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A CRYPTOGRAPHIC DEFINITIONS

From now on, we abbreviate Probabilistic Polynomial-time Turing
Machine into PPTM.

A.1 Commitment schemes

For an infinite countable set X, we define the property ®[X] as
follows

x &f U xm .
def UEN*
®[X] holds —

Vn e N, Card(X(”)) < 400 (X(”) isﬁnite) ;

and log, Card(X(M) > n.
(@)
Let M be an infinite countable set of messages such that ®[M]
holds and, for all € N*, (M(”), ®) is an abelian group (let us say
multiplicative). Let KS[M] be a tuple

ks & (PM, Sp Vi, Genyg, cOmM>
where

« Foranyset X € {PM, SM, VM} the property ®[X] holds ;

« The PPTM algorithm Geny; : N* — Py takes as input a
security parameter n € N* and outputs a commitment key
ck — Geny(n) € P&Z) ;

+ The PPTM algorithm Comy : Pyp X M X Spy — Vi takes
as inputs a commitment key ck € Py, a message m € M
and a random value r € Sy. Then it outputs a commit value
a «— Comyg(ck, m; r) € Vi Besides, for all security parame-

ter n € N*, we must have ck € ]P’I(\Z), meM, re Ség) and
ac VI(MII”'

Definition A.1 (Perfect hiding).
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Definition A.2 (Binding error).

Definition A.3 (Homomorphic commitment scheme). We say that
the tuple KS[M] is a homomorphic commitment scheme for the
message set M when the following properties hold

« For all security parameter n € N*, the randomness space (S(”), EB)
is an abelian group (let us say additive) and the commit value
space (Vég ), Q) is also an abelian group (let us say multiplica-
tive) ;

« KS[M] is perfectly hiding ;

« There exists a negligible function § : N* — [0, 1] such that
KS[M] is computationally binding with binding error § ;

« For all security parameter € N*, for all commitment key
parameter ck € P(”), the following function ¢£Z) is a group
homorphism:

¢C(Z): (M(’“,@)X(Sf\;{),@) — (va'{),@)

(m,r) —  Comya (ck.m; r)

A.2 Zero-Knowledge proofs

In all this subsection, we fix a natural number p € N and a relation
R C PPg x Xg x Wg. Let ZK M [R] € (1,2,V) be a (2 + 1)-
move interactive protocol for R.

Definition A.4 (Perfect completeness). The protocol ZK ) [R] is
said to be perfectly complete when, for all PPTM adversary A, the
following property holds:

VneN, Prpgqr,,[ 1eg Completeness;Kw) (R] (n.p) ] =0,

where the cryptographic completeness game is defined in Game 1.

Completenessﬂ
7K [R]

o—1I(n;pn);
(x,w) — A(n,0; pa) ;
tr — (P(W) =W (V)(m 0.%; pp);

be—og™ (tr) A - (q)qg((a,x, w))) ;

returns b ;

(7, (pps pa)) — Completeness

Game 1: Cryptographic completeness game for interactive
protocols

Definition A.5 (Public coin). The protocol ZK W [R] is said to
be public coin when, for all security parameter € N*, for all
public parameter 0 € PP, for all public statement x € Xg, for
all witness w € Wy and for all PPTM prover £* (both honest or
dishonest), the following property holds

. $ ]
Vie[Lp], mu= (ci — Ch’ﬂ),
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12:1+1 «f (P*(W) ‘__\%1) (V)(q, 0, x) is an interaction of

ZK W [R] with the honest verifier V.

where (m;)

Definition A.6 (Soundness error). Let A be a PPTM adversary.
We define the soundness error of V against the adversarial prover
A, noted ¢ 4, to be the following function

eq: N* — ]0,1]

A
N Pl’pe'][‘”[ 1eg SoundnessZK(u) [R](”’ ) ]

where the cryptographic soundness game is defined in Game 2.

Soundness”! (
7K [R]

o—I(n;pp);

x — A, 0; pa) ;

tr — (Apa) = Vipn)) (o)
b o (tr) A x¢ Lo(R);
returns b ;

1, (Ph, pa)) — Soundness

Game 2: Cryptographic soundness game for interactive pro-
tocols

Definition A.7 (Knowledge soundness). The protocol ZKW[R] is
said to be knowledge sound with knowledge error k : N* — [0, 1]
when, for all deterministic Polynomial-time adversarial prover P,
there exists a PPTM algorithm Eg, called the knowledge extractor,
such that, for all PPTM adversary A, and for all security parameter
1 € N*, the following lower bound holds:

A, P

1 < KnowSound :
ZKW [R

Proer, L& 1P) ‘87)* ¢ negl(n) ]

>1-x(n),

where the cryptographic knowledge soundness game is defined in
Game 3.

KnowSound;’ z (1, (phs pa)) —Knowledge soundness

K [R], Ex
o—1(1;pn);
(x,p") & A, 0; pa) ;

W o 877;*(10*)’(‘/(/7/1)(’7’ o, X') ;

b — pr((0,x,w)) ;
returns b ;

Game 3: Cryptographic knowledge soundness game for in-
teractive protocols

Definition A.8 (Perfect Honest-Verifier Zero-Knowledge). The pro-
tocol ZK (W [R] is said to be perfectly Honest-Verifier Zero-Knowledge
when there exists a PPTM algorithm Simg, called the simulator,
such that, for all PPTM adversary A, the following property holds

Ve N*, Advivzk [ﬂ | ZEW[R], Simg]| (1) =0,

Anon.

where the cryptographic Honest-Verifier Zero-Knowledge game is
defined in Game 4 and the advantage of the adversary A against
the HVZK game is defined as follows

Vi e N*, Adviyzk [&Z{ | ZK ¥ [R], Simgg] () &

A .
2- PrpET”[ 1eg HVZKZ () o (mp; B) ] -1

Definition A.9 (Zero-Knowledge argument of knowledge). The
protocol ZK ¥ [R] is said to be a zero-knowledge argument of knowl-
edge for the relation R when the following properties hold

« ZKW[R] is perfectly complete ;

. ZKW[R] is public coin ;

« There exists a negligible function k : N* — [0, 1] such that
ZKW [R] is knowledge sound with knowledge error « ;

« ZKW[R] is perfectly Honest-Verifier Zero-Knowledge.

B SPECIFICATION AND CRYPTOGRAPHIC
PROOFS OF BAYER-GROTH PROTOCOL
B.1 Shuffle argument protocol
We define
REY C (Gpr! x PKes) x (Hy, x HY ) x (Sy x Fyy )

—_—
Witness set

Public parameter set ~ Statement set

to be the shuffle relation defined as follows:

def
((ck, pk), (¢, ¢’), (m,1)) € REG &= ¢’ = Enccg(pk, 15 1) @ ¢
Hence, we define a 13-move shuffle argument protocol ZK(®) [VQSBE]
(Protocol 1) following the definition given in [1].

THEOREM B.1 (KNOWLEDGE SOUNDNESS OF ZK () [REE])- The
13-move shuffle argument protocol ZIK©) [‘RgAc] is knowledge sound.

ProOOF. We define the extractor Egp for the Bayer-Groth shuffle
argument to be the algorithm defined as follows in Extractor 2.

Let N = nm € N* be a natural number. Let € N* be a security
parameter. Let £* be a polynomial-time (in ) and deterministic
adversarial prover. Let o = (ck, pk) < Isa(n) be an honest public
parameter for the shuffle relation REAG. Let A be a probabilistic
and polynomial-time adversary. Let y < A(#, o) be an adversarial
statement where

def N N
x = (cc’) e HP:; pr”.

