
Reducing memory consumption of ProVerif with hash consing

techniques

Margot Catinaud, under supervision of Vincent Cheval at PROSECCO / Inria Paris

March - August 2022

The general context

Cryptographic protocols aim at securing communications. They are used in various applica-
tions: secure message establishment, electronic voting, mobile communications, etc. However,
there are three main difficulties to design such a secure protocol. First one is about cryp-
tography, we need secure enough cryptographic primitives, i.e. reductible to sufficiently hard
problems such as the discrete logarithm problem or the number factorization problem. Second
one is about hardware, there may exist security flaws in the implementation of protocols (such
as Heartbleed in OpenSSL) or in design of hardware (such as SPECTRE or Meltdown attacks
on Intel processors). Finally, the third one is about designing a protocol itself. Indeed, there ex-
ists attacks such as man-in-the-middle attacks which can by-pass the security of cryptographic
primitives or leak cryptographic keys. For example, older versions of the TLS (Transport Layer
Security) protocol, which is used to secure internet browsing (the ’S’ of HTTPS) have the three
types of flaws listed above. Therefore, it has become common practice to analyse the security of
a protocol using formal methods and in particular automatic tools. In this paper, we will focus
on the third type of vulnerability, namely those introduced at the design stage of the protocol
itself. Several tools have been proposed for automatized security analysis of protocols, ProVerif
is one of them [3].

This tool is often preferred for large and complex protocols such as TLS [2] or Signal [12]. In
order to check whether a property of security is verified or not, we have to give a model for the
attacker. In the litterature, there exists three main models for the attacker. The first one is the
model of Dolev-Yao, which is only symbolic. In this model, we give to the attacker the ability
to compute any function they want and generate any value; this is the model used by ProVerif.
The second model corresponds to a computational model where the attacker is a probabilistic
polynomial-time Turing machine. The tool CryptoVerif, developped by Bruno Blanchet [4], use
this model. Finally, the third one is the model of Bana-Common which is a symbolic approach
in the computational model. In this model, we talk about a computationally complete symbolic
attacker. The tool Squirrel, developped by Adrien Koutsos [1], uses this last model.

Problem studied

Actually, verifying real-life protocols costs a lot of machine resources, especially memory.
As an order of magnitude, the TLS protocol with Encrypted ClientHello (ECH) extension can
use between 10 and 100 GB of memory depending on the security properties we want to prove.
Moreover, proving security properties is a difficult problem that is not specific to ProVerif.
In fact, it is an undecidable problem in general but under some conditions it is a CO-NEXP
problem. It therefore appears necessary to optimise the automatic verification tools both in
terms of time and memory in order to be able to go further in the verification of protocol

1



prototypes. In the case of ProVerif, given a protocol and a security property, it may either
prove that the property is satisfied or exhibit an attack. It may also return ”cannot be proved”
meaning that it can not reach a conclusion. Recent improvements to ProVerif, such as the
addition of lemmas and axioms [9], have resulted in a significant speed-up of resolutions (by
a factor of 30 to 40). This memory problem is crucial because of computers capacities limits.
This is why the objective of my internship is to propose ProVerif improvements on memory
consumption using hash consing techniques.

Proposed contributions

We have added a new internal library to ProVerif which allows us to adapt the classic
techniques of hash consing to the internal representation of terms, thus maximising memory
sharing. In particular, with this new library, two semantically equal messages will be guaranteed
to be physically equal (they will point to the same address in memory). Once this representation
was added, we had to adapt the classical operations of ProVerif on terms such as matching or
unification. The internal algorithm of ProVerif being mainly based on the saturation of Horn
clauses, a maximal sharing of the memory within each clause but also within the whole set of
Horn clauses generated by ProVerif allows us to considerably reduce the memory consumption.
While maximizing memory sharing within a clause is fairly straightforward, for Horn clauses
sets, the problem becomes much more difficult due to the presence of variables that may have
to be considered as distinct in two different clause sets.

The results of implementations are available on the following repository gitlab:
https://gitlab.inria.fr/bblanche/proverif on the branch hashconsing.

Arguments supporting its validity

A formal framework has been proposed to formalise algorithms that perform operations on
hash-consed terms. We were able to test the validity of this framework by giving a proof of
correctness for the new version of the algorithm performing syntactic unification. Furthermore,
it has been shown that the new data structure for terms and adapted algorithms saves between
two and ten times more memory. These differences in gain depend very much on the protocol
as well as the type of security properties one is trying to prove. If hash consing techniques are
costly in time, the improvement of unification and matching algorithms allows us to mitigate
this cost. For example, in the case of TLS + ECH, for the same set of tests to resolve certain
security properties, while the old version of ProVerif required between 1 and about 150 GB of
memory, the new version requires only between 1 and 6 GB. Actually, the very design of this
protocol implies that there is a lot of redundancy in the messages, this is why this protocol
naturally invites memory sharing, which is indeed shown by the performance tests.

Summary and future work

During my internship, we proposed a new structure for the terms hash consed which gives
us an equivalence between physical equality and syntactic equality. Thus, the equality on the
terms is now in constant time. In addition, we adapted some algorithms that could be improved
with the help of the new term structure. Moreover, we have proposed a prototype for sharing
variables in a set of Horn clauses. This being said, some improvements can still be made, such as
adapting more algorithms in order to make less conversions between the terms and the classical
ones. Moreover, the proposal of sharing variables within a set of Horn clauses is currently time
efficient but not optimal in term of memory space.

2



I Presentation of ProVerif

A cryptographic protocol can be seen as a recipe for what messages to exchange in order to
establish a secure communication between a client and a server. These messages are exchanged
over a network (such as the Internet) that is assumed to be controlled by an attacker. As an
example, in the case of the man-in-the-middle attack where the attacker is an intermediary on
the network between the client and the server. In the Dolev-Yao model, the messages exchanged
by the protagonists of a protocol correspond to terms in which the cryptographic primitives are
seen as unbreakable black boxes.

Let us present an example of a toy protocol, the Needham-Shroeder protocol which consists
basically in a handshake.

A −→ B : enc((A,nA), pk(B))
B −→ A : enc((nA, nB), pk(A))
A −→ B : enc(nB, pk(B))

Figure 1: The Needham-Shroeder protocol

Our toy protocol uses an public-key encryption/decryption scheme which corresponds to
an idealised version of cryptographic primitives. In the symbolic model, these primitives are
modelled by inference rules. As an example, if a cypher message m = enc(x, pk(A)) is encrypted
by a public-key pk(A), we can deduce the original message x from m as soon as we know the
private-key sk(A). This corresponds to the following inference rule:

enc(x, pk(A)) sk(A)
dec

x

One security property that comes naturally from the definition of the Needham-Shroeder
protocol is the following: Is the attacker able to deduce nB from the messages they saw on the
network? This is an example of secrecy property (we will talk later about different type of
security property which can be proved by ProVerif). In the Dolev-Yao model, we assume that
the protocol is executed in presence of an attacker, model by predicate att(·), that can intercept
all messages, compute new messages from the messages it has received and send any message
it can build.

Here is a diagram that summarises the core of the algorithm that ProVerif uses to verify
security properties on a given protocol.

Figure 2: ProVerif’s algorithm in a nutshell [10]

3



To model protocols, ProVerif comes with its own core language, an extension of pi-calculus,
whose syntax is specified in annex A. With this extension, it is the terms that are communicated
over the network for which standard operational semantics have been added to model what is
transiting and the inputs are terms constructed by the attacker from their initial knowledge
and previous outputs. Once the protocol and queries for security properties has been written
in the ProVerif language, it is abstracted into Horn clauses. The syntax for these clauses is as
follows:

M, N ::= terms
x variable
a[M1, . . . ,Mn] name
f(M1, . . . ,Mn) function application

F ::= p(M1, . . . ,Mn) fact

R ::= F1 ∧ . . . ∧ Fn ⇒ F Horn clause

Figure 3: Syntax of Horn clauses

In our current protocol example, its transformation in Horn clauses includes the following
clauses:

Computation abilities for the attacker
encryption att(x) ∧ att(k)⇒ att(enc(x, k))
decryption att(enc(x, k)) ∧ att(k)⇒ att(x)
pairing att(x) ∧ att(y)⇒ att((x, y))
proj-left att((x, y))⇒ att(x)
proj-right att((x, y))⇒ att(y)
public key att(id)⇒ att(pk(id))

The protocol

initial knowledge ⇒ att(pk(A[])), ⇒ att(pk(B[]))
first message ⇒ att(enc((A[], nA[]), pk(B[])))
second message att(enc((x, y), pk(B[])))⇒ att(enc((y, nB[enc((x, y), pk(B[]))]), x))
third message att(enc((nA[], y), pk(A[])))⇒ att(enc(y, pk(B[])))

The query(ies) att(nB).

Figure 4: Result of the transformation in Horn clauses for the Needham-Shroeder protocol

The next step is called saturation and is based on the following resolution inference rule:

H ∧ F ⇒ C H ′ ⇒ C ′ σ = mgu(F,C ′)
(Res)

Hσ ∧H ′σ ⇒ Cσ

where mgu is for most-general unifier, its definition will be given in subsection IV.1.
Let us focus more on the saturation process that is applied until a fixpoint is found. This

core algorithm consists of several steps.

• Step 1: Resolution Basically, this step consists in application of the rule (Res). However
for a clause where the attacker can apply a function h, att(x)⇒ att(h(x)), resolution can

4



be applied as much as we want, producing this way the facts att(hn(x)) for any integer
n ∈ N. Hence, we need to guide resolution step by a selection function sel which is a
function from clauses to sets of facts, such that sel(H ⇒ C) ⊆ H. If F ∈ sel(R), we
say that F is selected in R. If sel(R) = ∅, we say that no hypothesis is selected in R, or
that the conclusion of R is selected. Actually, the selection function used in ProVerif is
the following:

sel(H ⇒ C) =


∅ if for all fact F ∈ H, there exists a variable x such that

F = att(x)
{F0} where F0 ∈ H and for all x variable, F0 ̸= att(x)

Hence the resolution rule becomes

H ∧ F ⇒ C H ′ ⇒ C ′ σ = mgu(F,C ′) F ∈ sel(H ∧ F ⇒ C) sel(H ′ ⇒ C ′) = ∅
Hσ ∧H ′σ ⇒ Cσ

• Step 2: Simplification If we apply resolution alone, it will not terminate because the
current set of clauses will always increase. However, care must be taken to ensure that
the simplifications to the clause are sound. For instance, we can remove tautologies, i.e.
clauses of the form H ∧ F ⇒ F . Another example is simplifying facts corresponding
to knowledge of the attacker under some conditions, i.e. simplify clauses of the form
H ∧ att(x)⇒ C into H ⇒ C when x appears nowhere else in the clause.

• Step 3: Elimination Finally, it may be that a clause subsumes (i.e. is more general
than) the clause R′ we want to add to the current set of Horn clauses. If this is the case,
there is no need to add R′, we can eliminate it. Otherwise, we add R′ to the set and
eliminate the clauses subsumed by this clause.

To summarise the saturation procedure, a diagram from a presentation on the verification
of cryptographic protocols [10] is shown in figure 5.

Figure 5: Summary of the saturation procedure

5



Finally, we can verify whether the set of clauses corresponding to the query(ies) are derivable
from the saturated set of clauses. In particular, as an example, we say secrecy of some message
s is preserved if the fact att(s) is not logically deductible from the set of Horn clauses. If
a derivation is found, there may exists an attack on the protocol and otherwise, the security
property holds!

Actually, ProVerif can verify various security properties, by using an adequate translation
into Horn clauses:

• secrecy properties: the adversary cannot compute certain values.

• authentication properties: if some participant Alice thinks she talks to Bob, then she
really talks to Bob. Authentication is formalized by correspondance properties of the
form: if some event has been executed, then some other event has been executed. Events
can represent that Alice concluded the protocol apparently with Bob, or that Bob started
the protocol, apparently with Alice.

• equivalence properties: the adversary cannot distinguish an implementation of a protocol
from its specification, hence its ensures privacy properties. Equivalence properties are a
powerful notion to specify security properties (such as anonymity and privacy), but they
are also difficult to verify. ProVerif can verify only a strong notion of equivalence, named
diff-equivalence, between protocols that have the same structure but differ only by the
messages they exchange.

