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A function f : N∗ −→ [0, 1] is negligible1 when we have :

∀P ∈ R[X], ∃nP ∈ N∗, ∀n > nP , 0 6 f(n) 6
1

|P (n)|
.

Exercise 1 (IND− CPA and advantage definitions)
The goal of this exercise is to present different ways to define the advantage of an adversary against a cryptographic
game. We will illustrate those on the IND− CPA security game for asymmetric encryption with only one challenge2.
For a security parameter η ∈ N∗, we define the set of random tapes Ωη to be a pair of two random tape sets
Ωη

def
=
(

Ωh
η,Ω

a
η

)
⊂ {0, 1}∗ × {0, 1}∗ where

• The set Ωh
η of honest random tapes is defined by

Ωh
η

def
= {0, 1}poly(η) such that ∀ ρh ∈ Ωh

η, ∃Pρh ∈ R[X], len(ρh) 6 |P (η)|.

Said otherwise, Ωh
η is the set of honest random tapes of length polynomial in the security parameter η. Besides,

we suppose that all random values generated with the honest random tape ρh are independent and chosen
uniformly at random:

n
ρh← N def⇐⇒ n

$← N .

Where · $← N denote the uniform distribution on N .

• The set Ωa
η of adversarial random tapes is defined by

Ωa
η

def
= {0, 1}poly(η).

Besides, no constraints are made on an adversarial random tape ρa, meaning that · ρa← N follows any probability
distribution the adversary choose to use. In particular, any random value computed with the random tape ρa
can depend of any previously generated values.

The IND− CPA security game for an asymmetric encryption scheme AES = (keygenAES, aencAES, adecAES) with ran-
domness set RAES is defined as follows in Game 1.

IND− CPAAAES
(
η, (ρh, ρa) ; β

)
– IND− CPA game for the AES scheme

(sk, pk)← keygenAES(η) ;
(m0,m1, st1)← A(η, pk ; ρa) ;
r
ρh← RAES ;

cβ ← aencAES(pk,mβ ; r) ;
b← A(cβ ; ρa, st1) ;
return b.

Game 1: INDistinguishability under Chosen Plaintext Attack cryptographic game

Now, we defines some variants of the advantage of A against the IND− CPA game as follows.

• (find-then-guess model) Given an asymmetric encryption scheme AES, the advantage of A against the
IND− CPA game for AES in the find-then-guess model is given by :

∀ η ∈ N∗, AdvAES
[
IND− CPA

∣∣ A] (η)

def
=

∣∣∣∣ 2 · Pr(ρh,ρa)∈Ωη

[
β ←G IND− CPAAAES

(
η, ρ ; β

) ∣∣ β ρh← {0, 1}
]
− 1

∣∣∣∣
1Notice that all polynomial function P ∈ R[X] have a finite set of roots. Thus, we implicitly suppose that nP ∈ N∗ is such that

nP > max
{
x ∈ R

∣∣P (x) = 0
}
.

2Notice that there exists also a multiple challenges definition of the IND− CPA game, but we will not consider this multiple challenges
to make this exercise easier. For the multiple challenges definition, we need to state the IND− CPA game with a challenge oracle which can
be called multiple times by the adversary.
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• (left-or-right model)Given an asymmetric encryption scheme AES, the advantage of A against the IND− CPA

game for AES in the left-or-right model is given by :

∀ η ∈ N∗, AdvAES
[
IND− CPA

∣∣ A] (η)
def
=

∣∣∣∣∣∣ Prρ∈Ωη

[
0←G IND− CPAAAES

(
η, ρ ; β = 0

) ]
−Prρ∈Ωη

[
0←G IND− CPAAAES

(
η, ρ ; β = 1

) ]
∣∣∣∣∣∣ .

• (real-or-random model) In this model, we redefine the IND− CPA game as follows :

IND− CPA− RoRAAES
(
η, (ρh, ρa) ; β

)
– Real-or-random IND− CPA game

(sk, pk)← keygenAES(η) ;
(m0, st1)← A(η, pk ; ρa) ;
r
ρh← RAES ; m1

ρh← {0, 1}len(m0) ;
cβ ← aencAES(pk,mβ ; r) ;
b← A(cβ ; ρa, st1) ;
return b.

Game 2: IND− CPA cryptographic game in the case of the real-or-random model

Then, the advantage of A against the IND− CPA− RoR game for AES in the real-or-random model is given by
:

∀ η ∈ N∗, AdvAES
[
IND− CPA− RoR

∣∣ A] (η)
def
=

∣∣∣∣∣∣ Prρ∈Ωη

[
0←G IND− CPA− RoRAAES

(
η, ρ ; β = 0

) ]
−Prρ∈Ωη

[
0←G IND− CPA− RoRAAES

(
η, ρ ; β = 1

) ]
∣∣∣∣∣∣ .