Then, the adversary A calls the extractor Esa on inputs o and y
with access to oracles P* and Vs and obtains

def 1 I 1
oA = (CA, (xl, c;), (yg, z1), (ci)),cgg,ﬁ(l),c(l)),

(ra),‘,(l))

|
Witness of the
Product Argument

(Ba),t(z),é)(l))

————
Witness of the Multi-
Exponentiation Argument

)
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HVZKA

(’75 (ph> Pa) 5 ﬁ)
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— Honest-Verifier Zero-Knowledge

ZKWM [R], Simg
Case § = 0 — Real world

Case § = 1 — Simulated world

o —I(n;pn);
(x,w, p*) — A, 05 pa)

te e (P pu) = V() )00

*(tr) A er((0,x,w)) ;
9p < ﬂ(tr Pa);
returns (b A-gg);// ~gp=1 & gg=0=p.

b%v

o—I(n;pp;

(x,w,p*) — A(n, 05 pa) ;

tr «— Simg (1, 0,x,p"; pp) ;
*(tr) A pr((0,x,w)) ;
gp < fl(tr Pa) ;

returns (b Agg);// gp=1=p.

b&v

Game 4: Cryptographic Honest-Verifier Zero-Knowledge game for interactive protocols

245
(Step 1) - Obtain! the permutation witness 7.
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(Step1.1) By the knowledge soundness of the product argument pro-
tocol (see Theorem B.3), we have

Vie[1;N]. ﬂﬂr}? =pD  and

j=1i=1
)
( ) O] c( ) _ ComMatnXm(]Fp,, (ck F(l) (l))

D e _

Because c2;Oc; * = CoMpat,,y,,, () (ck,zW-zW ; 0) =

1 and because © is associative, we have

R T PP

(ComMatnxm (FP'I) (Ck’ I‘(l) ; v(l)))

O (ComMatnXm(Fp”)(ck,Z(l) ; 0))

COmMatnxm(Fp,,) (ck,r(l) +zM : v(l)),

Thus, if we define, foralll € [1;N],i € [1;n] and j €
[1;m], d](cl) = I‘l.(jl.) + z; where k = (j — 1)n + i, the pair
of vectors (d(l) (l)) € FJ’XI X Fz’” is an oppening of the

O]
D"

(Step1.2) Using the definition of () given by Extractor 2 at line 7,
previous results obtained in step (Step1.1) lead to

N N
[T@” =2) =] J(wk + * - ),

k=1 k=1

commit value ¢

which is a polynomial equation of degree N in z;. By the
Schwartz-Zippel lemma, we conclude the following equality
of polynomials

N N
n(dl(cl) —X) = n(ylk + (xl)k —X).
k=1 k=1

However, polynomials (dlgl) - X) and (ylk + (xl)k - X)
are irreductible (degree 1) and the decomposition in irre-
ductible polynomials is unique. Consequently, there exists
a permutation 7 € Gy such that

1Using line 9 of Extractor 2.

At this point, we have obtained an opening of commit

value cg). It is not this commit value we want to open but

ca. Recalls that commit value cg) is computed this way:
c(l) def (ca Tu) @c( ) This is precisely why we also need

to call extractor Epmga to obtain an opening of c( )
(Step1.3) By the knowledge soundness of the multi- exponentlation
argument protocol (see Theorem B.2), we have

Vie[N], ¢ = COMMatyyyn () (K B 5 ) and

N
<z>

C® =Ences(pk150M) - | (< g

k=1

yO def o),

where, for i € [1;n] and j € [1;m], (Govnsi = Bijs

i.e. we have an opening for commit value cg ). Then, for all

le[1;N],as c( ) = =(cal yl)Qc( ) with y; # 0, properties
over © and T Iead to the following equality

0 _p\N

Q . l(v(l) —t(’)) ]

i Ui

k=1
Hence, for all Lk € [1;N] and i € [1;m], we define
(al(cl) (l)) € Fz such that

Cp = ComMatnxm(va) Ck,

oD def () ()

v; yis; "t

d](cl) def Y and

[UBAU)
a. +b,
(Step1.4) Now, let us suppose just for a moment that we have:

3Ll € [1;N], a2,
But, by the previous point, the following property holds:

cp = ComMatnxm(Fp,,) (Ck, a(l) ; —5')(1))

= ComMatnxm (qu) (Ck, a(l/) ; ?(l/))

Thus, as the commitment scheme KS[MatnXm(Fp”)] is
computationally binding, with overwhelming probability,
we conclude a contradiction. Therefore, we have shown
that the following property holds:

VI,I" € [1;N], a =),
We denote this common value a € an and we have found

an opening (a,_g>) € FIIX, X]P‘Zf] independent from challenges
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39 Protocol 1: 13-move zero-knowledge protocol ZK(®) [RSBE] for the Bayer-Groth proof of shuffle 407
350 408
351 Public Input :A natural number N = nm € N*. A security parameter n € N*. A commitment key ck = (g,g) € GZ;I for the commitment scheme 109
352 KS[Mat,xm (]Fp,])]. A public key pk € PKcs of the cryptosystem CS. Two lists of ciphertexts ¢ = (ci)gl € H}];]r] and 410
353 =(c)N, € HII;;. "
354 412

. . $
Private Input: A permutation 7 € Sy and a vector of random values r « Fg] such that ¢/ = Enccg (pk,1; 1) O ¢y

355 . 413
Begin protocol

356 414
457 1) (Commit message) The prover Ppg chooses a vector of random values ¢ & FE] and seta «— (7r(i)){i1 € ]FIIX; Then, P computes the s
. —_ . .
158 commit value cgq < COMMatyspm (Ep, ) (ck,a;7¢) € G, and sends it to the verifier Vag. 416
359 %)) (Challenge message) Vg chooses uniformly at random a challenge x i ]F;‘,” and sends it to Ppg. a7
360 ) 418
261 3 (Commit message) Ppc chooses a vector of random values t <i IF;,’:] and setb «— (x”(’))f.\il € IFg?. Then, Pp; computes the commit value 10
362 cg «— ComMatr,Xm(le,,) (ck,b; t) € GI’?” and sends it to Vag. 420
363 @ (Challenge message) Vg chooses uniformly at random two challenges y & ]F;‘,” and z & ]F;‘,” then sends them back to Ppc. 421
6 (511) (Product argument call) Let c_, be the commit value defined by c_, «— ComMatnxm(pp”) (ck,(-2,...,-2); 0 )€ G;,';. The prover Ppg 422
365 —_— 423
366 N = nm times EFZ;, 124
367 computes the commit value cp < (ca T y) O cp € G, the vectord <~ ya+b € FJPXI and the vector of random values v « y¢ +t € L 125
368 Then, both prover Pgg and verifier Vg engage in the 7-move zero-knowledge protocol ZK.(3) [REE’ ] for the relation ‘REE with public parameter 426
e N ) ,
369 opa = ck, public statement xpa = |cp © c_, [ (yi + x* — 2z) |, and private statement wpa = (d — z,v). We denote by 7pa the proof transcript 427
370 i=1 428
371 obtained at the end of this 7-move protocol. 429
375 (11-13) (Multi-exponentiation argument call) Pgc computes ¢ < — (r | b) € Fp, and sets x « (xi)ﬁ | € FIIX, . Then, both prover g and verifier 430
373 Vg engage in the X-protocol ¥ [‘RS’S\] for the relation ‘RﬁEGA with public parameter omea = (ck, pk), public statement xmea = (¢/, ¢ ® x, cB), 431
374 and private statement Wyga = (b, t,0). We denote by tmea the proof transcript obtained at the end of this Z-protocol. 432
375 (14) (Conclusion’s bit) The verifier Vag accepts if and only if properties UF(,’XA’XPA (zpa) and vz\"é‘/E\A’XMEA (tmea) hold. 433
376 434
377 435
378 Extractor 2: Extractor Esa for the 13-move zero-knowledge protocol ZK () [‘RS’AG] of the Bayer-Groth shuffle argument 136
379 Input : A security parameter 7 € N*. A natural number N = nm € N*. A public parameter (ck, pk) € GZ;l X PKcs for the 437
380 Bayer-Groth shuffle relation REC. A statement (c,¢’) € (Hg” )2‘ 38
38 Blackbox access to: An adversarial prover £* and an honest verifier Vsa. 9
382 1 Begin extractor 440
383 ot 441
384 2 calls P* to getca € GZ; ; // State at the end of this line: | st; = [(ck,pk) ; (e,¢); CA] 142
385 3 rewinds P* and Vsp at state sty for/=1to N 443
386 4 calls Vsp to get x; . ]F;,'] \ {xi}ﬁ;ll ; 444
387 ) 445
5 calls P* to getc,” € G} ;