II Hashconsing

As we saw in previous section, Horn clauses are defined by terms. Let X be an infinite set
of variables. Let F =

{
fi/ni | i ∈ I

}
be a finite signature where I ⊂ N is a finite set and for

i ∈ I, fi/ni represents a function symbol fi with its arity ni. We define terms as variables or
application of a function symbol on terms, denoted T (X ,F). Actually, terms have a structure
of trees where leaf are either variables or function symbols of arity 0 and nodes are application
of a function symbol. For instance, if b, x, c, k ∈ X and F = {enc/2, ⟨·, ·⟩/2,⊕/2} then the term
t = enc(b⊕ ⟨x, c⟩, k) is represented as following:

Figure 6: Example of representation of term t in tree

In OCaml, the definition of generic terms in T (X ,F) will be:

type term =

| Var of variable

| FunApp of fun_symb * term list

However, as OCaml does not natively support memory sharing, we may have a term with
two syntactically (i.e. structurally equal) but not physically equal subterms. For a protocol

6



such as TLS, its design implies the existence of many syntactically equal subterms. This is why
the current version of ProVerif uses between 10 and 100 GB of memory for this protocol.

To perform a compression of terms in a Horn clause, we will use hash consing techniques as
described in [11], but we need to adapt them to the specifications of ProVerif. In fact, generic
variables in ProVerif are associated to a given type and are identified by an unique id. Hence
the structure of a term can not be anymore a syntactic tree but an acyclic oriented graph.

Definition II.1 (Term-graph) A term-graph G is an acyclic oriented graph such that:

• nodes of G are labeled by either a variable from X or a function symbol from F

• a node labeled by f/n ∈ F has n children

• a node labeled by x ∈ X is a leaf

Given a node η from G, we will denote by λG(η) its label and by γiG(η) the i-th child of η. When
clear from context, we will omit G and write λ(η) and γi(η).

For instance, the terms f(x, g(y, z)) and f(g(y, z), g(a, a)) (with a/0, f/2, g/2 ∈ F and
x, y, z ∈ X ) are represented by the following term-graph:

Figure 7: Example of term-graph

Moreover, we do not want to use more storage for any algorithm or function on hash consed
terms. Thus, we will define the notion of links associated to term-graphs which will allow to
store results in the graph itself. We implement those links by a special type defined by:

type hcterm_link =

| HCNoLink

| HCVisited of bool

| HCTerm of hcterm

| HCResult of hcterm

| HCResultInt of int

| HCResultIntInt of int * int

| HCResultTermInt of hcterm * int

| HCBasicTerm of term

Hence, in OCaml, a hash consed term will be modeling as a record:

type hcterm = {

hc_tag: int;

7



hc_desc: hcterm_desc;

mutable hc_link: hcterm_link;

}

Regarding the ability for the garbage collector of OCaml to reclaim the hash consed terms
that are not referenced anymore (from anywhere else than the hash consed table), the solution
is to use weak pointers. That’s why we will use the functor

Weak.Make (H: Hashtbl.HashedType)

Thus, we implement hash table for hash consed terms in this way:

module HashConsing = struct

type t = hcterm

let equal hct1 hct2 = match hct1.hc_desc,hct2.hc_desc with

| HCVar hcv, HCVar hcv' -> hcv == hcv'
| HCFunApp(f1,args1), HCFunApp(f2,args2) ->

f1 == f2 && List.for_all2 (==) args1 args2

| _ -> false

let hash hct = match hct.hc_desc with

| HCVar hcv -> hcv.hc_vname.idx

| HCFunApp(f,args) ->

List.fold_left (fun acc hct -> acc * 65599 + hct.hc_tag)

(f.f_record) args

end

module HashConsingTbl = Weak.Make (HashConsing)

In fact, this implementation was heavily inspired from the paper on hash consing techniques
[11] but we have proposed our own functions equal and hash. These new functions are more
efficient because they assume that the subterms have already been hash consed, hence they only
look at the current node without following its childrens. The field hc tag in hcterm type is an
integer that uniquely identifies the term; this is why it is used to calculate the hash of a hcterm.

Thanks to implementation of the Weak library, we have the following theorem:

Theorem II.1 For hash consed terms, we have an equivalence between physical equality (de-
noted by ( == )) and syntactic equality (denoted by ( = )).

In particular, all the algorithms that we are going to implement on hash consed term will
process each syntactically different subterms at most once. This is why we have added all these
constructors to the type of link hcterm link.

Representation in Horn clauses is not unique, a clause R = H ⇒ C is invariant by renam-
ing variables, obviously ensuring if two variables are distinct before renaming, then these two
variables remains distinct after. Because of this invariant, we want to share variables as much
as possible inside a given set of Horn clauses. Remember the saturation process. The first step
is to choose two clauses R and R′ such that the first one is such that R = H ∧ F ⇒ C with
F ∈ sel(H ∧ F ⇒ F ) and the second one is such that R′ = H ′ ⇒ C ′ with sel(H ′ ⇒ C ′) = ∅.
A clause such as R is called unsolved and a clause such as R′ is called solved. Consequently we
have at least two databases, i.e. set of clauses, one for unsolved and another one for solved.

8



Procedure to convert a generic term to a hash consed term. In order to convert terms,
we have to use a hash table. Indeed, this table have its own accumulator which is an integer
identifying in a unique way each hash consed term. In order to build an element of type hcterm,
we start to build an element with a temporary hc tag set to the value of the accumulator. As
the function hash does not use this field, we can lookup in the hash table associated to the
database D if the element is already present. If it is, we return the corresponding element of the
table. If not, the temporary tag is a good one, so we can increment the database accumulator
value by 1. We denote by build node the smart constructor of type

build_node : fun_symb -> hcterm list -> hcterm

performing hash consing for nodes corresponding to function application. On the other hand,
we note by fresh hcvariable the smart constructor of type

fresh_hcvariable : bool -> renamable_id -> typet -> hcterm

performing hash consing for nodes corresponding to variables.

Procedure to add a clause R to a given database D. The database D of clauses is also
accompagnied by a set of variables X (D) used in clauses already present and which is maintained
through the lifetime of D. The main idea is to copy the clause R from the database where it
belongs to the new database while taking care to rename the variables in order to maximise
sharing. To do so, first we need to duplicate the set of variables X (D) into a second set X0.
Then, the first time we see a given variable x in R we have two cases. If there is no more
variable in the set X0, i.e. X0 = ∅, we must create a new variable x̃ which we will immediatly
add to the set X (S). Otherwise, we choose a variable x̃ ∈ X0 which we remove from this set
immediatly. Finally, we replace x by x̃ in R. This is how the new version of the R clause is
built as we go along, also making good use of the build node function. In fact, during this
procedure, all intermediary results are stored thanks to the link [HCResult] which makes it
possible to optimise the procedure in time. When all variables R are renamed, we add this new
clause to the database D and we delete all links corresponding to intermediary results (we will
explain later how this cleaning works).

Indeed, this procedure does not allow to completely optimize the number of subterms of
a clause database. The idea of the following problem is then to give a formalization to a
compression algorithm that would allow to compress the number of different subterms within
the same database.

Problem Let t1, . . . , tn ∈ T (X ,F) be n terms. Find the set of bijective renaming functions
{ρi}ni=1 that minimises the quantity

Card

(
n⋃

i=1

Subterms(tiρi)

)
.

IV Operations on hash consed terms

IV.1 Formal framework

Now that we have a suitable structure for memory sharing, it is time to adapt the main
ProVerif’s algorithms in order to take full advantage of our new term representation. Hence,
in this section we will start by give a formal framework to ensure correctness of the adapted
algorithms. As shown by diagram given in figure 5, some algorithms are crucial for saturation:
for example unification both syntactic and modulo an equational theory.

9



As we have chosen to store results of our functions with the mutable type hcterm link

directly in our structure of hcterm, we need to formalise side effects of our functions. Let us
start by giving a formal definition for our links, with the definition of linking functions. Notice
that as we will only be dealing with unification, the following definition for the linking functions
contains only those links that are useful for unification, namely the constructors [HCNoLink],
[HCTerm] and [HCVisited].

Definition IV.1 (Linking function) Given a term-graph G, we say δ is a partial linking
function for G when the domain of δ is a subset of nodes of G and for all η ∈ dom(δ),

δ(η) ∈
{
ΛT (η′) | η′ ∈ G

}
∪
{
ΛV (b) | b ∈ {⊤,⊥}

}
where

• ΛV (·) is used to mark a visited node during a depth-first search algorithm

• ΛT (·) denote a link toward another node.

We denote by ∆(G) the set of linking functions for G.

For a function func with n arguments
(
ηi
)n
i=1

over nodes of a term-graph G and with a

linking function δ ∈ ∆(G), we denote by func
[
δ
] (

η1, . . . , ηn
)
the application of func with

context δ. We denote by res
[
δ
]
the result of a function. Therefore, if we apply a function func

on n nodes (ηi)
n
i=1 in the original context corresponding to the linking function δ and whose

call result is res in a new context δ′ modelling the edge effects having taken place at the time
of the call to this function func, we will write:

func
[
δ
] (

η1, . . . , ηn
)
= res

[
δ′
]
.

In reality, the resulting linking function δ′ is not constructed in any way, it ”derives” from the
original linking function δ by keeping a certain order.

Definition IV.2 (Partial order on linking functions) We define a partial ordered relation
on ∆(G) by

δ ≼ δ′ ⇐⇒
{

dom(δ) ⊆ dom(δ′)
∀ η ∈ dom(δ),

[
∃ η′ ∈ G, δ(η) = ΛT (η′)

]
=⇒ δ′(η) = δ(η).

(1)

Let η be a node of a term-graph G. Let us define some notations. First, we denote by
termG(η) the term in T (X ,F) corresponding to subgraph of G with η as root without following
any linking function: if λG(η) ∈ X then termG(η) = λG(η) and otherwise, i.e. λG(η) = f/n ∈ F ,
termG(η) = f(termG(γ

1
G(η)), . . . , termG(γ

n
G(η))).

Then, given a linking function δ, we want to introduce notations in order to take it into
account. We denote by Γδ

G(η), for η ∈ G, the set of nodes connected by the linking function
δ: if η ∈ dom(δ) and there exists η′ ∈ G such that δ(η) = ΛT (η′) then Γδ

G(η) = {η} ∪ Γδ
G(η

′)
and otherwise, Γδ

G(η) = {η}. Given η, it may be linked to a node which is itself linked etc. We
therefore denote by findδG(η) the node in G obtained by following links given by function δ: if
η ∈ dom(δ) and there exists η′ ∈ G such that δ(η) = ΛT (η′) then findδG(η) = η′ and otherwise,
findδG(η) = η.

Finally, the term corresponding to subgraph with root η in G where all the links are fol-
lowed is denoted by followδG(η) and it is defined by: if findδG(η) = η′ with λG(η

′) ∈ X then
followδG(η) = η′ otherwise, i.e. if findδG(η) = η′ with λG(η

′) = f/n ∈ F , followδG(η) =
f(followδG(γ

1
G(η

′)), . . . , followδG(γ
n
G(η

′))).
However, it can be seen that the quantities findδG(η) and followδG(η) may not be well-

defined. We therefore need to establish a notion of well-foundation for the linking functions.

10



Definition IV.3 (Well-foundation) Let δ be a linking function for G. We say δ is well-
founded when δ generates no cycle, i.e. when findδG(η) is well-defined for all node η ∈ G and
δ link no node to ΛV (⊥) or ΛV (⊤), i.e. for all η ∈ dom(δ), δ(η) /∈ {ΛV (⊤),ΛV (⊥)}.

Unfortunately, this definition is not sufficient for the quantity followδG(η) to be well-defined.
Indeed, it is possible that a cycle following both the links given by the linking function δ and
the edges of the term-graph G appears. Let us start by defining a relation →δ on the nodes
that expresses the fact that a first node is connected to another one either by following a link
or by following an edge. For all nodes η, η′ ∈ G such that η →δ η

′ then either δ(η) = ΛT (η′) or
η /∈ dom(δ), λG(η) = f/n ∈ F and there exists i ∈ [[1 ; n]] such that η′ = γiG(η). We write →∗

δ

for the reflexive and transitive closure of →δ. Considering two nodes η and η′ of G such that
η →∗

δ η
′ (respectively η →+

δ η′), we say η′ is δ-reachable (resp. strictly δ-reachable) from η.

Definition IV.4 (δ-cycle) Let η be a node of a term-graph G and δ a linking function of G.
We say there is a δ-cycle in G δ-reachable from η when there exists a node η′ ∈ G such that η′

is δ-reachable from η and η′ is strictly δ-reachable from η′, i.e. η →∗
δ η

′ →+
δ η′. In addition, we

say G is δ-cycle free if for all η ∈ G there is no δ-cycle in G δ-reachable from η.