Let η ∈ N∗ be a security parameter. We say that the adversary A wins the IND− CPA game when

∀ ρ ∈ Ωη, ∀β ∈ {0, 1}, β = IND− CPAAAES
(
η, ρ ; β

)
.

1. Show that the encryption scheme must be randomized : otherwise, there exists an attacker that wins with
probability 1.

2. Prove that there exists an attacker that wins with probability
1

2
.

3. Show that the definitions of advantage for the find-then-guess and the left-or-right models are equal.

4. Show that the definitions of advantage for the left-or-right and the real-or-random models are related by a
factor at most 2.

Exercise 2 (Hardness assumptions on cyclic groups)
The goal of this exercise is to present a bunch of cryptographic assumptions over cyclic groups. Consider a (mul-
tiplicative) cyclic group Gp of prime order p ∈ P and a fixed public generator g ∈ Gp of Gp. In provable security,
we can suppose several cryptographic assumptions over a cyclic group to prove security of larger cryptographic
constructions (such as asymmetric encryption schemes or signature schemes) or protocols.
For two cryptographic games G1 and G2, we define a binary relation 4G on games to be :

G1 4G G2
def⇐⇒ G1 is at least as hard as G2.

More formally, G1 4G G2 means that, by contraposition, if an adversary A breaks (i.e. wins) the game G1 then there
exists another adversary B(A), built over adversary A, that breaks the G2 game.

1. Give, for each hardness problem HP of fig. 3, a corresponding cryptographic game GHP
[
Gp
]
.

2. Show the following relations between hardness assumptions over cyclic groups:

GDL
[
Gp
]
4G GCDH

[
Gp
]
4G

{
GDDH

[
Gp
]

GGDH
[
Gp
]
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Problem 1: Discrete Logarithm (DL)
problem Discrete Logarithm for group Gp is:

given y ∈ Gp.
computes x ∈ Fp such that y = gx.

Problem 2: Computational Diffie-Hellman (CDH)
problem Computational DH for group Gp is:

given
(
α

def
= ga, β

def
= gb

)
∈ G2

p.

computes γ ∈ Gp such that γ = gab.

Problem 3: Decisional Diffie-Hellman (DDH)
problem Decisional DH for group Gp is:

given
(
α

def
= ga, β

def
= gb, γ

def
= gc

)
∈ G3

p.

decides whether γ = gab.

Problem 4: Gap Diffie-Hellman (GDH)
problem Gap DH for group Gp is:

given
(
α

def
= ga, β

def
= gb

)
∈ G2

p.

computes γ ∈ Gp such that γ = gab

with oracle access to ODDH solving the DDH problem.

Figure 3: Bunch of hardness assumptions over cyclic groups.

Exercise 3 (A zoo of cryptographic games)
For the next description of security games, try to write it down properly. Be careful to the case where the adversary
A can do an arbitrary number of challenges : we need oracles3.

1. INDistinguishability under Chosen-Plaintext Attacks (IND− CPA) Give the multiple challenges version
of the IND− CPA game.

2. One-Wayness under Chosen-Plaintext Attacks (OW− CPA) Here, the adversary wants to recover the
whole plaintext from just the ciphertext and the public key.

3. One-Wayness under Plaintext-Checking Attacks (OW− PCA) Same as OW− CPA but additionally, it now
has access to an oracle that tell her if a given ciphertext c is the encryption of a message m. Be careful, some
restrictions must occur to avoid trivial wins for the adversary.

4. INDistinguishability under Validity-Checking Attacks (IND− VCA) Same as IND− CPA. Additionally,
it now has access to an oracle that tells her if a given bitstring is a valid ciphertext or not.

5. INDistinguishability under non-adaptive Chosen-Ciphertext Attacks (IND− CCA1) Same as IND− CPA

but additionally, it now has access to an oracle that decrypts ciphertext for her before the call to the challenge
oracle.

6. INDistinguishability under adaptive Chosen-Ciphertext Attacks (IND− CCA2) Same as IND− CPA

but additionally, it now has access to an oracle that decrypts ciphertext for her. Be careful, some restrictions
must occur to avoid trivial wins for the adversary.