B Py 4

388 446
$ %

389 6 calls Vs to get y1,z; — FP'I ; 447
a I 1
390 c;)) — (ealuy) ®c1(3) € G;,'; 448

1 4
91 c(_z) —  CoMMatym (Bpyy) (ck,—zD ;0) € Gy, where z(0 (z)N, € Matm (Fp,, ) 49
392 N 450
493 7 computes ﬁ(’) — kl—_Il(ylk + (xl)k _ Zl) c Fpn ; 51
304 N i 452

) (x7)
395 ¢ - kl;ll(ck) € Hp, 453
3% 8 calls Epmea with oracles P* and Vs on inputs ((ck,pk), ((c;)irgl,c(’), Cg))) to get (B(l),t(l)’ Q(l)) € (Matnxm(IFp") X FE] X F[}X,) ; 454
397 455
. . - D) oD pa n e
399 9 calls Epp with oracles £* and Vsp on inputs (ck, (cD [0} c,z,ﬁ( ))) to get (F( ), vl )) c (Matnxrn (qu) XFZ;;) ; o
400 N 458
M| returns rox def (CA, (xz)cg), (yb. 21), (Cg>,cgg)ﬁ(z>,c<z>), (ra),‘,(z)), (Bu),t(z),g(z))) ) oo

I=1

402 = 460
403 461
404 462
405 463

406 4 464
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(xl)IA:I , of the commit value cy:

cq = ComMatnxm(]F,,,,) (ck, a; _g>)

(Step1.5) Thanks to step (Step1.2), step (Step1.3) and step (Step1.4),
we obtain the following equalities

VLkeﬂhN],wﬂakk%+wﬂﬂUW)=ka+ng

Actually, these equalities are N polynomial equations of
degree 1inyj, for each! € [1; N. Thus, by N2 applications
of the Schwartz-Zippel lemma, we obtain

VLk e [LN], ag = 79 (k) and b = ()" 0.

Consequently, as the sequence (ak)kN: | is independent from

challenges (xl)g | 80 it goes for the permutation sequence

(71'(1))7:1, we denote by 7 this common value. Putting all
together, we conclude the following property:

Irx e Gy, E—g’eF”;,

€4 = CoMptat () (ks (20 Rys T D),

ss{Step 2) — Construct® the vector of random values r.
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(Step2.1) We have seen in step (Step1.3) that the following property
holds:

()
by )

N
Vie[1N], ¢® =Ences(pk, 1:0™) - [ [(c}) @

k=1
Besides, step (Step1.5) gives us the following property:
Vkle[LN], b = (). (¥)

Thus, Eq. (P) becomes, by using Eq. (¥) and the defini-
tion of () given by Extractor 2 at line 7, the following
property:

N N
3 1 (xy) 7R
vie[uN] | [0 ™" =Encos(pk1s0®) - | [(cf) ™

k=1 k=1
N k N ( )k
. X,
ie. [ ()" =Enccs(pk 13 ") [ (e )™
k=1 k=1
)
(Step2.2) Let X € Matuxm(Fp,) be the matrix defined by
X1 X2 o+ XN
x2  x2 x2
1 2 N
x € .
T

We notice that this matrix X is in fact a Vandermonde
matrix of parameters the challenges (xl)f\:’ ;- Each challenge

of the sequence (xl);\il is generated independently and
uniformly at random in F;” (challenges are computed by

2Using line 8 of Extractor 2.

Conference’17, July 2017, Washington, DC, USA

the honest verifier V). In particular, with overwhelming
probability®, the following property holds:

N-1 N
/\ /\ (x1 # xp).
I=1 p=I+1

Meaning that the Vandermonde matrix X is invertible.
(Step2.3) On another hand, we denote, for all / € [1; N], XD the
I-th column of the matrix X, we notice that Eq. (Y) becomes

Vie[1;N], cax® = Enceg(pk, 15 Q(l)) . (c;T_l ®X(l)).
Thus®, previous equation becomes

c®X = (Enccs(pk,l;?)) o} (c;r_1 ®X),

where @ def (Q(l));\il € IFQ; As
« X is invertible,
c(ceX)eXl=coe (XX !)=cely,’and
e c®IN =c, 6

we conclude

c= ((Enccs(pk, 1; ?)) o (C;T,l ®X)) @ X!
Next, because the following property

VneN*, Vxye ]HI"”, VM € Mat, (Fp,),
(xoy)eM=(xeM)o (ye M)

3

“Let n € N* be a natural number. Let x € Hp,, be a ciphertexts vector of dimension

n and let M € Mat,, (IFP,]) be a square matrix of dimension n X n. We extend the
1, . n n . . . . .
function ® : Hp" X ]Fp,, — ]HIP,] for matrix with coefficients in ]FP,] as follows:

R n
x®Md§f(x®Mm) eH? ,
j=1 Pn

where MU) s the j-th column of M.

5 Let n € N* be a natural number. Let x € H;" be a ciphertexts vector of dimension n
and let A, B € Mat,, (]FP”) be two square matrix of dimensions n X n. By definition
of ®, we have

n

n

x@(ABﬂﬂ) =x® (AB). o

Jj=1

® Let n € N* be a natural number. Let x € HZ” be a ciphertexts vector of dimension
nand let I,, € Mat,, (]FP,,) be the identity square matrix of dimensions n X n: for all
i,j €[1;n], (In)i,j = dij the Kroenecker symbol. By definition of ®, we have

N n
x®@IN = (x@l;:,))' = (l (xj)‘sji)
=
J

i1

N

N
= (xi)izl =X. a
i=

1
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holds’, it leads to
= ((EHCCS (pk,1; _Q))) ®

X_l) o} ((c;_1 @X) @X‘l)

X _l) oc .
Finally, we use:
(1) the following identity®

= ((Enccs(pk, 1; _Q))) ®

(EDCCS(P’% 1; ?)) ® X! =Enccg (pk, 1ex ', (xHT .—Q’),

(2) and the property’ 1® X1 =1,
to obtain
¢ = Enceg (pk, 1; (X_l)T _Q’) o) c;rl. (X’

(Step2.4) Now, we apply both sides of the previous identity the func-
tion Y defined as follows

yn: Hp
-

X Enccg(pk,l; —(X_l)T- Q) ox.