We notice that if a term-graph G is δ-cycle free, then G does not contains cycles of links.
Thus, δ is well-founded. Moreover, we have the following lemma

Lemma IV.1 Let η ∈ G be a node of a term-graph G and δ be a well-founded linking function.
Suppose there is no δ-cycle in G δ-reachable from η. Then the quantity followδG(η) is well-
defined.

IV.2 Syntactic unification

Remember the resolution step during saturation of a set of Horn clause. This step uses the
following rule:

H ∧ F ⇒ C H ′ ⇒ C ′ σ = mgu(F,C ′) F ∈ sel(H ∧ F ⇒ C) sel(H ′ ⇒ C ′) = ∅
Hσ ∧H ′σ ⇒ Cσ

In fact, this rule uses syntactic unification, the first algorithm discussed in this very subsection.
A substitution is a function σ mapping variables to terms σ : X −→ T (X ,F). An application of
a substitution over a term is naturally defined by induction over the term in which variables are
replaced by terms. We say two terms u, v ∈ T (X ,F) are (syntactically) unifiable if and only if
there exists a substitution σ such that uσ = vσ. An unifier σ is called the most-general unifier of
terms u, v ∈ T (X ,F) if for any other unifier θ of these two terms then there exists a substitution
θ′ such that θ = σ ◦ θ′.

Within a term-graph G, a substitution is modelled by the links [HCTerm]. Given a linking
function δ, we then define the notion of substitution induced by δ as follows:

subst(δ) =
[
λG(η) 7→ followδG(η) | η ∈ dom(δ) ∧ λG(η) ∈ X

∧ ∃ η′ ∈ G, δ(η) = ΛT (η′)
] (2)

The following lemma then expresses that this notion is indeed what was expected.

Lemma IV.2 Let η be a node of a term-graph G and δ a well-founded linking function. Suppose
G without δ-cycle. Then

followδG(η) = termG(η)subst(δ).

11



To unify two terms u, v ∈ T (X ,F), represented in a term-graph G, we will use an improved
version of syntactic unification. Indeed, when we wish to unify a variable with a function
application, it is necessary to ensure that we do not introduce a cycle, this is the occur-check
procedure. With this procedure, the syntactic unification algorithm can be exponential in the
number of nodes of the term-graph G in the worst case scenario. To reduce this complexity to
a quadratic algorithm, the syntactic unification algorithm can be divided into 2 main steps (as
specified in slides [13] about the speeding up the unification algorithm):

1. Unify the terms without worrying about whether or not a cycle is introduced, this is the
cyclic unify procedure.

2. Check if a cycle has been introduced, this is the no cycle procedure.

IV.2.1 Step 1: Unification procedure that can introduce cycles

We suppose we have a function add new link such that if δ is a linking function, η, η′ /∈
dom(δ) two nodes of G then add new link

[
δ
] (

η, η′
)
= ()

[
δ′
]
with δ ≼ δ′, δ(η) = ΛT (η′) and

dom(δ′) = dom(δ)⊔{η}. In algorithm 1, δ(η)← ΛT (η′) is a shortcut for add new link
[
δ
] (

η, η′
)
.

Initially, to call function cyclic unify, we suppose that δ is well-founded.

Algorithm 1: Algorithm for syntactic unification that can introduce cycles.

let rec cyclic unify η1 η2 =
(u, v)←

(
findδG(η1), find

δ
G(η2)

)
;

if u != v then
if λG(u) ∈ X then

δ(u)← ΛT (v)
else if λG(v) ∈ X then

δ(v)← ΛT (u)
else if λG(u) != λG(v) then

failure
else In this case, we have: λG(u) == λG(v) = f/n ∈ F

δ(u)← ΛT (v) ;

List.iter2 cyclic unify
(
γiG(u)

)n
i=1

(
γiG(v)

)n
i=1

We observe that, for any linking function δ, the quantity NG(δ) = Card(G\dom(δ)) strictly
decreases with each call of cyclic unify, which thus ensures its termination. Indeed, each
time a new a link is added to some node η, it is a node without link, i.e. such that η /∈ dom(δ).
This is what we are assured by the definition of the quantity findδG(η).

The second observation that can be made is the addition of a link in the case of two nodes
with the same function symbol as a label. In reality, this link is only there for complexity
reasons and has no influence on the substitution induced by the corresponding linking function.
Indeed, in the case where the algorithm cyclic unify succeeds and it has not introduced any
δ-cycle, then the terms corresponding to these two nodes are in particular unifiable.

Finally, we also observe that the algorithm is called recursively only in the case of a node
without link. As the number of nodes without link is reduced by one for each call, this means
that there can be only a linear number of calls to cyclic unify. Actually, due to the findδG(·)
operation, cyclic unify is quadratic in the worst case scenario. As explain in [13], this com-
plexity can be improved by modifying functions findδG(·) and add new link. In the case of
function findδG(·), it can be done by limiting the depth of the links, i.e. by limiting the quan-
tity M δ

G = maxη∈G Γδ
G(η). On the other hand, in the case of add new link, the goal is to

12



choose the node η that minimises the cardinal of the set {η′ | findδG(η) = η}. However, this
last improvement is costly to maintain, which is why we have chosen to not implement it.

The following theorem expresses the fact that our algorithm is correct in the sense that if
the procedure does not introduce a cycle, then we have calculated the most-general unifier of
the two terms represented by the nodes η1 and η2 we give to the algorithm.

Theorem IV.1 (Correctness of cyclic unify) For all term-graph G, for all nodes η1, η2 ∈
G, for all well-founded linking function δ, if G is δ-cycle free, then

• If cyclic unify
[
δ
] (

η1, η2
)
fails then followδG(η1) and followδG(η2) are not unifiable.

• Otherwise, cyclic unify
[
δ
] (

η1, η2
)
= ()

[
δ′
]
. In this case, δ ≼ δ′ and

1. If G has a δ′-cycle then followδG(η1) and followδG(η2) are not unifiable.

2. Otherwise,

(i) There exists a substitution α such that subst(δ′) = subst(δ) ◦ α.
(ii) followδ

′
G(η1) = followδ

′
G(η2), i.e. subst(δ′) is an unifier of termG(η1) and

termG(η2), i.e. termG(η1)subst(δ
′) = termG(η2)subst(δ

′).

(iii) α is the most-general unifier of termG(η1)subst(δ) and termG(η2)subst(δ).

Proof Proof of this theorem will be given in annex B.1. □

Now that we have a functional algorithm for unification, it is time to present the algorithm
for checking whether a cycle has been introduced or not.

IV.2.2 Step 2: Cycle detection in a term-graph

We can find a δ-cycle in G by a depth-first search with function no cycle given in algo-
rithm 2. For this detection algorithm, we want it to be linear in the number of nodes of G in
the worst case scenario. To do this, we will use the [HCVisited true] and [HCVisited false]
links (modelled respectively by ΛV (⊤) and ΛV (⊥)). When we start to explore a node, we note
it ”in progress” (i.e. ΛV (⊥)) and when the exploration is finished, we note it ”finished” (i.e.
ΛV (⊤)). Furthermore, if we reach a node with the status ”in progress”, this means that we
have found a δ-cycle. Otherwise, if we reach a node with the status ”finished”, it means that
this node has already been explored and does not produce any δ-cycle.

Algorithm 2: Algorithm for δ-cycle detection in a term-graph.

let rec no cycle η =
if δ(η) = ΛV (⊥) then

failure
else if δ(η) = ΛV (⊤) then

()
else if δ(η) = ΛT (η′) then

δ(η)← ΛV (⊥) ;
no cycle η′ ;
δ(η)← ΛV (⊤)

else In this case, we have: η /∈ dom(δ)
if λ(η) = f/n ∈ F then

δ(η)← ΛV (⊥) ;
List.iter no cycle

(
γi(η)

)n
i=1

;

δ(η)← ΛV (⊤)

13



We suppose we have two functions mark node⊥ and mark node⊤ such that if δ is a linking
function, η is a node of G and b ∈ {⊤,⊥} then mark nodeb

[
δ
] (

η
)
= ()

[
δ′
]
with δ ≼ δ′,

δ′(η) = ΛV (⊤) and dom(δ′) = dom(δ) ∪ {η}. In algorithm 2, δ(η) ← ΛV (b) is a shortcut for
mark nodeb

[
δ
] (

η
)
.

For this algorithm, we observe that the quantity

µ(δ) = Card(G) − Card({η | δ(η) = ΛV (⊥) or ΛV (⊤)})

stricly decreases with each call to the function. Moreover, we notice that the links to ΛV (⊤)
and ΛV (⊥) each verify an invariant which is preserved at any stage of no cycle. These are the
two following invariants:

• Let B(δ) = {η | δ(η) = ΛV (⊥)}. The predicate Inv1(δ, η, δ′, η′) holds when there exists
η1, . . . , ηn ∈ G such that B(δ′) = {η1, . . . , ηn}, η1 = η, ηi →δ ηi+1 for all i ∈ [[1 ; n − 1]]
and ηn →δ η

′.

• Let T (δ) = {η | δ(η) = ΛV (⊤)}. The predicate Inv2(δ, δ′) holds when δ ≼ δ′ and for all
η ∈ T (δ′), for all η′ and η′′ such that η →∗

δ η
′ →+

δ η′′, we have η′ ̸= η′′.

Because these invariants are preserved at any stage of the no cycle algorithm (see annex B.2
for statement of lemma B.7 and its proof), we can therefore prove its correctness.

Theorem IV.2 (Correctness of no cycle) Let η ∈ G be a node and δ a well-founded linking
function on G. We have the following property:

no cycle
[
δ
] (

η
)
= ()

[
δ′
]
⇐⇒ There is no δ-cycle in G δ-reachable from node η.

Proof Proof will be given in annex B.2. □

IV.2.3 Final step: Combine the previous algorithms!

First of all, let us notice that the no cycle algorithm has added links to ΛV (⊥) and ΛV (⊤).
However, these links only have a role for the cycle detection algorithm, we want to remove
them at the end if we have indeed not introduced a cycle when calling cyclic unify and thus
find the correct induced substitution. Hence, suppose we have a linear function auto cleanup

which verifies the following property. Let δ be a linking function on a term-graph G. For a func-
tion func : unit -> 'a such that func

[
δ
] (

()
)
= func ()

[
δ′
]
then auto cleanup

[
δ
] (
func

)
=

func ()
[
δ
]
. i.e. auto cleanup saves the linking function δ, executes a function func (which

possibly creates a new linking function δ′ with δ ≼ δ′) and finally restores starting linking func-
tion δ. If function func fails with error err, auto cleanup catches this error, restores δ and
reproduces err. Then, using this special function, we define function unify syntactic by:

Algorithm 3: Final algorithm for syntactic unification.

let unify syntactic η1 η2 =
cyclic unify η1 η2;
auto cleanup ( fun () → no cycle η1 )

This algorithm first calls the cyclic unify function, then the no cycle function and finally
the auto cleanup function to clean links introduced by no cycle.

Finally, we obtain the correctness of the syntactic unification algorithm as an immediate
consequence of previous functions correctness theorems.

14



Theorem IV.3 (Correctness of unify syntactic) For all term-graph G, for all η1, η2 ∈ G,
for all δ ∈ ∆(G) well-founded, if G is δ-cycle free, then

• If unify syntactic
[
δ
] (

η1, η2
)
fails then followδG(η1) and followδG(η2) are not unifiable.

• Otherwise, unify syntactic
[
δ
] (

η1, η2
)
= ()

[
δ′
]
. In this case, δ ≼ δ′ and

(i) There exists an α such that subst(δ′) = subst(δ) ◦ α.
(ii) followδ

′
G(η1) = followδ

′
G(η2), i.e. subst(δ

′) is an unifier of termG(η1) and termG(η2),
i.e.

termG(η1)subst(δ
′) = termG(η2)subst(δ

′).

(iii) α is the most-general unifier of termG(η1)subst(δ) and termG(η2)subst(δ).

Proof Proof of this theorem will be given in annex B.3. □

IV.2.4 A short example

To conclude this subsection, we will give an example of our unification algorithm adapted
to the structure of directed acyclic graphs. Let us take as an example the terms f(x, g(y, z))
and f(g(y, z), g(a, a)) for which we have given the corresponding term-graph in figure 7. We
define by δ0 the empty linking function, i.e. such that dom(δ0) = ∅. Here is the visual result of
the following call:

unify syntactic
[
δ0
] (

η1, η2
)
= ()

[
δ
]
.

Figure 8: Visual result of an example for unify syntactic

Hence, we have followδG(η1) = followδG(η2) = f(g(a, a), g(a, a)). However, terms given by
function termG(·) remains unchanged:

termG(η1) = f(x, g(y, z)) and termG(η2) = f(g(y, z), g(a, a)).