Exercise 4 (Hardness relations between IND− CPA, IND− CCA1 and IND− CCA2 games)
In this exercise, we will try to give security relationship between IND− CPA, IND− CCA1 and IND− CCA2 games4.
Recall the 4G relations between games see in exercise 2. We say that a game G is secure when, for all adversary A
(modelled as Probabilistic Polynomial-time Turing Machine), we have:

η 7−→ Adv
[
G
∣∣ A] (η) is negligible in η.

1. Let G1 and G2 be two cryptographic games such that G1 4G G2. In this question, we will show the following
property:

G2 is secure =⇒ G1 is also secure. (Σ)

To do so, we proceed by contraposition. Suppose that G1 is not secure: meaning that there exists an adversary
A such that the function Adv

[
G1

∣∣ A] is non-negligible in η.
Using G1 4G G2, show that G2 is not secure.

2. Give and prove relations between games IND− CPA, IND− CCA1 and IND− CCA2 for the relation 4G using the
property eq. (Σ).

3Note: Do not hesitate to ask how we write cryptographic games in the case of arbitrary number of calls to oracles.
4To learn more about hierarchy between indistinguishability security notions in the case of Fully Homomorphic Encryption (FHE)

schemes, see the thesis of Marc Renard:

https://theses.hal.science/tel-05421880v1/file/157007_RENARD_2025_archivage.pdf
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3. Do we have relations in the opposite direction?

Exercise 5 (About the RSA encryption scheme)
The RSA encryption scheme RSA = (keygenRSA, aencRSA, adecRSA) is defined as follows:

• keygenRSA(η) takes as input a security parameter η ∈ N∗. Computes two random primes p, q ∈ P such that
log2 p > η and log2 q > η. Then, computes n = pq and φ(n) = (p−1)(q−1) (the Euler function). Chooses some
exponent e ∈ Zn such that e ∧ φ(n) = 1 and e 6 φ(n). Finally, outputs (sk, pk) where sk

def
= e−1 mod [φ(n)]

is the secret key and pk
def
= (n, e) is the public key.

• aencRSA
(
m, pk = (n, e)

)
returns me mod [n] on inputs a message m ∈ Zn and a public key pk ∈ N× Zn.

1. Find the decryption algorithm adecRSA.

2. Prove that this encryption scheme verifies the functional correctness property5.

The security of the RSA encryption scheme relies on a specific assumption called the RSA assumption.

Problem 5: RSA assumption
problem RSA for group Zn is:

given
(
n

def
= pq, e, y

)
∈ N× N× Z∗n such that p, q ∈ P and e ∧ φ(n) = 1.

computes x ∈ Zn such that y = xe mod [n].

3. Is RSA OW− CPA-secure under the RSA assumption?

4. Is RSA OW− PCA-secure under the RSA assumption?

5. Is RSA IND− CPA-secure under the RSA assumption?

Exercise 6 (About the El-Gamal encryption scheme)
For all security parameter η, let Gpη be a cyclic group of prime order pη ∈ P such that log2 pη > η and let gη ∈ Gpη
be a generator of this group. The family of pairs G

def
=
(
Gpη , gη

)
η∈N∗ of group and generator are considered to be

public knowledge. The El-Gamal encryption scheme EG def
= (keygenEG, aencEG, adecEG) for the public parameters G

is defined as follows:

• keygenEG(η) takes as input a security parameter η ∈ N∗ and generates a key pair (pk, sk) ∈ Gpη × Fpη such

that pk def
= gskη ;

• aencEG
(
pk,m ; r

)
takes as input a public key pk ∈ Gpη , a message m ∈ Gpη and a random value r ∈ Fpη . Then,

outputs a ciphertext pair
(
gr,m · pkr

)
∈ G2

pη . Notice that we can also write aencEG(pk,m) which implies that
this algorithm generates uniformly at random a public coin r ∈ Fpη and becomes this way probabilistic.

1. Find the decryption algorithm adecEG.

2. Prove that this encryption scheme verifies the functional correctness property.

3. Prove that, for all public key pk ∈ Gpη , the following function is a group homomorphism:

ϕpk : Gpη −→ G2
pη

m 7−→ aencEG(pk,m)

Thus, we say that the El-Gamal encryption scheme is homomorphic6.

4. Prove that EG is OW− CPA-secure under the CDH assumption.

5. Prove that EG is IND− CPA-secure under the DDH assumption.

6. Is EG IND− CCA1-secure?

5The functional correctness property for an asymmetric encryption scheme (aenc, adec) is given by:
adec(aenc(pk(sk),m, r), sk) = m.

6In this exercise, EG is a multiplicative homomorphic encryption scheme. We can also make this scheme additively homomorphic. When
a homomorphic encryption scheme HS is simultaneously multiplicative and additve, we say that HS is fully homomorphic.
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