— Hpr,

"Let n € N* be a natural number. Let X,y € ]H[;'] be two ciphertexts vectors of
dimension n, and let M € Mat, (]Fp,]) be a matrix of dimensions n X n. By definition
of ® and ®, we have

(x G)y) &M= ((x,-y,-):lzl) @M= (((x,-y,-):l:l) ® M(j>)';1

(]| ~(Fgeom) )
i=1 Jj=1 i=1 i=1 =1

— ((x@ M(j)) . (y® M(j)));l

ﬂz(x@M)@(y@M)i o

8Let n € N* be a natural number. Let x € Gg” andy € ]FZ” be two vectors, both
of dimension n. Let M € Mat,, (]Fp”) be a square matrix of dimensions n X n. By
definition of ® and because CS is homomorphic, we have

(Enccg (pk,x; y) ® M = ((Enccs (pk, x; y)) ® M(J))
j=1

Enccg (pk Xi; yz)) L])
j=1

{
( n
(,:1 s (o, Ge™ y””")))_:1
(

EnCCS(Pk I_I(x )m,’] Z yzmt]))
j=1

= (pkx@M(f) (M T.y)(f)))

e

Jj=1

=Enccg(pk,x®M;MT»y). m}

Let n € N* be a natural number. We denote by 1e€ H" the ciphertexts vector of

dimension n such that, forall i € [1;n],1; o LetM e Mat,, (Fp, ) be a square
matrix of dimensions n X n. By definition of ®, we have

1eM= (1®M(”) (]—[1’"”) -1 o

=1

Anon.

Thus, it leads to!0!?

T —

Enccg(pk,l; -(xH"- Q) oc=c

By an index change!?
tion'3

, we finally obtain the following equa-

¢’ =Enceg(pk,1; 1) O ¢
. def _1\T — N
with r = —((X He. Q)HEFP”.

Results obtained in step (Step 1) and step (Step 2), give us the
following result, proving that, with overwhelming probability, we

. def
have successfully extract a witness w = (1,1) € Gy X IF;IX7 such

0Let n € N* be a natural number. Let X, y € GZ»] and r,—g) € IF;” be four vectors, all

of dimension n. By definition of ® and because CS is homomorphic, we have

(Ences (pk.x: 1)) © (Ences (pk.y: 9)

= ((Enccs (pk, xi; ri)) : (EnCCS (Pk, yi s Si)))

i=1
n
= (EUCCS (pk.xi - yis ri +5i))i_1
=Enccs (pk,x Oy; 1+75). u]
Now, let m € Gzn be a vector of dimension n. We denote by 0 € ]F;” the vector of

dimension n defined by, for all i € [1;n]), 0; = 0. By definition of Enccg, we have

Enccs (pk,m; 0) = (EHCCS(Pksmi ; o))" =)L, =1 u]
i=1

et n € N* be a natural number. Let x,y,z € H;n be three vectors of dimension n.
By definition of ®, we have

x0(yoz) =x0 (4 z)i, = (xi-vi2zi)i,
Thus, by associativity of the internal law - : Hp” X HP'I — ]H[p,], so it goes for the

1 . n n n
function © : Hp” XHP — H by

Besides, as 1 is the neutral element of the group (Hp,], -), so it goes with 1 for the
group (HZ,] ,0).
a

2Let n € N* be a natural number. Let X,y € HZU be two ciphertexts vectors of

dimension n. Let 0 € S, be a permutation. Let z € H"}'] be the permuted result of

the © product of previous vectors: z, déf X ©y. On one hand, we have
— n - " -
(20) o1 = ((Fo)i1) 1 = (201 (o)) ) oy =%
On another hand, we have

(xoy), = (- w)i) = (xow o)

Now, let m € GZ” and r € Mat, (]Fp") be two vectors of dimension n. We have

=Xs OYo-

(Enccs (pk,m; 1)), = ((EnCcs (pk, mi; ri));l:l)o_ =
=EnCc§(pk, My ; ra')~

Thus, we finally obtain

2= (25),-1 = (EHCCS (pk,m_—1; ro—l)) Oy,-1- u}
3 More precisely, with X! def (x”)f\z:l € Maty (Fp, ) given by the computation

of the inverse of the Vandermonde matrix X (see [2]) with coefficients the
sequence of challenges (xl)llil, we have

Vje[1;N], r; def

N
f ~
- ,Z 0D -z 1()-
=1

(Enccs (pk, mo(i) s To(i))) 1y
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that (cr, X w) € RSBE.

dr e Gy, Brng,
¢’ =Encpg(pk,1; 1) O ¢

= S o = = S
= N « < D N
A - - - - N
Proof step — [ [ [ 2 ) [
e e e Q Q et
2 2 3 2 2 2
() L) £ (2 () L)
a, a, a, a a, a,
| Property g1 8| 88|88
Knowledge Nx N x
soundness Epa EMEA
Binding of
commitment X1
scheme
Schwartz-Zippel X1 x N?
Property transfer
under adversarial Yes
selection
Extractor uses . .
.. Yes (N witnesses — 2 witnesses each)
rewinding?

Table 1: Assessment of cryptographic or probabilistic proper-
ties used to prove Knowledge Soundness of Shuffle Argument
protocol

B.2 Multi-exponentiation argument protocol
We define

'RBG c

ver € (Ghr! x PKes) x ((Hp )™ x Hp, x G}

Statement set

X (Matnxm (Fp, ), Fot Fp,)

Public parameter set

Witness set

to be the multi-exponentiation relation defined by

((ck, pk)., ((e)21, G cs). (B, 1 0)) € Ry

cg = ComMatnXm(IFp,]) (Ck,B; t)

def m
C =Ences(pk, 15 0) - l_[c: @b;
i=1

Hence, we define a X-protocol for the relation of multi-exponentiation

> [RES\] to be the protocol defined as follows in Protocol 3.

THEOREM B.2 (KNOWLEDGE SOUNDNEss oF 2|RES |). The >-

protocol % [REE(E\] for the multi-exponentiation relation RE& isknowl-

edge sound.

Proor. We define the extractor Epmga for the Bayer-Groth multi-
exponentiation argument to be the algorithm defined as follows in
Extractor 4.

Let n,m € N* be two natural numbers. Let 7 € N* be a security
parameter. Let £* be a polynomial-time and deterministic adver-
sarial prover. Let o = (ck, pk) < Ipmea(n) be an honest public
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parameter for the multi-exponentiation relation RS&. Let Abea
probabilistic and polynomial-time adversary. Let y « A(n, o) be
an adversarial statement where

def

X = ((c;),-"il,C, CB) € (HZ,])’" X Hp, X Gp. .

Then, the adversary A calls the extractor Emga on inputs o and y

el )

with access to P* and Vjga and obtains tpps = @ 348G pe
MEA”
Let [ € [1;2m] be an index. We denote by

def 2m—1 2m-1 2 2
o @ = (cn (er )i (B, ) € G, X GEM X HE™ the first

message ; and
o spac g (@) £ (b0, D, fD,cD,cD) € Bp X,
Fp, X Fp, X Fp, the response message on challenge ;.
This way, we have the following property
o trp X

. 2m—1 2m-1
a, 3R$EGA’P* (x) = <(CB(J’(CFk)kr:nO ’(Ek)k’:()

Vie[1:2m], %, (b0, t<z>,f<z>,g<z>,r<z>)>

o, x (
v

Rigs
By definition of the Bayer-Groth multi-exponentiation argument

protocol, as the proof transcripts are valid, for all I € [[1;2m]), we
have

o X

. X)) =1.
M%MQ

cF,, = Com]FP” (ck,0;0) and E,=C (Hy)
CB, * (CB ® )N((l)) = Com]an (Ck,b(l) H t(l)) (7‘[2(1))
T Gk 0
CF, - l_[ ch:’ = Comg,, (ck,f(l) ; g(l)) (H;™7)
k=1
2m—1 ik - ! m i (1
Eo- [ EC =Ences(pk g/ 5 e - ]_[(c;. ® ((i,)m‘lb( >))
k=1 i=1
H,")

(Step 1) - Get an opening of commit values (cg, )},
(Step1.1) We define the matrix Xp € Mat ;41 (Fp,) by

1 1 1
~  def X1 X2 Xm+1
B =
~m  =m .. =m
X1 X Xm+1

which is an invertible transposed Vandermonde ma-
trix because, with overwhelming probability, the fol-
lowing property holds:

m m+l

AACGEEN)