Moreover, the substitution induced by δ is subst(δ) =
[
x 7→ g(y, z), y 7→ a, z 7→ a

]
.

15



IV.3 Formal framework for unification modulo an equational theory

A short presentation of the model of Dolev-Yao was given in the first section: cryptographic
primitives are black boxes modelled by a set of equations. As an example, functions for encryp-
tion enc and decryption dec are modelled by

dec(enc(x, k), k) = x enc(dec(x, k), k) = x (Eenc/dec)

In fact, in order to determine to verify a query, we need to determine whether a clause R
is derivable from another clause R′. We therefore need to know whether these two clauses are
unifiable modulo an equational theory defining in particular the behaviour of cryptographic
primitives.

Formally, we define a set of equations associated to a set of function symbols f/n ∈ F as
a set E =

{
ui = vi

}m
i=1

with ui, vi ∈ T (X ,F) for each i ∈ [[1 ; n]]. We define equality modulo
the equational theory of E as an equivalence relation over terms in T (X ,F) such that for all
i ∈ [[1 ; m]], ui =E vi. Moreover, this relation is closed by substitution (i.e. for any substitution
σ, if t =E u then tσ =E uσ) and closed by context application (i.e. for all f/n ∈ F , for all terms
t1, . . . , tn, u ∈ T (X ,F) and for all i ∈ [[1 ; n]], if ti =E u then f(t1, . . . , ti−1, ti, ti+1, . . . , tn) =E
f(t1, . . . , ti−1, u, ti+1, . . . , tn)).

Actually, handling an equational theory E directly in a Horn clause is difficult, this is why
ProVerif translate E into a set of rewriting rules. Hence, to handle those equations during
translation of a protocol to a set of Horn clauses, we translate from a signature with equations
to a signature without equations. With it, verification can continue to rely on ordinary syntactic
unification, and remains very efficient. Formally, each function symbol f/n ∈ F is associated to
a set of rewriting rules, denoted by defF (f/n). For all function symbol f/n ∈ F , we associate
a syntactic function symbol denoted by f∗/n. This syntactic function symbol will never be
rewritten. We denote by T ∗(X ,F) the set of fully-syntactic terms, that is to say terms with
only syntactic function symbols. This notion of syntactic function symbol already existed in
ProVerif but was never formalized before. In fact, giving a formal framework for this type of
function symbol allowed us to find a bug in the unification algorithm modulo an equational
theory.

A rewriting rule is denoted by f(u1, . . . , un) → r where u1, . . . , un, r ∈ T ∗(X ,F). Also, we
suppose that for all f/n ∈ F , the rule f(u1, . . . , un) → f∗(u1, . . . , un) is always in defF (f/n).
In particular, we have:

∀ f/n ∈ F , defF (f/n) ̸= ∅.

We define a big-step evaluation on terms as a relation t ⇓ u such that

1. For all syntactic term u ∈ T ∗(X ,F), u ⇓ u.

2. For all f/n ∈ F and t1, . . . , tn ∈ T (X ,F), if f(u1, . . . , un) → u ∈ defF (f/n) and if
there exists a substitution σ such that for all i ∈ [[1 ; n]], ti ⇓ wi and wi = uiσ, then
f(t1, . . . , tn) ⇓ uσ.

3. For all f/n ∈ F and t1, . . . , tn ∈ T (X ,F), if for all i ∈ [[1 ; n]], ti ⇓ ui then
f∗(t1, . . . , tn) ⇓ f∗(u1, . . . , un).

Given a term t ∈ T (X ,F), there may exists more than one syntactic term u ∈ T ∗(X ,F)
such that t ⇓ u. Indeed, the term t can be evaluated in several different ways, depending on
the number of rewriting rules for each function symbol involved in this term. This is why we
define the set nf(t) =

{
u ∈ T ∗(X ,F) | t ⇓ u

}
.

We say a rewriting system S models a set of equations E when

16



1. The equational theory of E corresponds to the syntactic equality over the set of syntactic
terms T ∗(X ,F): for all syntactic terms u1, u2 ∈ T ∗(X ,F), u1 =E u2 ⇐⇒ u1 = u2.

2. If the rule t→ u is in S then t =E u.

3. For each function symbol f/n ∈ F and for each rewriting rule f(u1, . . . , un)→ u ∈ S then
f(u1, . . . , un) =E u.

4. For each function f/n ∈ F , if f(t1, . . . , tn) =E t then there exists a rewriting rule
f(u1, . . . , un) → u ∈ S and a substitution σ such that t ⇓ w and w = uσ, ti ⇓ wi

and wi = uiσ for all i ∈ [[1 ; n]].

As an example, with the encryption/decryption scheme, we can define the following rewriting
system

enc(x, k)→ enc∗(x, k) dec(x, k)→ dec∗(x, k)
enc(dec∗(x, k), k)→ x dec(enc∗(x, k), k)→ x

(Senc/dec)

Thus, the rewriting system Senc/dec models the set of equations Eenc/dec.
The following conjecture expresses the fact that our two notions are consistent: to say that

two terms are equal modulo an equational theory is to say that these terms share an identical
normal form.

Conjecture IV.1 For all terms t1, t2 ∈ T (X ,F), we have:

t1 =E0 t2 ⇐⇒ ∃u ∈ T ∗(X ,F), t1 ⇓ u and t2 ⇓ u.

Now we can define what a most-general unifier is in the sense of unification modulo an
equational theory. As the normal forms of the terms are not unique, it may be that these
most-general unifier are not unique, that is why we speak rather of partial most-general unifier.

Definition IV.5 (Partial most-general unifiers) Let E be an equational theory on the set
F of function symbols. Let u, v ∈ T (X ,F) be two terms. We say {σ1, . . . , σn} is a complete
set of partial most-general unifiers of u and v relative to the equational theory E if

• for all i ∈ [[1 ; n]], σi is an unifier of u and v: uσi =E vσi.

• for all substitution α such that uα =E vα then there exists a substitution θ and an integer
i ∈ [[1 ; n]] such that α =E σi ◦ θ.

IV.4 Algorithms for unification modulo an equational theory

Naively, we can proceed as following:

• Choose two normal forms for terms u and v and try to syntactically unify results terms;

• If it is a success, we found a partial most-general unifier. If it fails, we go back to first
bullet point;

• If all choices for rewriting rules result in a failure, u and v are not unifiable in sense of
unification modulo an equational theory.

In the following, algorithms will be given in a non-deterministic way. We denote by

choose res from func arg1 . . . argN

17



the selection of some result res from the call to func arg1 . . . argN where func is a function
of arity N and has type func : τ1 → · · · → τN → τ .

Since the algorithm for unification modulo an equational theory creates new nodes, we add
to our notation for functions the term-graph in which the node belongs. If we apply a function
func on n nodes (ηi)

n
i=1 in the original context of a linking function δ in a term-graph G and

its result is res in the context of the new linking function δ′ associated to the term-graph G′,
we will write:

func
[
G, δ

] (
η1, . . . , ηn

)
= res

[
G′, δ′

]
.

Also, we suppose we dispose of a function fresh copy such that fresh copy
[
δ
] (

η
)
returns

a node η′, root of a new graph G′ isomorphic to the subgraph of G rooted by η but with variables
not already linked renamed, follows links given by the linking function δ and preserves δ, i.e.
we have

fresh copy
[
G, δ

] (
η
)
= η′

[
G′, δ

]
.

In order to give a first version of modulo unification of an equational theory based on
syntactic unification, we start by defining an algorithm to give a normal form of a term.

Algorithm 4: Algorithm to compute a normal form of a term.

let rec normal form η =
if δ(η) = ΛT (η′) then

return normal form η′

else if λG(η) ∈ X then
return η

else if λG(η) = f/n ∈ F then
if is syntactic f then

choose γ1, . . . , γn from normal form γ1G(η), . . . , normal form γnG(η);
η′ := build node f [γ1, . . . , γn];
return η′

else
choose a rule (γl, γr) from defF (f/n);
(γ′ℓ, γ

′
r) := fresh copy (γℓ, γr);

choose γ′1, . . . , γ
′
n from normal form γ1G(η), . . . , normal form γnG(η);

choose (), . . . , () from unify syntactic γ1(η′ℓ) γ
′
1, . . . ,

unify syntactic γn(η′ℓ) γ
′
n;

return η′r

Conjecture IV.2 (Correctness of normal form) Let η be a node of a term-graph G and δ
be a linking function well-founded over G.

Let η′ be a node of a new term-graph G′ associated to a new linking function δ′ such that
choose η′ from normal form

[
G, δ

] (
η
)
. If G and G′ are δ′-cycle free then terms given by

t = followδ
′

G(η) and u = followδ
′

G′(η′) verify t ⇓ u.

Now that we have given an algorithm for calculating a normal form and stated its correction,
we can give the algorithm for modular unification.

Algorithm 5: Version 1 of algorithm for unification modulo an equational theory.

let unify modulo η1 η2 =
choose η′1 from normal form η1;
choose η′2 from normal form η2;
unify syntactic η′1 η′2

18



Because function unify syntactic is correct (theorem IV.3), correctness of this algorithm
is based on correctness of function normal form. Hence, the following conjecture for correctness
of unify modulo derives from the corresponding conjecture for normal form.

Conjecture IV.3 (Correctness of unify modulo) For all term-graph G, for all nodes η1, η2 ∈
G, for all well-founded linking function δ on G, if G has no δ-cycle, then

• If unify modulo
[
G, δ

] (
η1, η2

)
fails then there is no partial most-general unifier for terms

given by followδG(η1) and followδG(η2).

• Otherwise, unify modulo
[
G, δ

] (
η1, η2

)
= ()

[
G′, δ′

]
then

(i) There exists a substitution α such that subst(δ′) = subst(δ) ◦ α.
(ii) α is a partial most-general unifier of terms followδG(η1) and followδG(η2).

(iii) The set
{
α | subst(δ′) = subst(δ) ◦ α ∧ unify modulo

[
G, δ

] (
η1, η2

)
= ()

[
G′, δ′

]}
is

a complete set of partial most-general unifiers of followδG(η1) and followδG(η2).

To get better performance for this algorithm, we can start by using the same principle as
for syntactic unification: namely to split the procedure into 2 intermediate steps. The first
step is therefore the modular unification which can introduce cycles and the second step is the
verification of the absence of cycles. The other aspect that can be improved is to choose the
rewriting rules as the unification proceeds rather than calculating a normal form and applying
the syntactic unification algorithm. Indeed, if one chooses the rules as one goes along, one can
prune branches of the exploration tree of normal forms that are not syntactically unifiable. A
version taking into account these remarks of the algorithm for unification modulo an equational
theory is then given in annex C.

V Benchmarks

Number Version of ProVerif Gain
Protocol of files 2.04 2.04 h1

Speed Memory Speed Memory Speed Memory

Distribution 134 1 m 13 s 4.4 GB 1 m 20 s 4.2 GB 0.9 1

TLS 4 0 h 22 m 5.6 GB 0 h 16 m 0.5 GB 1.4 10.7

Noise Explorer 42 0 h 16 m 5.4 GB 0 h 15 m 2.4 GB 1.1 2.3

Arinc823 18 0 h 10 m 5.6 GB 0 h 12 m 2.1 GB 0.9 2.7

Signal 13 1 h 7 m 21.9 GB 1 h 10 m 3.3 GB 1 6.7

Neuchatel 9 0 h 5 m 0.1 GB 0 h 6 m 0.1 GB 0.8 1.2

TLS + ECH - 2 h 48 m 162 GB 2 h 59 m 5.6 GB 0.9 29

Table 1: Benchmarks for speed gain and memory consumption.

In fact, we have also implemented an improved version of matching. We say two terms
t, u ∈ T ∗(X ,F) matches when there exists a substitution σ such that t = uσ. This algorithm
is useful for subsumption, as can be seen in the following definition:

Definition V.1 (Subsumption) We say that H1 ⇒ C1 subsumes H2 ⇒ C2, and we write
(H1 ⇒ C1) ⊒ (H2 ⇒ C2), if and only if there exists a substitution σ such that C2 = C1σ and
H1σ ⊆ H2 (in sense of multiset inclusion).

19



We will therefore carry out benchmarks with the improved algorithms for syntactic uni-
fication and for matching. As can be seen from the table 1, the performance results for the
”Distribution” files show that some time has been lost. In fact this category, which contains a
large number of files, is composed of files that correspond to small protocols like the Needham-
Shroeder protocol given in [section I - figure 1]. This slight loss in time can be explained by the
time taken by the algorithms to convert a term of type term into a term of type hcterm.

