order p, € P such that log, p, = n and let g, € G,

be a generator of this group. The family of pairs & def ((Gpn,gn) of group and generator are considered to be

neN*
public knowledge. The El-Gamal encryption scheme EG def (keygengg, aencgg, adecgg) for the public parameters &
is defined as follows:

e keygenpg(n) takes as input a security parameter 7 € N* and generates a key pair (pk,sk) € G, x [, such

that pk def gf,k ;

° aenc]EG(pk7 m; r) takes as input a public key pk € G, , a message m € G, and a random value r € ), . Then,
outputs a ciphertext pair (g",m - pk") € ng. Notice that we can also write aencgg(pk,m) which implies that
this algorithm generates uniformly at random a public coin r € ), and becomes this way probabilistic.

1. Find the decryption algorithm adecpg.
2. Prove that this encryption scheme verifies the functional correctness property.
3. Prove that, for all public key pk € G, , the following function is a group homomorphism.:

ook s Gy, — GZQ,?7
m  — aencgg(pk, m)

Thus, we say that the El-Gamal encryption scheme is homomorphicS.
4. Prove that EG is OW — CPA-secure under the CDH assumption.
5. Prove that EG is IND — CPA-secure under the DDH assumption.
6. Is EG IND — CCA1l-secure?

5The functional correctness property for an asymmetric encryption scheme (aenc,adec) is given by:

adec(aenc(pk(sk), m,r),sk) = m.

61n this exercise, EG is a multiplicative homomorphic encryption scheme. We can also make this scheme additively homomorphic. When
a homomorphic encryption scheme HS is simultaneously multiplicative and additve, we say that HS is fully homomorphic.