I=1 p=I+1
(Step1.2) We define the following quantities
® B; € Matpy(m+1) (Fp,) the matrix with n lines
and (m + 1) columns where columns of Bj; are
given by vectors b(!) for all I € [1;m + 1]. More
precisely, we have

Vie[un] Vie[um+1], (B), < b)),

2m
1

=1

)
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Protocol 3: X-protocol ¥ [‘RME A] for the Bayer-Groth multi-exponentiation argument
Public Input :Two natural numbers n, m € N*. A security parameter 5 € N*. A commitment key ck = (g,g) € GZ:I for the
commitment scheme KS[Matnxm (Fp,)]. A public key pk € PKcs of the cryptosystem CS. A list of ciphertexts
vectors (c))* € (Hz”)m, a ciphertext C € Hj, and a commit value cp € GI’,';.
Private Input: A matrix B = (bi)l.'il € Mat,xm (IFP,I), a vector of random values t i IF‘;,'Z and a random value p i Fp” such that
m
cg = ComMatnxm(]Fp,,) (ck,B; t), and C = Enccg (pk. 1; 0) [1 c;®b;.
i=1
Begin protocol
(1) (Commit message) The prover Ppea chooses a vector of random values by i IF”’], a random value £ i Fp,, and, for all
i € [0;2m — 1], three random values f;, s;, i i Fp,- Then, the prover sets fi, sm < 0 € Fp, and, «—p € Fp,,.- PMEA
computes cp, «— Coan (ck bo; ty) € Gp,, and, for all k € [0;2m — 1], ¢, < Comg,, (ck. fics sk) € Gp, and
Ep «— Ences(pk, ¢ 5 1) - ]_[ ¢; ® b(k_m)4i € Hp, . Finally, Pmea sends to Viea values (CBO, (¢, )Z’" L (E; )zm 1).
®) (Challenge message) Vpea chooses uniformly at random a challenge % & ]F* and sends it to Pmea.
) (Response message) Let X be the vector defined by X « (x 1 € IF’” The prover Pmea computes valuesb «— by +B-x € F" ,
2m-1 2m-1
te—to+(t|X) €Fp,, f— Z ka €Fp,. ¢« Z gkx €Fp,,and7 « 3 rkx € Fp, . Then, Pmea sends to the
k=0
verifier values (b, , f, ¢, 7).
@ (Conclusion’s bit) The verifier Vpga accepts if and only if the following equations hold
2m-1 i
cF,, = Com]pp,l (ck,0;0), En=C cp,(cp®X) = ComFZ” (ck,bs t), cp, 1_[ c’ng = Compp” (ck, f56),
k=1
2m-1

k=1 i=1

and Eg l—[ Ex = Ences (pk, ¢/ ; r)nc ® (™ 'b).

Extractor 4: Extractor Epga for the X-protocol [REEGA] of the Bayer-Groth multi-exponentiation argument

1

2

Input : A security parameter n € N*. Two natural numbers n, m € N*. A public parameter
def . s .
o= (ck, pk) € Gg;l X PKcs for the Bayer-Groth multi-exponentiation relation 733& A statement
def , m
((c )G cB) € (]HIZ”) X Hyp, X GZ’,/

Blackbox access to .A deterministic adversarial prover £* and an honest verifier Vjyga.
Begin extractor

calls P* to get a def (CBU, (e, )Zm L (Ei )2m 1) € (Gpr; x Gj%m X Hf’m) ;

// State at this point: | st; de [(ck pk); (( l)l el CB) (CB(.>(CF )Zm L(E; )2m 1)] _

rewinds P* and V) gp at state st; and begins with «— 1 € N

. $
calls Vpea to get X; F}‘,n ;

* : .
calls P* to get z; «— 3RS (a.%) € (qu X Fp, X Fp, xFp, % Fp,’) ;
-1 1

lfU;B)é (ttg ?BG (xl)) and /\ /\ (X; # %) then [ «— [ +1;
i=1 j=i+l
until [ > 2m ; // i.e. until 2m valid proof transcripts with pairwise distinct challenges are obtained.

def 2m
o, .

returns TpMgp = (tra’ ;;BG 7)*( l)) .

L 1=1

871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928



929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985

986

o t; € F;,’;H the vector defined by t; &f (rD)
By properties of the operator ®'*, we have
(CBU, e CBm) = (CBO, RN CBm) ® (XBXgl)
see footnote 6
= ((CBO, R CBm) ® XB) ® XEI
see footnote 5

) (Ck, B;; t)}) ® i(gl
m+1

= ComMatnx(mﬂ) (Fpr,

by definitions of By and ty and by (Eq. (‘Hz(l)))l_l
ck, Bz Xg": t: X51).

see footnote 14

= ComMatnx(mH) (Fpn) (

(Step1.3) Now, let us suppose just for a moment that we have'®
3B (Xp) !

But, by the previous point, the following property
holds

(CBO, A CBm) = ComMatnx(mn) (Fpy) (Ck, ch(XB)_l sty ()N(B)—I)

= COMaty (5 (6 B (K5) ™5t (%))

Thus, as the commitment scheme KS[Mat,x (;n+1) (Fp,, )]

is computationally binding, with overwhelming prob-
ability, we conclude a contradiction. Therefore, we
have shown that the following property holds
V Bz, By € Matyy(me1) (Fp,). ¥ Xp. Xpy € Matpy(Fp,),
5\ =1 5\ =1
BSC(XB) =Ba~c'(X},3) .
We denote this common value B € Mat,x (mi1) (Fp,)
with columns (bk)lzcr:"(). Thus, we have found an open-
ing (B,t) € Matpy (me1) (Fp,) X ]F}’,"r,“ independent

from challenges (fcl)lzgi of the commit value cp:

Vke[o;m], cp, = Com]Fr;n (ck, by ; tk).

14 Let n,m € N* be two natural numbers. Let ck € Gg” be a commitment key pa-

rameter for the commitment scheme KS [Mat ;s (Fpn )].Let M € Mat,xm (IFP,])
be a matrix of dimensions n X m and let B € Matm(]Fpn) be a square matrix
of dimensions m X m. Letr € ]F;,':] be a vector of dimension m. By definition of
ComMalnXm(]Fp” )» we have

m

(ComMatnxm(Fp,,) (ck, M ; r)) ®B= (ComMatnxm(Fp,,) (ck,M; 1) ® B(j))
Jj=t
3 ) m
= (Com]Fn (ck,M “BY; (r | BU))))
Pn j=1
= COMuatypm (Fpy) (ck, MB; 1B).

15More precisely, we suppose the existence of Bz, By € Maty (me+1) (Fp”) two
matrix of dimensions n X (m + 1) and XB,Xé € Mat,p41 (]Fp,]) two square matrix
of dimensions m + 1 such that we are in one of the two following cases:

« Case 1: Their exists a sequence (561)7:1'1 of challenges in IF;” and at
least another challenge fc;o € ]F;” with )?;0 # Xj, for some Iy €
[1;m + 1] such that Xp def V (X1, . .o Xpg—1, Xpgs Xig+15 - - - Xma1) and
DR CTRNE I TP S E

« Case 2: Their exists at least one column [y € |[l; m+1]] such that Bi.(lo) # B;l,[]).

 Ber (%)™ € Matyse(men) (Fp, ), Bz (X) ™" # By (X5) .
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(Step 2) - Get an opening of commit values (c Fk)i’:(; !

(Step2.1) We define the matrix Xr € Matap (Fp, ) by

1 1 ce 1
X1 X2 e Xom
5 def
Xp = ,
~2m—1 ~2m-1 ~2m—1
X1 X3 Xom

which is again an invertible transposed Vandermonde
matrix because (il)lz:"; are pairwise distincts, with
overwhelming probability.