In addition, the differences in memory gains between the different file groups have a large
variation. This variation is simply explained by the greater or lesser use of algorithms that have
not yet been improved. Perhaps the most impressive result is that of the file group implementing
a lightweight version of TLS, where the gain was tenfold. This result can be explained by the
high message redundancy intrinsic to the TLS design. Indeed, in addition to the improvements
made to the algorithms, there is also the ”entropy” of the set of messages to take into account.
The lower this ”entropy” is, i.e. the more redundancy there is in the terms involved in Horn
clauses, the greater is the compression in the form of DAG.

Conclusion and future work

Let us look again at the diagrams corresponding to the general algorithm used by ProVerif
(given in figure 2) and the details of the saturation procedure (given in figure 5).

First, in section II we saw how to abstract a protocol giving in the core language of ProVerif
in a hash consed version of Horn clauses, namely as directed acyclic graphs, which we call term-
graphs. Second, in subsection IV.2, we gave a version of the syntactic unification algorithm,
specifically designed to work on term-graphs, as well as the proof of its correctness. This
algorithm, used during clause resolution, allows us to improve the first step of the saturation
procedure. And thirdly, in subsection IV.4, we gave a new version of the algorithm for unification
modulo an equational theory. This type of unification is used to determine whether a clause is
derived from another, i.e. within the verification procedure of the security property. However,
although one may believe in the accuracy of this new version, we have not given formal proof
of it. For this reason, although this algorithm has been implemented in the ProVerif code, we
have chosen not to connect it to the rest of the code yet. This is indeed our first future work.

All in all, this leaves the step of simplifying the Horn clauses and their subsumption to be
adapted to work with the new representation. In fact, a new version of matching has already
been implemented, which has improved a little the subsumption algorithm. Finally, the number
of subterms is not yet fully optimised, the problem given in section II being still to be solved.
For this, one idea would be to start by estimating its complexity class, intuitively this problem
seems to have a high complexity. Based on this estimation, the approach would then be to give
an algorithm approximating the exact solution as much as possible. This expensive algorithm
will not be called each time a clause is added to a database. It will rather be called at regular
intervals of the number of added clauses.

As the issue of memory management is not specific to the ProVerif tool, a possible extension
of this work is to integrate these improvements into other tools for formal verification of security
properties.

20



References

[1] David Baelde et al. “An Interactive Prover for Protocol Verification in the Computational
Model”. In: 42nd IEEE Symposium on Security and Privacy. 2021. url: https://hal.
archives-ouvertes.fr/hal-03172119/document.

[2] Karthikeyan Bhargavan, Bruno Blanchet, and Nadim Kobeissi. “Verified Models and Ref-
erence Implementations for the TLS 1.3 Standard Candidate”. In: 2017 IEEE Symposium
on Security and Privacy, SP 2017, San Jose, CA, USA, May 22-26, 2017. IEEE Com-
puter Society, 2017, pp. 483–502. url: https://bblanche.gitlabpages.inria.fr/
publications/BhargavanBlanchetKobeissiSP2017.pdf.

[3] Bruno Blanchet. “Automatic Verification of Security Protocols in the Symbolic Model:
The Verifier ProVerif”. In: Foundations of Security Analysis and Design VII - FOSAD
2012/2013 Tutorial Lectures. Ed. by Alessandro Aldini, Javier López, and Fabio Mar-
tinelli. 2013. url: https://bblanche.gitlabpages.inria.fr/publications/BlanchetFOSAD14.
pdf.

[4] Bruno Blanchet. “CryptoVerif: A Computationally-Sound Security Protocol Verifier”. In:
2017. url: https://bblanche.gitlabpages.inria.fr/CryptoVerif/cryptoverif.
pdf.

[5] Bruno Blanchet. ProVerif manual. url: http://prosecco.gforge.inria.fr/personal/
bblanche/proverif/manual.pdf.

[6] Bruno Blanchet. “Security Protocol Verification: Symbolic and Computational Models”.
In: Principles of Security and Trust - First International Conference, POST 2012, Held as
Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2012,
Tallinn, Estonia, March 24 - April 1, 2012, Proceedings. Ed. by Pierpaolo Degano and
Joshua D. Guttman. Vol. 7215. Lecture Notes in Computer Science. Springer, 2012, pp. 3–
29. url: https://bblanche.gitlabpages.inria.fr/publications/BlanchetHDR.pdf.

[7] Bruno Blanchet. “The Security Protocol Verifier ProVerif and its Horn Clause Resolution
Algorithm”. In: 9th Workshop on Horn Clauses for Verification and Synthesis. Ed. by
Open Publishing Association. 2022. url: http://bblanche.gitlabpages.inria.fr/
publications/BlanchetHCVS22.html.

[8] Bruno Blanchet. “Using Horn Clauses for Analyzing Security Protocols”. In: Formal Mod-
els and Techniques for Analyzing Security Protocols. Ed. by Véronique Cortier and Steve
Kremer. Vol. 5. Cryptology and Information Security Series. IOS Press, 2011, pp. 86–111.
url: https://bblanche.gitlabpages.inria.fr/publications/BlanchetBook09.
html.

[9] Bruno Blanchet, Vincent Cheval, and Véronique Cortier. “ProVerif with Lemmas, Induc-
tion, Fast Subsumption, and Much More”. In: 43rd IEEE Symposium on Security and Pri-
vacy, SP 2022, San Francisco, CA, USA, May 22-26, 2022. IEEE, 2022, pp. 69–86. url:
https://bblanche.gitlabpages.inria.fr/publications/BlanchetEtAlSP22.pdf.

[10] Vincent Cheval and Lucca Hirshi. In: Verification of cryptographic protocols. Ed. by
ECJIM 2021. 2021.

[11] Jean-Christophe Filliâtre and Sylvain Conchon. “Type-safe modular hash-consing”. In:
Proceedings of the ACM Workshop on ML, 2006, Portland, Oregon, USA, September 16,
2006. Ed. by Andrew Kennedy and François Pottier. 2006. url: https://www.lri.fr/

~filliatr/ftp/publis/hash-consing2.pdf.

21



[12] Nadim Kobeissi, Karthikeyan Bhargavan, and Bruno Blanchet. “Automated Verification
for Secure Messaging Protocols and Their Implementations: A Symbolic and Computa-
tional Approach”. In: 2017 IEEE European Symposium on Security and Privacy, Eu-
roS&P 2017, Paris, France, April 26-28, 2017. IEEE, 2017, pp. 435–450. url: https://
bblanche.gitlabpages.inria.fr/publications/KobeissiBhargavanBlanchetEuroSP17.

pdf.

[13] Temur Kutsia. In: Introduction to Unification Theory - Speeding up. 2016. url: https:
/ / www3 . risc . jku . at / education / courses / ss2016 / unification / slides / 02 _

Syntactic_Unification_Improved_Algorithms.pdf.

Annexes

A ProVerif syntax

M, N ::= terms
x variable (x ∈ X )
a[M1, . . . ,Mn] name (fa/na ∈ F)
f(M1, . . . ,Mn) function application (f/n ∈ F)

ev ::= events
e(M1, . . . ,Mk) (e ∈ F)

D ::= expressions
M term
h(D1, . . . , Dk) function application (h ∈ F)
fail failure

P,Q ::= processes
0 nil
out(N,M);P output
in(N, x);P input
P | Q parallel composition
!P replication
new a;P restriction
insert tbl(M1, . . . ,Mn);P table insertion
get tbl(x1, . . . , xn) suchthat D then P else Q table lookup
let x = D then P else Q assignment
event(ev);P event

Figure 9: Syntax of the core language of ProVerif

22



B Proofs

B.1 Proof of theorem IV.1

Lemma B.1 Let η be a node of a term-graph G and δ a well-founded linking function. Then

∀ η′ ∈ Γδ
G(η), find

δ
G(η

′) = findδG(η).

Moreover, if G is δ-cycle free, then

∀ η′ ∈ Γδ
G(η), follow

δ
G(η

′) = followδG(η).

Proof Let δ ∈ ∆(G) be a well-founded linking function on G. We will show the properties by
recursion over n the cardinal of Γδ

G(η) for all η ∈ G.

Base case: n = 0. Let η ∈ G be a node such that Card(Γδ
G(η)) = 1. In this case we must

have Γδ
G(η) =

{
η
}
. Consequently, we have the recursion property true for n = 1.

Inductive step: let n ∈ N∗. Let η ∈ G and suppose we have Card(Γδ
G(η)) = n. Because n > 1,

we must have δ(η) = ΛT (η′) with η′ ∈ G. Therefore, Γδ
G(η) =

{
η
}
∪Γδ

G(η
′) with Card(Γδ

G(η
′)) =

n− 1. By recursion hypothesis, we have: ∀ η′′ ∈ Γδ
G(η

′), findδG(η
′′) = findδG(η

′). Moreover, as
δ(η) = ΛT (η′) and by definition of findδG(·), we have findδG(η) = findδG(η

′). Hence, for all η′ ∈
Γδ
G(η), find

δ
G(η

′) = findδG(η). Now suppose G without δ-cycle. Then followδG(η) is well defined
by lemma IV.1. By recursion hypothesis, we have: ∀ η′′ ∈ Γδ

G(η
′), followδG(η

′′) = followδG(η
′′).

By definition of followδG(·), we have followδG(η) = followδG(find
δ
G(η)). However, find

δ
G(η) =

findδG(η
′). Consequently, followδG(η) = followδG(find

δ
G(η

′)) = followδG(η
′). Hence, for all

η′ ∈ Γδ
G(η), follow

δ
G(η

′) = followδG(η). □

Lemma B.2 Let δ be a linking function for G. If δ is well-founded then for all nodes η, η′ ∈ G
such that δ(η) = ΛT (η′), we have η ̸= η′.

Lemma B.3 Let δ be a linking function for G. Let η be a node of G. Let η′ ∈ Γδ
G(η) be a node

linked to η. Let δ′ be a second linking function such that δ ≼ δ′.
Then followδ

′
G(η) = followδ

′
G(η

′).

Proof As η′ is in the set Γδ
G(η) there exists η1, . . . , ηn such that η1 = η, ηn = η′ and δ(ηi) =

ΛT (ηi+1) for all i ∈ [[1 ; n− 1]]. Moreover, by hypothesis, we have δ ≼ δ′. This means we have
δ′(ηi) = δ(ηi) = ΛT (ηi+1). Consequently, η′ is also in the set Γδ′

G(η). Finally, by lemma B.1, we
can conclude followδ

′
G(η) = followδ

′
G(η

′) which completes the proof. □

Lemma B.4 Let η, η′ ∈ G be two nodes corresponding to the same function symbol f/n. Let δ a
well-founded linking function such that η, η′ /∈ dom(δ) and G is δ-cycle free. Let δ′ be the linking
function such that add new link

[
δ
] (

η, η′
)
= ()

[
δ′
]
. Let σ be an unifier of terms followδG(η)

and followδG(η
′).

If G is δ′-cycle free then σ is still an unifier of terms followδ
′

G(η) and followδ
′

G(η
′).

Lemma B.5 Let δ ∈ ∆(G) be a linking function for G. If δ is well-founded then NG(δ) > 0.

Proof Let η ∈ G be a node. Because δ is well-founded, findδG(η) terminates. Thus, there exists
a node η′ ∈ Γδ

G(η) such that findδG(η) = η′ and η′ /∈ dom(δ) or δ(η′) ∈
{
ΛV (b) | b ∈ {⊤,⊥}

}
.

However, because δ is well-founded, no node is link to a value in {ΛV (⊤),ΛV (⊥)}. Hence, there
exists a node η′ /∈ dom(δ). Thus, NG(δ) ⩾ 1. □

23



Lemma B.6 Let η be a node of a term-graph G. Let δ be a well-founded linking function such
that G is δ-cycle free. Let η′ be a node of G such that η →∗

δ η
′.

Then the term s = followδG(η
′) is a subterm of t = followδG(η). Moreover, if η ̸= η′, then

s is a strict subterm of t.

Proof We will prove this lemma by induction on relation η →∗
δ η′. We note s = followδG(η

′)
and t = followδG(η).

Base case: η = η′. In this case, we have s = t i.e. s is a subterm of t.

Inductive step: there exists a node η′′ ∈ G such that η →δ η
′′ →∗

δ η
′. By induction hypothesis,

s is a subterm of term given by followδG(η
′′). Now we have to distinguish two cases according

to the definition of η →δ η
′′.

• If η ∈ dom(δ) and δ(η) = ΛT (η′′). In this case, by lemma B.1, we have followδG(η
′′) =

followδG(η). Thus, s is a subterm of t.