(Step2.2) We define the following quantities

£, def (f(l))?:ni c F?);n and _S)fc = (g(l))Zm c F2m

Thus, we have

(CFO""’CFZm—l) = ((CFO’ : "’CFZm—l) ®XF) ®XI~:1

= Comjﬁpﬂ (Ck, fz; _g);() ® )2;1
2
by hypothesis (Eq. ((HS(I)))I_Wi

= Com]Fp,] (ck, f;()zgl ; _5'))25(1;1)

(Step2.3) As seen in step (Step1.3), by the binding property for
the commitment scheme KS[Fp, ], we conclude with
overwhelming probability, the existence of a sequence
(S gk))lzcr:no_l € (Fp, X]Fp”)zm which is independent

from challenges (9?1)12;"1 and such that

Vke |[0; 2m — 1]], CF, = Com]pm (Ck,fk; gk)'

(Step 3) - Obtain the computation of values (Ek)irzno_ !

(Step3.1) By hypothesis Eq. (‘Hz(l) ), and by definition of vectors
(bi)}~, (see step (Step1.3)), forall I € [1;m + 1], we
have

noo NG
> @)= B-Xy) = (BXp) " = (B;CXBIXB) =8
i=0

Thus, by definition of Bg, the following equation
holds

m
Vie[tm+1],b0 =3 (x)'b;. (@)
=0

(Step3.2) Likewise but with hypothesis Eq. ((HS(Z)) and defini-
tion of vector f; (see step (Step2.3)), the following
property holds

2m—1

vie[uzm], fO = G fi. (¥)

i=0

987

988

989

990

991

992

993

994

995

996

997

998

999

1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043

1044



1045
1046
1047
1048

1049

1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101

1102

Conference’17, July 2017, Washington, DC, USA

) leads to

Z(x ym=i+jp ()

Jj=

(Step3.3) Foralll € [1;m+1],Eq. (

c;® ((x)™” ’b(l)) =

.:§

(c/® b(j))(ffz)’""'”'

s ':':13

1l
—_
<.
1l
(=]

—

(xpk

2m-—1 m )

I 1T enaen?)

k=0 Jj=0
ISm—-itj<m

We define E % (Ek)imo le Hf,;” and, for all i €

[0:2m —1], 7@ € IF’?,:,” the (i + 1)-th column of the
matrix )2;1 Leti € [0;2m — 1]. We have!®

E;=E® ()ZF . y(i)) because Xp - }70) =u;

2m-1

()ZF.}*,(I'))
= ]—l E g

k=0

by definition of ®

By definition of XF, for all k € [0;2m — 1], we have

Sl

Thus, we can compute E; as follows

2m

(K- 39) = 2 ()i =

=1

()
om . 2m (2m=1 _\ U
1
I=

s
I

2m-1
SN
[TT]5™ = £
1 I=1 \ k=0
= (1)

ﬁ(EnCCS(Pk gf D). H(C ® (%" lb(l)))) l
I=1

by hypothesis (Eq (W(l)))

=1
= (1)
Ences (pk.g/ " 7®) &
2m i;(
— 1_[ 2m-—1 m )
s I I I O I R A
k=0 Jj=0
1<Sm-k+j<m
2m .
Zf([) g(') 2m (i
= Enccg| pk, g™=! ; Z g
I=1
2m—1 m )
[T{ ] hror?)
k=0 =

1<Sm—-k+j<m

because CS is homomorphic

Let n € N* be a natural number. Let x € HZ” be a ciphertexts vector of dimension

n.Leti € |[1; n]] By definition of ®, we have

n
S
x@ui=l_lxjﬂ=xi. m]
Jj=1

Anon.

It follows

Ski
2m—1 m

Ei = Enccg(pk,gfi 5 Tj) . l_[ l_[ (C:n k+] ® a(j))
k=0 j=0
1<Sm—-k+j<m

because, for all k € [[0; 2m — 1], the following prop-
erties hold

def
- i (X Zﬂ” i1

« Vje[o0;2m - 1], foym 71}7(}')),( =

s
def
+ We define t;. to be 73 = Z r“)gl(") €Fyp,

I=1
Consequently, we conclude the following property

m
Vk e I[O; 2m — 1]], Ep = EncCS(pk,gfk ; Tk) l_l(C{ ® bk—m+i)
i=1

1=1 =1

2m 2m
where fi. = Zf(l)gl(k) and 7 = Z r(l)gl(k).

(Step 4) — Obtain the computation of value C
By hypothesis Eq. (1), we have cf,, = Comg,, (ck,0;0)
and E;; = C. As the commitment scheme KS[Fp, ] is
computationally binding, with overwhelming probability,
we have f;; = 0. This leads to

m
C = Em = Ences (pk, ¢° 5 t) l_[(cl’ ® b;).
i=1

Results obtained in steps (Step 1) to (Step 4) give us the following
result, proving that, with overwhelming probability, we have success-
fully extract a witness w def (B.to) € Mat s (Fp, ) X FZ‘" x Fp,

such that (o, y, w) € RSS\

3B € Matyxm(Fp,), IteFy Fo e Fp,

CB = ComMatnxm (]Fpr/) (Ck, B 5 t)
m

C = Enccs(pk,1; o) - ]—Il(cl’ ®b;)
i=

where BU) d:efb(j),forallj e1;m].
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— i N N
Proof step — [ [ ) )
L 2 b e
2 2 2 2
‘a 2 2 2
s | 5| 5| &
| Property 2 2 2 2
Binding of
commitment X1 X1
scheme
Property transfer
under adversarial Yes Yes
selection
Extractor uses . .
AR Yes (2m valid proof transcripts)
rewinding?

Table 2: Assessment of cryptographic or probabilistic
properties used to prove Knowledge Soundness of Multi-
Exponentiation Argument protocol

B.3 Product argument protocol
We define

BG n+l1
C
RECC
——
Public parameter set

X (GI’;, X Fp, ) X (Matpsm (Fp, ) X FI’;])

Statement set Witness set

to be the product relation defined by

cr = ComMatnxm(]Fp,]) (ck,l"; v)
n m

[[[Tri=s

Hence, we define a 7-move product argument protocol to be the
protocol defined as follows in Protocol 5.

(ck, (cr. B), (T.v)) € RES &

THEOREM B.3 (KNOWLEDGE SOUNDNESS OF ZK®) [RPB/S]). The
7-move zero-knowledge protocol zZK () [‘REAG] is knowledge sound.

Proor. We define the extractor Epp for the Bayer-Groth product
argument to be the algorithm defined as follows in Extractor 6.

Let n,m € N* be two natural numbers. Let € N* be a security
parameter. Let £* be a polynomial-time and deterministic adver-
sarial prover. Let ck «— Ipa(n) be an honest public parameter for
the product argument relation RpBAc. Let A be a probabilistic and
polynomial-time adversary. Let y « A(n, ck) be an adversarial
statement where

def
X< (cr. B) GGZt] x Fp,.

Then, the adversary A calls the extractor Epa on inputs ck and y
with access to P* and Vpa and obtains

N
(L, O, &)
————

Witness of the Hadamard

Product Argument

def B2

TPA = (C/g, (ﬁ( ),§2) )
———

Witness of the Single

Value Product Argument

11
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(Step 1) By the knowledge soundness of the Hadamard product
argument protocol (see Theorem B.5), we have, with over-
whelming probability in 5, the following equations

cr = ComMatnxm (Fp,) (Ck, r; V) (WIEI}J)A)
-
Cﬁ = Com]pzn (Ck, ﬁ 1) 5 §§) (ﬂl—(li’)A)
m
FW - Onk (H))
j=1

(Step 2) Besides, by the knowledge soundness of the Single value
product argument protocol (see Theorem B.4), we have,
with overwhelming probability in 7, the following equa-

tions
N

o= Comg, (D8] 0

n
_ (2) (2)

p=]1s (Hypa)

i=1
(Step 3) By equations Eq. (W:’QA) and Eq. ((Hs(\ll)P 4 )» we have

— —
cg = Com]FZ,, (ck, B , &s) = Com]pz’7 (ck, ﬁ(z) 5 &).