• Otherwise, if η /∈ dom(δ) and λG(η) = f/n ∈ F . In this case, there exists i ∈ [[1 ; n]] such
that η′′ = γiG(η). Moreover, we have t = f(followδG(γ

1
G(η)), . . . , follow

δ
G(γ

n
G(η))). Thus,

as s is a subterm of followδG(η
′′), s is a subterm of t. □

Theorem B.1 (Correctness of cyclic unify) For all term-graph G, for all nodes η1, η2 ∈
G, for all well-founded linking function δ, if G is δ-cycle free, then

• If cyclic unify
[
δ
] (

η1, η2
)
fails then followδG(η1) and followδG(η2) are not unifiable.

• cyclic unify
[
δ
] (

η1, η2
)
= ()

[
δ′
]
then δ ≼ δ′ and

1. If G has a δ′-cycle then followδG(η1) and followδG(η2) are not unifiable.

2. Otherwise,

(i) There exists an α such that subst(δ′) = subst(δ) ◦ α.
(ii) followδ

′
G(η1) = followδ

′
G(η2), i.e. subst(δ′) is an unifier of termG(η1) and

termG(η2), i.e.

termG(η1)subst(δ
′) = termG(η2)subst(δ

′).

(iii) α is the most-general unifier of termG(η1)subst(δ) and termG(η2)subst(δ).

Proof We will proceed by induction over NG(δ). Let u = findδG(η1) and v = findδG(η2). As
δ is well-founded, the nodes u and v exists. Moreover, by lemma B.5, the base case is for
NG(δ) = 1.

Base case: NG(δ) = 1 In this case, we must have u == v because their exists only one node
η⊥ ∈ G such that η⊥ /∈ dom(δ). Hence, by definition of algorithm 1, we have
cyclic unify

[
δ
] (

η1, η2
)
= ()

[
δ
]
. Moreover, by hypothesis, G is δ-cycle free. With α = id, we

obtain subst(δ) = subst(δ) ◦ α and followδG(η1) = followδG(η2). Finally, for all σ unifier of
terms termG(η1)subst(δ) and termG(η2)subst(δ), we clearly have σ = id◦σ = α◦σ. Therefore,
α = id is the most-general unifier of termG(η1)subst(δ) and termG(η2)subst(δ). Consequently,
induction properties are true for NG(δ) = 1.

Inductive step: Let NG(δ) ∈ N∗. If u == v, we have cyclic unify
[
δ
] (

η1, η2
)
= ()

[
δ
]
and we

conclude as in base case. Let’s focus now on the case where u != v. Firstly, if λG(u) = f1/n1 ∈
F , λG(v) = f2/n2 ∈ F and f1/n1 != f2/n2, then cyclic unify

[
δ
] (

η1, η2
)
fails. Moreover, we

have, by definition of followδG(·):

24



• followδG(η1) = f1(follow
δ
G(γ

1
G(u)), . . . , follow

δ
G(γ

n1
G (u))) and

• followδG(η2) = f2(follow
δ
G(γ

1
G(v)), . . . , follow

δ
G(γ

n2
G (v)))

As f1 != f2, f1 ̸= f2, thus, terms given by followδG(η1) and followδG(η2) are not unifiable.
Otherwise, without loss of generality, we can suppose either λG(u) ∈ X or λG(u) == λG(v) =
f/n ∈ F . Hence, in those cases, we have add new link

[
δ
] (

u, v
)
= ()

[
δ′
]
with δ ≼ δ′ by

hypothesis on add new link.

• Case λG(u) ∈ X : In this case, we have cyclic unify
[
δ
] (

η1, η2
)
= ()

[
δ′
]
. We must now

analyse whether or not a link has been introduced.

– If there is a δ′-cycle in G. As G is δ-cycle free dom(δ′) = dom(δ) ⊔ {u} by hypothesis
on add new link and u != v, one has u →δ′ v →+

δ u. However, as v /∈ dom(δ) and
dom(δ′) = dom(δ) ⊔ {u}, we have v /∈ dom(δ′). Consequently, we have λG(v) = f/n ∈
F . As λG(u) ∈ X , the variable λG(u) occurs in term

f(followδG(γ
1
G(v)), . . . , follow

δ
G(γ

n
G(v))).

Finally, we have followδG(η1) = λG(u) and

followδG(η2) = f(followδG(γ
1
G(v)), . . . , follow

δ
G(γ

n
G(v))).

Thus, terms given by followδG(η1) and followδG(η2) are not unifiable.

– If G is δ′-cycle free. In this case, by lemma IV.1, for all node η ∈ G, quantity
followδ

′
G(η) is well-defined. Let α =

[
λG(u) 7→ followδ

′
G(u)

]
.

(i) Because dom(δ′) = dom(δ) ⊔ {u} and by (2), one has

subst(δ′) =
[
λG(η) 7→ followδ

′
G(η) | η ∈ dom(δ) ∧ λG(η) ∈ X ∧ . . .

]
◦
[
λG(u) 7→ followδ

′
G(u)

]
Let η ∈ dom(δ) such that λG(η) ∈ X and there exists η′ ∈ G such that δ′(η) =
ΛT (η′). We note x = λG(u), t = followδ

′
G(η) and s = followδG(η).

Case 1: if s = x ∈ X . In this case, η = u and, by definition of α, t = xα.
Case 2: if s = y ∈ X with y ̸= x. In this case, by definition of δ′, we have
t = s = sα. Case 3: if s = f(s1, . . . , sn) with ti = siα for all i ∈ [[1 ; n]]. In this
case, we have t = f(t1, . . . , tn). Hence t = sα. Consequently, by induction, we
have followδ

′
G(η) = followδG(η)α. Thus subst(δ′) = subst(δ) ◦ α.

(ii) Secondly, we have

followδ
′

G(η1) = followδ
′

G(u)(
because u ∈ Γδ

G(η1), δ ≼ δ′ and by lemma B.3
)

= followδ
′

G(v)(
because δ′(u) = ΛT (v)

)
= followδ

′
G(η2)(

because v ∈ Γδ
G(η2), δ ≼ δ′ and by lemma B.3

)
By lemma IV.2, we have termG(η1)subst(δ

′) = termG(η2)subst(δ
′), i.e. subst(δ′)

is an unifier of termG(η1) and termG(η2).

25



(iii) Let x = λG(u) and t = termG(v)subst(δ). Let σ be an unifier of those two
terms. Because σ is an unifier, we have xσ = tσ. Thus, we have xσ = xασ.
Moreover, for all variables y ∈ X such that y ̸= x, we have yα = y and so
yασ = yσ. Consequently, we have σ = α ◦ σ and finally α is the most-general
unifier of x and t.

• Case λG(u) == λG(v) = f/n ∈ F . In this case, we have to apply cyclic unify to all
pair of childrens

(
(γiG(u), γ

i
G(v))

)n
i=1

. As NG(δ
′) = NG(δ) − 1, we can apply induction

hypothesis. We note t and s terms given by t = followδG(η1) and s = followδG(η2).
Moreover, we note ti for i ∈ [[1 ; n]] the term given by ti = followδG(γ

i
G(u)) and by si the

term given by si = followδG(γ
i
G(v)). Finally, we note δ1 = δ′. Let us discriminate our

analysis according to whether the call cyclic unify
[
δ
] (

η1, η2
)
fails or not.

– If cyclic unify
[
δ
] (

η1, η2
)
fails. Let i ∈ [[1 ; n]] be the minimal integer such that for

all 1 ⩽ j < i, cyclic unify
[
δj
] (

γjG(u), γ
j
G(v)

)
= ()

[
δj+1

]
and

cyclic unify
[
δi
] (

γiG(u), γ
i
G(v)

)
fails. We must now split our analysis according to

the existence of an integer j ∈ [[1 ; i]] such that G has a δj-cycle or not.

1. If j = 1 i.e. if G has a δ1-cycle. Then there exists an integer i ∈ [[1 ; n]] such
that u →δ1 v →δ γiG(v) →∗

δ u. By lemma B.6, t is a strict subterm of s. If
we assume by the absurd t and s are unifiable, there exists a substitution σ such
that tσ = uσ. In particular, terms given by tσ and sσ have the same amount
of function symbols. Because t is a strict subterm of s, a fortiori, tσ is a strict
subterm of sσ. This is absurd. Consequently, terms given by followδG(η1) and
followδG(η2) are not unifiable.

2. If j ∈ [[2 ; i]]. Let us take the minimal integer for which G contains a δj-cycle.
In this case, by induction hypothesis, there exists α1, . . . , αj−1 such that for all

1 ⩽ k < j, αk is the most-general unifier of terms given by follow
δk
G (γkG(u))

and follow
δk
G (γkG(v)). Moreover, because G contains a δj-cycle, terms given by

follow
δj
G (γjG(u)) and follow

δj
G (γjG(v)) are not unifiable.

Let us assume by absurdity that the terms t and s are unifiable. Thus, there exists
a substitution σ such that tσ = sσ. In particular, for all k ∈ [[1 ; j]], tkσ = skσ.
Hence, by lemma B.4, σ is an unifier of terms given by followδ1G (γ1G(u)) and

followδ1G (γ1G(v)). But α1 is the most-general unifier of these terms, there is
therefore a substitution σ1 such that σ = α1 ◦ σ1. Moreover, α1 is such that
subst(δ2) = subst(δ1) ◦ α1. Hence, as σ is an unifier for followδ1G (γ2G(u)) and

followδ1G (γ2G(v)), a fortiori, σ1 is an unifier for followδ2G (γ2G(u)) and

followδ2G (γ2G(v)). Doing this for all integers k ∈ [[1 ; j − 1]], there exists a
substitution σj−1 such that σ = α1 ◦ · · · ◦ αj−1 ◦ σj−1 and σj−1 is an unifier for

terms given by follow
δj
G (γjG(u)) and follow

δj
G (γjG(v)).

This is absurd because terms given by follow
δj
G (γjG(u)) and follow

δj
G (γjG(v)) are

not unifiable. Consequently, terms given by followδG(η1) and followδG(η2) are
not unifiable.

3. Finally, if there is no such integer j. In this case, by induction hypothesis there
exists α1, . . . , αi−1 such that for all 1 ⩽ j < i, αj is the most-general unifier of

terms given by follow
δj
G (γjG(u)) and follow

δj
G (γjG(v)). Moreover, because

cyclic unify
[
δi
] (

γiG(u), γ
i
G(v)

)
fails then terms given by followδiG(γ

i
G(u)) and

followδiG(γ
i
G(v)) are not unifiable. Thus, we conclude this case in the same way

as the previous case.

26



– Otherwise, cyclic unify
[
δ
] (

η1, η2
)
= ()

[
δn+1

]
. In this case, for all i ∈ [[1 ; n]], we

have cyclic unify
[
δi
] (

γiG(u), γ
i
G(v)

)
= ()

[
δi+1

]
. We must now split our analysis

according to whether or not G has a δn+1-cycle.

1. If G has a δn+1-cycle. As G is δ-cycle free and δ ≼ δ1 ≼ . . . ≼ δn+1, there
exists an integer i ∈ [[1 ; n]] such that G has no δi-cycle but have a δi+1-cycle.
To conclude that the terms followδG(η1) and followδG(η2) are not unifiable, we
proceed in the same way as in the previous case when the cycle case is handled.

2. If G has no δn+1-cycle. Thus, G has no δi-cycle for all i ∈ [[1 ; n]]. By
induction hypothesis, we have therefore the existence of substitutions (αi)

n
i=1

such that subst(δi+1) = subst(δi) ◦ αi and αi is the most-general unifier of
followδiG(γ

i
G(u)) and followδiG(γ

i
G(v)). Let α = α1 ◦ · · · ◦ αn.

(i) By definition of αi for all i ∈ [[1 ; n]], we have in particular subst(δi+1) =
subst(δi) ◦ αi. Thus, subst(δn+1) = subst(δ1) ◦ α. Hence, thanks to
lemma B.4, we have subst(δn+1) = subst(δ) ◦ α.

(ii) We have

follow
δn+1

G (η1) = follow
δn+1

G (u)(
because u ∈ Γδ

G(η1), δ ≼ δn+1 and by lemma B.3
)

= follow
δn+1

G (v)(
because δ1(u) = ΛT (v) and δ1 ≼ δn+1

)
= follow

δn+1

G (η2)(
because v ∈ Γδ

G(η2), δ ≼ δn+1 and by lemma B.3
)

(iii) Finally, we have to show α is the most-general unifier of terms t and s. Let
σ be an unifier for those terms.
By hypothesis, we have in particular t1σ = s1σ. As α1 is the most-general
unifier of these terms, there is therefore a substitution σ1 such that σ =
α1 ◦ σ1. Moreover, we have:

followδG(γ
2
G(u))σ = termG(γ

2
G(u))subst(δ) (α1 ◦ σ1)

(by lemma IV.2)

= termG(γ
2
G(u)) (subst(δ1) ◦ α1)σ1

(by lemma B.4)

= termG(γ
2
G(u))subst(δ2)σ1

(by induction hypothesis)

= followδ2G (γ2G(u))σ1

Therefore, as t2σ = s2σ, σ1 is an unifier for terms given by followδ2G (γ2G(u))

and followδ2G (γ2G(v)). Hence, there exists a substitution σ2 such that σ1 =
α2 ◦ σ2. By iterating this procedure for each integer i ∈ [[1 ; n]], we conclude
the existence of a substitution σn such that σ = α1 ◦ · · · ◦ αn ◦ σn.
Consequently, for all unifier σ of t and s, there exists a substitution σ′ such
that σ = α ◦ σ′. Consequently, α is the most-general unifier of these two
terms. □

27



B.2 Proof of lemma IV.2

Lemma B.7 (Preservation of invariants) Let η0 ∈ G be a node and δ0 be a linking function.
Let n ∈ N. Let P (n) be the property given by: for all node η ∈ G and for all linking function δ
such that µ(δ) = n, Inv1(δ0, η0, δ, η) and Inv2(δ0, δ) hold then

• If no cycle
[
δ
] (

η
)
= ()

[
δ′
]
then δ′(η) = ΛV (⊤), Inv1(δ0, η0, δ′, η) holds, Inv2(δ0, δ′) holds,

µ(δ′) ⩽ µ(δ) and B(δ) = B(δ′).

• If no cycle
[
δ
] (

η
)
fails then there exists η′ ∈ G such that η →∗

δ0
η′ →+

δ0
η′.

Proof Let prove by induction over n the property P (n) for all n ∈ N.

Base case: n = 0. Let η ∈ G be a node and δ be a linking function such that µ(δ) = 0,
Inv1(δ0, η0, δ, η) and Inv2(δ0, δ) hold. In such a case, we have µ(δ) = 0 which implies that
for all η ∈ G, δ(η) = ΛV (⊥) or δ(η) = ΛV (⊤). In the former case, no cycle

[
δ
] (

η
)
fails.

As Inv1(δ0, η0, δ, η) holds, there exists η1, . . . , ηn ∈ G such that B(δ) = {η1, . . . , ηn}, η1 = η0,
ηi →δ0 ηi+1 for all i ∈ [[1 ; n − 1]] and ηn →δ0 η. Moreover, as δ(η) = ΛV (⊥), we have
η ∈ B(δ), i.e. there exists i0 ∈ [[1 ; n]] such that η = ηi0. Then η →+

δ0
η. In the latter

case, no cycle
[
δ
] (

η
)
= ()

[
δ
]
. By hypothesis, we have δ(η) = ΛV (⊤), Inv1(δ0, η0, δ, η) holds,

Inv2(δ0, δ) holds, B(δ) = B(δ) and µ(δ) ⩽ µ(δ).

Inductive step: let n ∈ N∗. Let η ∈ G be a node and δ a linking function such that µ(δ) = n,
Inv1(δ0, η0, δ, η) and Inv2(δ0, δ) hold.

• Case δ(η) ∈ {ΛV (⊤),ΛV (⊥)}: Similar reasoning as in the base case.

• Case δ(η) = ΛT (η′) for some η′ ∈ G: In this case, we have mark node⊥
[
δ
] (

η
)
= ()

[
δ′
]
.

Because δ(η) /∈ {ΛV (⊤),ΛV (⊥)} and by property on mark node⊥, we have µ(δ′) = µ(δ)−
1 < µ(δ), B(δ′) = B(δ) ⊔ {η} and T (δ′) = T (δ). By hypothesis on mark node⊥, we
have δ ≼ δ′, thus, Inv2(δ0, δ

′) holds. Moreover, as Inv1(δ0, η0, δ, η) holds there exists
η1, . . . , ηn ∈ G such that B(δ) = {η1, . . . , ηn} and η0 = η1 →δ0 . . . →δ0 ηn →δ0 η.
As δ(η) = ΛT (η′) and Inv2(δ0, δ) holds then η →δ0 η′. As B(δ′) = {η1, . . . , ηn, η} and
η →δ0 η′, predicate Inv1(δ0, η0, δ

′, η′) holds. Hence, we can apply induction hypothesis on
linking function δ′.

– If no cycle
[
δ
] (

η
)
= ()

[
δ(3)
]
. In this case, we have no cycle

[
δ′
] (

η′
)
= ()

[
δ′′
]

and mark node⊤
[
δ′′
] (

η
)
= ()

[
δ(3)
]
. Hence, we have δ(3)(η) = ΛV (⊤), B(δ(3)) =

B(δ′′)\{η} and T (δ(3)) = T (δ′′)∪{η} by hypothesis on mark node⊤. Firstly, we have
µ(δ(3)) ⩽ µ(δ). Indeed

µ(δ(3)) = µ(δ′′) (by hypothesis on mark node⊤)
⩽ µ(δ′) (by induction hypothesis)
< µ(δ) (by property on δ′)

Secondly, as B(δ′) = B(δ)⊔{η}, B(δ′) = B(δ′′) by induction hypothesis and B(δ(3)) =
B(δ′′)\{η}, we conclude B(δ) = B(δ(3)). Thirdly, as Inv1(δ0, η0, δ, η) holds and
B(δ) = B(δ(3)) then Inv1(δ0, η0, δ

(3), η) holds.

Finally, we have to show Inv2(δ0, δ
(3)) holds. Firstly, as Inv2(δ0, δ

′′) holds and by
hypothesis on mark node⊤, we have δ0 ≼ δ(3). Because T (δ(3)) = T (δ′′) ∪ {η} and
Inv2(δ0, δ

′′) holds, let us focus on the case of η ∈ T (δ(3)). Let η1, η2 ∈ G be two
nodes of G such that η →∗

δ0
η1 →+

δ0
η2. There is three possible cases: (a): η1 = η

28



and η2 = η′, (b): η1 = η and η1 →δ0 η′ →+
δ0

η2, (c): η →δ0 η′ →∗
δ0

η1 →+
δ0

η2.
In case (a), because δ0 is well-founded and by lemma B.2, we conclude η ̸= η′. In
case (b), suppose briefly that η1 = η2. This means we have η′ →+

δ0
η2 →δ0 η′, which

is absurd because Inv2(δ0, δ
′′) holds and η′ ∈ T (δ′′). Therefore, η1 ̸= η2 in case (b).

Otherwise, in case (c), as Inv2(δ0, δ
′′) holds by induction hypothesis, we have η1 ̸= η2.

Consequently, for all nodes η1, η2 ∈ G such that η →∗
δ0

η1 →+
δ0

η2 then η1 ̸= η2. Thus,

Inv2(δ0, δ
(3)) holds.

– Otherwise no cycle
[
δ
] (

η
)
fails and so by induction hypothesis, there exists η′′ ∈ G

such that η′ →∗
δ0

η′′ →+
δ0

η′′. Hence, η →δ0 η′ →∗
δ0

η′′ →+
δ0

η′′, wich allows us to
conclude.

• Case η /∈ dom(δ) and λG(η) = f/n ∈ F . In this case, we have mark node⊥
[
δ
] (

η
)
= ()

[
δ′
]
.

Hence, by proceeding as in previous case, we can apply induction hypothesis with the linking
function δ′. Let i ∈ [[1 ; n−1]]. Suppose no cycle

[
δ(i)
] (

γiG(η)
)
= ()

[
δ(i+1)

]
and induction

hypothesis holds for δ(i) and γiG(η). In particular, we have Inv1(δ0, η0, δ
(i+1), γiG(η)) holds,

Inv2(δ0, δ
′′) holds and µ(δ(i+1)) ⩽ µ(δ(i)). Hence, because µ(δ(i+1)) ⩽ µ(δ(i)) ⩽ . . . ⩽

µ(δ′) < µ(δ), we can apply induction hypothesis for δ(i).

– If no cycle
[
δ
] (

η
)
= ()

[
δ(n+2)

]
. In this case, we have, for all i ∈ [[1 ; n]],

no cycle
[
δ(i)
] (

γiG(η)
)
= ()

[
δ(i+1)

]
and mark node⊤

[
δ(n+1)

] (
η
)
= ()

[
δ(n+2)

]
. By

induction hypothesis, we have for all i ∈ [[1 ; n]], δ(i) ≼ δ(i+1), µ(δ(i+1)) ⩽ µ(δ(i))
and B(δ(i)) = B(δ(i+1)). Hence, δ′ ≼ δ(n+1), µ(δ(n+1)) ⩽ µ(δ′) and B(δ(n+1)) =
B(δ′). By hypothesis on mark node⊤, we conclude δ(n+2)(η) = ΛV (⊤), δ0 ≼ δ(n+2),
µ(δ(n+2)) ⩽ µ(δ′) < µ(δ) and B(δ(n+2)) = B(δ(n+1))\{η} and B(δ′) = B(δ) ⊔ {η},
thus, B(δ(n+2)) = B(δ). Thus, Inv1(δ0, η0, δ, η) implies Inv1(δ0, η0, δ

(n+2), η). Fi-
nally, T (δ(n+2)) = T (δ(n+1)) ∪ {η} and Inv2(δ0, δ

(n+1)) holds. Hence, by proceeding
as in previous case, we have Inv2(δ0, δ

(n+2)) holds.

– Otherwise no cycle
[
δ
] (

η
)
fails and so there exists an integer i0 ∈ [[1 ; n]] such that

for all 1 ⩽ j < i0, no cycle
[
δ(j)
] (

γjG(η)
)
= ()

[
δ(j+1)

]
and no cycle

[
δ(i0)

] (
γi0G (η)

)
fails. By induction hypothesis applied to integer i0, there exists ηi0 ∈ G such that
γi0G (η) →∗

δ0
ηi0 →+

δ0
ηi0. Hence, η →δ0 γi0G (η) →∗

δ0
ηi0 →+

δ0
ηi0, which allows us to

conclude.

Consequently, we have prove that property P (n) holds for all n ∈ N. □

Theorem B.2 (Correctness of no cycle) Let η ∈ G be a node and δ a well-founded linking
function on G. We have the following property:

no cycle
[
δ
] (

η
)
= ()

[
δ′
]
⇐⇒ There is no δ-cycle in G δ-reachable from node η.

Proof Let η ∈ G be a node and δ be a well-founded linking function on G. Because δ is well-
founded, we have B(δ) = T (δ) = ∅. Moreover, we have δ ≼ δ. Thus, both Inv1(η, δ, η, δ) and
Inv2(δ, δ) hold. We can thus apply lemma B.7.

=⇒ Suppose no cycle
[
δ
] (

η
)
= ()

[
δ′
]
. By property (P1), we have δ′(η) = ΛV (⊤). Thus,

η ∈ T (δ′). However, as Inv2(δ, δ′) holds, we have for all nodes η′ and η′′ of G such that
η →∗

δ η
′ →+

δ η′′ then η′ ̸= η′′. Thus, there is no δ-cycle in G δ-reachable from η.

⇐= We will proceed by contraposition. Suppose no cycle
[
δ
] (

η
)
fails. By property (P2), there

exists η′ ∈ G such that η →∗
δ η

′ →+
δ η′. Then, by definition IV.4 of δ-cycle, there exists a

δ-cycle in G δ-reachable from node η. □

29



B.3 Proof of theorem IV.3

Theorem B.3 (Correctness of unify syntactic) For all term-graph G, for all η1, η2 ∈ G,
for all δ ∈ ∆(G) well-founded, if G is δ-cycle free, then

• If unify syntactic
[
δ
] (

η1, η2
)
fails then followδG(η1) and followδG(η2) are not unifiable.

• Otherwise, unify syntactic
[
δ
] (

η1, η2
)
= ()

[
δ′
]
. In this case, δ ≼ δ′ and

(i) There exists an α such that subst(δ′) = subst(δ) ◦ α.
(ii) followδ

′
G(η1) = followδ

′
G(η2), i.e. subst(δ

′) is an unifier of termG(η1) and termG(η2),
i.e.

termG(η1)subst(δ
′) = termG(η2)subst(δ

′).

(iii) α is the most-general unifier of termG(η1)subst(δ) and termG(η2)subst(δ).

Proof To prove this theorem, let us do a case analysis on the result of call

unify syntactic
[
δ
] (

η1, η2
)
.