Thus, because the commitment scheme KS [an] is com-
putationally binding, we conclude with overwhelming

- -
probability in n that f @ = B (2), We denote this com-
—
mon value f € FZ".
Results obtained in steps (Step 1) to (Step 3) give us the follow-
ing result!’, proving that, with overwhelming probability, we have
. def
successfully extract a witness w = (T, v) € Matpxm (Fp”) X IF"Z’”
such that (0', X w) € RE’E.

dT e AAatnx,n(E?P”), dv e H:ﬁ;’
cr = ComMatnXm(Fpn) (ck,T; V)

p=[11 1"

i=1 j=1

7More precisely, on one hand we have

by step (Step 3) and Eq. (’HS(\Z/)PA)

=
I
=
>

by step (Step 3) and Eq. ((H|(13r3A)

[
—=
—
3

=

~.
—_

—
Iz

by definition of operator ©

T
~.
Il

And on another hand, Eq. ((Hl(ilP)A) gives us

er = CoMpatypym (7p,) (ck,T'; v).
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Protocol 5: 7-move zero-knowledge protocol zZK(3) [‘REAG] for the Bayer-Groth product argument

(1)

(1-5)

(5-7)

®)

Public Input :Two natural numbers n, m € N*. A security parameter n € N*. A commitment key ck = (¢,g) € GZ;I for the
commitment scheme KS[Matpxm(Fp,)]. A commit value cr € G";, and a value § € Fp, .

. . $
Private Input: A matrix A € Mat,xm (qu), and a vector of random values v « FZ’” such that cr = Com Matasn (Fp, ) (ck,T; v) and

Begin protocol

. . $ .
(Commit message) The prover Ppa chooses uniformly at random a value & < Fj,  and computes the commit value
n

m
Cp < Com]pn Ck, H F,-,j ; f
” =L im
(Hadamard product argument call) Both prover Ppa and verifier Vpa engage in the 5-move zero-knowledge protocol

€ Gp,- Then, Ppa sends this commit value cg to the verifier Vpa.

ZK® [REIS\] for the relation RHBPGA with public parameter oppa def ck, public statement yjpa def (er,c ﬁ), and private statement
m
WHPA def (F, 10 ), §) We denote by tpypa the proof transcript obtained at the end of this 5-move protocol.
J=1
(Single value product argument call) Both prover Ppa and verifier Vpa engage in the X-protocol = [RSB\% A] for the relation

def

. . def . def . L
Rgﬁ, 4 With public parameter ogypa < ck, public statement ysypa = (cg, B), and private statement wsypa = @1 ro), §) We
J:

denote by 7gypa the proof transcript obtained at the end of this 2-protocol.

(Conclusion’s bit) The verifier Vpa accepts if and only if the following property holds UE’;,;A’ AIPA (21ipA) A vg\%}’ HSVPA (TSVPA)).

Extractor 6: Extractor Epa for the 7-move zero-knowledge protocol ZK®) [RE‘AG] of the Bayer-Groth product argument

1

2

. . def
Input : A security parameter n € N*. Two natural numbers n,m € N*. A public parameter o ke Gz;rl for the

. def
Bayer-Groth product relation ‘REE. A statement y = (cr. B) € GZ; X Fyp,,.
Blackbox access to: A deterministic adversarial prover £* and an honest verifier Vpa.
Begin extractor
calls P to get cg € Gp, ;

calls Eppa with oracles P* and Vpa on inputs (a, (cr, cﬁ))
-
to get (r, v, f, g(s) c (Matnxm(Fp”) X X Fp,,) :

calls Esypa with oracles P* and Vpy on inputs (0, (Cﬁ,ﬂ)) to get (—ﬂ>(2), §2) € (an X Fp”) ;

returns 7pp d:ef (Cﬁ, (F, V,?(l), 55) (—ﬂ)(z), §2))

=1 = | =
Proof step — & by by
2 2 2
g g g
| Property 2 % @
Knowledge 1x | 1x B.4 Single value product argument protocol
Soundness Enpa | Esvea
We define
Binding of
commitment X1
scheme
Extractor uses
rewinding? No BG
. — Revps S Gt X (Gp, X Bp,) X (Fp X Fp,)
Table 3: Assessment of cryptographic or probabilistic proper- " NG 7
—— N —
ties used to prove Knowledge Soundness of Product Argument Public parameter set ~ Statement set Witness set

protocol 12
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Protocol 7: 3-protocol ¥ [‘RSB\% A] for the Bayer-Groth single value product argument

Public Input :A natural number n € N*. A security parameter € N*. A commitment key ck = (g,g) € Gz;rl for the commitment
scheme KS[FZ”]. A commit value cg € Gp, and a value ff € Fp, .

— — n
Private Input:A vector § € Fj and a random value ¢ & Fp, such that cg = Comgn (ck, B &),and B =[] fi.
" i=1
Begin protocol

.o j
1) (Commit message) The prover Psypa computes, for all j € [1;n], § D — 11 Pi € FI")U. Then, he chooses uniformly at random
i=1

values Aq,...,Ap i IFP,,, 02,...,0n-1 i Fp”, and &g, Ep, En i ]Fp,/. Next, Psypa sets 1 «— Ap € Fp” and 6, «— 0 € ]Fp,/ then
computes

-1
cA — ComFS,, (ck,A; §A) € Gp”, cs — Com]F;: (ck, (—51‘Ai+1)?:1 ; §5) S qu, and
~ n
CA — Coszgl (Ck, ((Si - ﬁiéi,l - ﬁiilAi)i*Z ; §A) € GPU
Finally, Psypa sends to Vsypa values (CA, cs, cA).
%) (Challenge message) The verifier Vsypa chooses uniformly at random a challenge % <$¥ F;‘,U and sends it to Psypa.-
®) (Response message) The prover Psypa computes values £ «— &+ Ep € Fp,» e REp+E5 € Fp,, and, for all i € [1;n],
,gi — )?ﬁ,' +A; € FP'I and 3[ — JAC,éi +9; € Fp”. Then, PsvpA sends values ((,BA,'):LI, (Si);lzl’ é?, Z) to Vsvpa.
o) (Conclusion’s bit) The verifier Vsypa accepts if and only if the following equations hold
n
i

C;CA = Com]F;,, (Ck, (ﬁi)?zl, é‘c), Cf\c(g = ComFZ# (Ck, (Jegj—gj_l‘éj) :2, Z), 31 = ’BAl, and Sn = )?ﬁ

Extractor 8: Extractor Egypa for the E-protocol [7358\% A] of the Bayer-Groth single value product argument

. . def
Input : A security parameter 7 € N*. A natural number n € N*. A public parameter o = cke GZ“ for the
n
. . def
Bayer-Groth single value product relation RSB\E, 4+ A statement y = (cp. B) € Gp, X Fp,.
Blackbox access to: A deterministic adversarial prover £* and an honest verifier Vsypa.
1 Begin extractor

def . . def
2 calls P* to geta = (ca,cs,cn) € (Gp” X Gp, % Gp”) ; // State at this point: | st; = [ck; (cp. B): (ca, cs CA)].
3 rewinds P* and Vsypa at state st; and begins with « 1 € N
. $
4 calls Vsypa to get x; «— IF’;‘,” ;
¥ > n n .
5 calls P* to get 37{5\%“ P (0{, xl) € (]Fp’7 X FPU X Fp” X Fp”) ;
-1
.o ck, ck, N . N
6 1vaBé( (tra’ angG o (xl)) and /\(X; # X;) thenl «— [ +1;
SVPA SVPA’ i=1
7 until [ > 2;
def [, ck, A k, N
8 returns 7gypp = (trg’ SXBG . (%1), tr;} 3XBG . (xz)).
L RSVPA’ ¥ RSVPA’ P

to be the single value product relation defined by

SVPA

— def BG _
(ck, (s B). (B, f)) e RBG, <& n THEOREM 1;.64 (KNOWLED(.}E SOUNDNESS OF Z[RSV?A]). BTéze >
B= l_[ﬂi protocol Z[‘RSVPA for the single value product relation Rq\;,,
i=1 knowledge sound.