• Firstly, if unify syntactic
[
δ
] (

η1, η2
)
fails, then either cyclic unify

[
δ
] (

η1, η2
)
fails

or no cycle
[
δ
] (

η1
)
fails. If its call to cyclic unify

[
δ
] (

η1, η2
)
which fails then, by

theorem IV.1, terms given by followδG(η1) and followδG(η2) are not unifiable. Otherwise,
cyclic unify

[
δ
] (

η1, η2
)
= ()

[
δ′
]
and it is the call to no cycle

[
δ′
] (

η1
)
which fails. By

theorem IV.2, this means G has a δ′-cycle. Therefore, by theorem IV.1, terms given by
followδG(η1) and followδG(η2) are not unifiable.

• Secondly, if unify syntactic
[
δ
] (

η1, η2
)
= ()

[
δ′
]
then there exists δ′′ such that

cyclic unify
[
δ
] (

η1, η2
)
= ()

[
δ′
]
and no cycle

[
δ′
] (

η1
)
= ()

[
δ′′
]
. By definition of func-

tion auto cleanup, the correct resulting linking function for unify syntactic is δ′.

By theorem IV.2, the term-graph G has no δ′-cycle δ′-reachable from η1. Hence, let us
show G is δ′-cycle free. As G is suppose to be δ-cycle free, G has no δ′-cycle δ′-reachable
from η1 and δ ≼ δ′, it remains to be shown that G has no δ′-cycle δ′-reachable from η2.
Let us proceed by absurd: suppose there exists η0 ∈ G such that η2 →∗

δ′ η0 →
+
δ′ η0. Because

G is δ-cycle free, there exists η′, η′′ ∈ G such that

• η2 →∗
δ′ η

′ →δ′ η
′′ →∗

δ′ η0 →
+
δ′ η0 or η2 →∗

δ′ η0 →∗
δ′ η

′ →δ′ η
′′ →∗

δ′ η0.

• η′ /∈ dom(δ) but δ′(η′) = ΛT (η′′).

Nevertheless, η′′ is δ′-reachable from η1. Indeed, if η
′ is δ′-reachable from η1 then η′′ is still

δ′-reachable from η1. Otherwise, as cyclic unify
[
δ
] (

η1, η2
)
= ()

[
δ′
]
and η′ /∈ dom(δ),

we conclude that link between η′ and η′′ has been created by cyclic unify. According to
algorithm 1, node η′′ is δ-reachable from η1. Because δ ≼ δ′, η′′ is still δ′-reachable from
η1. Thus, we have proved there exists a node η′′ ∈ G such that η1 →∗

δ′ η
′′ →∗

δ′ η0 →
+
δ η0 i.e.

there exists a δ′-cycle δ′-reachable from η1. This is absurd because, thanks to theorem IV.2,
there is no such δ′-cycle. Finally, by theorem IV.1, we achieve the proof. □

30



C A better algorithm for unification modulo an equational the-
ory

Algorithm 6: Optimized version of algorithm for unification modulo an equational
theory

let unify modulo η1 η2 =
cyclic unify modulo η1 η2;
no cycle modulo η1

let rec cyclic unify modulo η1 η2 =
(u, v)←

(
findδG(η1), find

δ
G(η2)

)
;

if u != v then
if λG(u) ∈ X then

δ(u)← ΛT (v)
else if λG(v) ∈ X then

δ(v)← ΛT (u)
else

(* In this case, we have: λG(u) = f1/n1 ∈ F and λG(v) = f2/n2 ∈ F
*)

if is syntactic f1 and is syntactic f2 then
if f1 != f2 then

failure
else

(* Here, we have: f1/n1 == f2/n2 = f/n *)

δ(u)← ΛT (v);

List.iter2 cyclic unify modulo
(
γiG(u)

)n
i=1

(
γiG(v)

)n
i=1

else
choose η′1 from choose rule u;
choose η′2 from choose rule v;
cyclic unify modulo η′1 η′2;
δ(u)← ΛT (η′1);
δ(v)← ΛT (η′2)

31



Algorithm 7: Rest of algorithm 6

let choose rule η =
(* In this function, we suppose that δ(η) = Λ⊥ and λG(η) = f/n ∈ F. *)

if is syntactic f then
return η

else
choose a rule (γl, γr) from defF (f/n);
(γ′l, γ

′
r) := fresh copy (γl, γr);

choose (), . . . , () from cyclic unify modulo γ1(η′l) γ
1(η), . . . ,

cyclic unify modulo γn(η′l) γ
n(η);

return η′r

let rec no cycle modulo η =
if δ(η) = ΛV (⊥) then

failure
else if δ(η) = ΛV (⊤) then

()
else if δ(η) = ΛT (η′) then

δ(η)← ΛV (⊥);
no cycle modulo η′;
δ(η)← ΛV (⊤)

else if λG(η) = f/n ∈ F then
(* In this case, η is without link: η /∈ dom(δ). *)

try
δ(η)← ΛV (⊥);
List.iter no cycle modulo

(
γi(η)

)n
i=1

;

δ(η)← ΛV (⊤)
with failure →

(* In this case, function no cycle modulo fails for childrens,

so we have to apply rules in defF (f/n). *)

if is syntactic f then
failure

else
choose η′ from choose rule η;
no cycle modulo η′

32



D Source code for some algorithms

D.1 Code for cyclic unify

let rec cyclic_unify hct1 hct2 =

let hcu1 = F.find hct1

and hcu2 = F.find hct2 in

if hcu1 != hcu2 then

match hcu1.hc_desc, hcu2.hc_desc with

| HCVar v1, HCVar v2 ->

if v1.hc_universal || not v2.hc_universal

then link hcu1 (HCTerm hcu2)

else link hcu2 (HCTerm hcu1)

| HCVar _, HCFunApp _ -> link hcu1 (HCTerm hcu2)

| HCFunApp _, HCVar _ -> link hcu2 (HCTerm hcu1)

| HCFunApp (f1, args1), HCFunApp (f2, args2) ->

if f1 != f2 then raise Terms.Unify

else

begin

link hcu1 (HCTerm hcu2);

List.iter2 cyclic_unify args1 args2

end

D.2 Code for no cycle

let rec no_cycle_noclean hct =

match hct.hc_link with

| HCVisited false -> raise Terms.Unify

| HCVisited true -> ()

| HCTerm hct' ->

link hct (HCVisited false);

no_cycle_noclean hct';
hct.hc_link <- HCVisited true

| HCNoLink ->

begin

match hct.hc_desc with

| HCVar _ -> ()

| HCFunApp (_, args) ->

link hct (HCVisited false);

List.iter no_cycle_noclean args;

hct.hc_link <- HCVisited true

end

| _ -> Parsing_helper.internal_error "[hcterms.ml >> no_cycle] Unexpected link."

D.3 Code for unify syntactic

let unify hct1 hct2 =

cyclic_unify hct1 hct2 ;

auto_cleanup ( fun () -> no_cycle_noclean hct )

33



D.4 Code for match terms

let rec match_terms hct1 hct2 = match hct1.hc_link with

| HCTerm hcu ->

if hcu != hct2 then raise Terms.NoMatch

| HCNoLink ->

begin match hct1.hc_desc, hct2.hc_desc with

| HCVar _, _ -> link hct1 (HCTerm hct2)

| HCFunApp(f1,args1), HCFunApp(f2,args2) ->

if f1 != f2 then raise Terms.NoMatch;

List.iter2 match_terms args1 args2;

link hct1 (HCTerm hct2)

| _ -> raise Terms.NoMatch

end

| _ -> Parsing_helper.internal_error "[hcterms.ml >> match_terms] Unexpected link."

E Example of the Needham-Shroeder protocol in ProVerif

E.1 Code for the protocol in ProVerif

free c:channel.

type pkey.

type skey.

type rand.

fun aenc(bitstring,pkey,rand):bitstring.

fun pk(skey):pkey.

fun dec(bitstring,skey):bitstring

reduc forall u:bitstring, k:skey, r:rand; dec(aenc(u,pk(k),r),k) = u.

let A(sk_a:skey,pkb:pkey) =

new na:bitstring;

new r:rand;

out(c,aenc((pk(sk_a), na),pkb,r));

in(c,z:bitstring);

let (xna:bitstring,xnb:bitstring) = dec(z,sk_a) in

if xna = na

then

new r':rand;
out(c,aenc(xnb,pkb,r'))

else 0.

let B(sk_b:skey) =

in(c,x:bitstring);

let (xpka:pkey,xna:bitstring) = dec(x,sk_b) in

new r':rand;
new nb:bitstring;

34



out(c,aenc((xna,nb),xpka,r'));
in(c,z:bitstring);

if dec(z,sk_b) = nb

then 0

else 0.

query attacker(new nb).

process

new sk_a:skey;

new sk_b:skey;

out(c,(pk(sk_a),pk(sk_b)));

(!A(sk_a,pk(sk_b)) | !B(sk_b))

E.2 Is the attacker able to deduce nB?

-- Query not attacker(nb[x = v,!1 = v_1]) in process 1.

Translating the process into Horn clauses...

Completing...

Starting query not attacker(nb[x = v,!1 = v_1])

goal reachable: attacker(u) && attacker(r_1) && attacker(v) -> attacker(nb_1)

Abbreviations:

nb_1 = nb[x = aenc((pk(v),u),pk(sk_b[]),r_1),!1 = v_1]

Derivation:

Abbreviations:

nb_1 = nb[x = aenc((pk(k),xna_2),pk(sk_b[]),r_1),!1 = @sid]

r'_2 = r'_1[x = aenc((pk(k),xna_2),pk(sk_b[]),r_1),!1 = @sid]

1. We assume as hypothesis that

attacker(k).

2. We assume as hypothesis that

attacker(r_1).

3. The message (pk(sk_a[]),pk(sk_b[])) may be sent to the attacker at output {3}.

attacker((pk(sk_a[]),pk(sk_b[]))).

4. By 3, the attacker may know (pk(sk_a[]),pk(sk_b[])).

Using the function 2-proj-2-tuple the attacker may obtain pk(sk_b[]).

attacker(pk(sk_b[])).

5. We assume as hypothesis that

attacker(xna_2).

6. By 1, the attacker may know k.

Using the function pk the attacker may obtain pk(k).

attacker(pk(k)).

35



7. By 6, the attacker may know pk(k).

By 5, the attacker may know xna_2.

Using the function 2-tuple the attacker may obtain (pk(k),xna_2).

attacker((pk(k),xna_2)).

8. By 7, the attacker may know (pk(k),xna_2).

By 4, the attacker may know pk(sk_b[]).

By 2, the attacker may know r_1.

Using the function aenc the attacker may obtain

aenc((pk(k),xna_2),pk(sk_b[]),r_1).

attacker(aenc((pk(k),xna_2),pk(sk_b[]),r_1)).

9. The message aenc((pk(k),xna_2),pk(sk_b[]),r_1) that the attacker

may have by 8 may be received at input {17}.

So the message aenc((xna_2,nb_1),pk(k),r'_2) may be sent to the

attacker at output {21}.

attacker(aenc((xna_2,nb_1),pk(k),r'_2)).

10. By 9, the attacker may know aenc((xna_2,nb_1),pk(k),r'_2).
By 1, the attacker may know k.

Using the function dec the attacker may obtain (xna_2,nb_1).

attacker((xna_2,nb_1)).

11. By 10, the attacker may know (xna_2,nb_1).

Using the function 2-proj-2-tuple the attacker may obtain nb_1.

attacker(nb_1).

12. By 11, attacker(nb_1).

The goal is reached, represented in the following fact:

attacker(nb_1).

A more detailed output of the traces is available with

set traceDisplay = long.

new sk_a: skey creating sk_a_2 at {1}

new sk_b: skey creating sk_b_2 at {2}

out(c, (~M,~M_1)) with ~M = pk(sk_a_2), ~M_1 = pk(sk_b_2) at {3}

in(c, aenc((pk(a),a_1),~M_1,a_2)) with

aenc((pk(a),a_1),~M_1,a_2) = aenc((pk(a),a_1),pk(sk_b_2),a_2) at {17} in copy a_3

new r'_1: rand creating r'_2 at {19} in copy a_3

new nb: bitstring creating nb_1 at {20} in copy a_3

36



out(c, ~M_2) with ~M_2 = aenc((a_1,nb_1),pk(a),r'_2) at {21} in copy a_3

The attacker has the message 2-proj-2-tuple(dec(~M_2,a)) = nb_1.

A trace has been found.

The previous trace falsifies the query, because the query is

simple and the trace corresponds to the derivation.

RESULT not attacker(nb[x = v,!1 = v_1]) is false.

--------------------------------------------------------------

Verification summary:

Query not attacker(nb[x = v,!1 = v_1]) is false.

--------------------------------------------------------------

37