13

Hence, we define a 3-protocol for the relation of single value
product X [RBG | to be the protocol defined as follows in Protocol 7.
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Proor. We define the extractor Egypa for the Bayer-Groth sin-
gle value product argument to be the algorithm defined as follows
in Extractor 8.

Let n € N* be a natural number. Let € N* be a security pa-
rameter. Let * be a polynomial-time and deterministic adversarial
prover. Let 0 = ck « Igypa(n7) be an honest public parameter for
the single value product relation ‘RSB\% 4+ Let A be a probabilistic and
polynomial-time adversary. Let y « A(n, ck) be an adversarial
statement where

X (¢p. ) € Cp, X Fp,.
Next, the adversary A calls the extractor Egypa on inputs ck and
x with access to P* and Vsypa and obtains a pair of valid proof
transcripts rsypa where

k,
Tsvea & (trfx 3)(50 L (x1), tra 8 e ( 2)).
5%
We denote by

def
a = (cascs,cn) € Gp, X Gp, x Gp, the first message ; and
for I € {1, 2}, the response message on challenge X; is

.~ def [/ A(1 (1 o s
s, e (i) < (61 (51, 0.80)

€ (Fp, xFp, xFp, x Fp, ).

By definition of the Bayer-Groth single value product argument
protocol, as the proof transcripts in zgypa are valid, for [ € {1, 2},
we have

(")
A . A ~ N n ~ l
cil% = Cosz? (ck, (xlgi(l) - 5§£)1ﬂl§l))i=2 : g(l)) (‘HZ( ))

5040 ana 60 = s

(Step 1) - Get an opening of commit value cg.

(H)

(Step1.1) HypothesisEq. (H. 1(1) ) and homomorphism of ComFZ”
lead to

021_5‘2 = Compg (ck (ﬂ(l) ﬁ(z)) ;D) - 5(2)).

Because X1 # X2, we have

1
cp= (Com]pn (Ck (ﬁ(l) ﬁ(Z)) g_,(1) 5(2))))61—)62
= Com]FZ” (c

(Step1.2) Therefore, the pair ((ﬁ,)l " r) e FZ” X Fp, is an
opening of cg with

Vie[tn], g% = (ﬁ“) /3(2))

and £ 1 &m—éﬂ,

X1, X2

which is independent of challenges %1 and X2 because
the commitment scheme KS [FZ"] is computationally
binding.

e (-0 e -9).
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(Step 2) — Get an opening of commit value cp.
(Step2.1) We have,

. cA:c;’?IComFZ ( (ﬁ(l)) §(1))byhypoth—

esis Eq. (‘H(l)) appliedto!=1;and
e by step (Step 1), cg = Com]yn (ck, B é).
This leads to

- A n A
cn = (Comey (ck (B3 ) - Compn. (ck, (B7) g(”)
N n A
= Compzn (ck, (ﬁi(l) - J?lﬂi)i:ls £ — fclf).

(Step2.2) Therefore, the pair ((Ai);;l,gA) € FZ:, X Fp, is an
opening of cp with

Vie[1n], Al = ﬁ(l) —%1f;i and & d:eff(l) - %1€,

which is independent of challenge X1 because the com-
mitment scheme KS [Fz”] is computationally binding.
(Step 3) — Get an opening of commit value cp.
(Step3.1) By hypothesis Eq. (‘Hz(l)) and because X1 # X2, we
have

( 8V _6M W _ 552)+(§1'(5151§2))"

1 /s .
- (@
X1 — X2 (g g ))
(Step3.2) Thus, ((A:),,&r) € ]FZ;I X Fp, is an opening ~ in-

dependent of challenges X; and X by the binding
property for the commiment scheme KS [Fz;l] - of

CA = Coan 1(ck
x1 - xz

cp with

i=2’
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) ) def 1 . S _ &) A1) _ L &(
Vie[2n], A = =% (x15,~ =615 %20

and En def (g(l) - 5(2))

X1 — X2

@ | 5@ ﬂ<z>)

1600
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(Step 4) — Get an opening of commit value cs.
(Step4.1) We have,

o cs _CA 1C0an (Ck (x 5(1) 5(1)ﬁ(1)) é/(l))
by hypothesis Eq. (742(1)) appliedto/ =1;and

e by step (Step 3), cp = Com]FZ,, (ck, (A, ; En)-
This leads to

R N ~ n ~
cs = Comu:‘;;lI (ck, (5(151.(1) - 5l~(i)1ﬁ,~(1) - 3?17Li)i:2 ; év(l) - ’A‘lé’/\)-
(Step4.2) Thus, ((y)),, &s)

dependent of challenge X1 by the binding property for
the commitment scheme KS[F;;I] - of ¢5 with

€ F;;l X Fp, is an opening — in-

Viel[zn], v €60 500 _ 5

def

and Es T T — 264,
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More precisely, polynomial p(i)

(Step 5) — It remains to verify equation ff = H Bi.

tep5.1) By ste tep 4) and because sequences (4; an
(Step5.1) By step (Step 4) and b q (AL, and
(i), are independent of challenge %1, we have

(l)ﬂ(l) +p(l) (%1) (%)

is a polynomial of degree 1 in variable

Vie[2n], £5" =4

where p{i)
%118,
(Step5.2) Now, let us prove the following property P (j) for

Jj € [1;n] by induction:

. N Jj N i j
ff_lfs;l) - 1_[ ﬁi(l) +p](AJ_)1 (1) where p](]_)l is a polynomial of
i=1
P
o Initialisation (j = 1): By hypothesis Eq. ("),
= ﬁ(l) Thus we have 321_151 =

[T, /31 +0 w1thp(1) 0 a polynomial of degree
at most 0. Consequently, (1) holds.
e Heredity (let j € [2;n]]): We suppose P(j — 1).

By Eq. (+), we have 3218](.1) - 3,(-91 ﬂ”](.l) +p (#1)

degree at most j — 1 in variable %;.

we have S(l)

with p(j ) of degree at most 1. Thus, we have
)e.ll'_lgj(l) — }2.1/ (1) ﬂ(l) .ll'_ngj) (%1)
j-1
_ (l—[ﬂ 1)) ﬂ(l) +,3(1)P(J 1) (%1 )+x1 -2 (J)(x)
i=1

because P (j — 1) holds
deg < j-2 deg < j-1

(ﬂ“) o G+ 2]l ) |.

deg < max(] -2,j— 1) j-1

Consequently, we have
Jj
Lj-12(1 A(1 ) a
#7180 G
i=1
where p(] ) isa polynomial of degree at most j—1
in X1
Thus, by induction, for all j € [[1;n]), the property
P (j) holds. In particular, because %15 = 3,(11) (hy-
pothesis Eq. (7’1(1))), for j = n, we have

#p =218 = ]_[ﬁl+ p PG (i)

of degree n-1

(Step5.3) On another hand, by the opening of c (see step (Step 2)),

we have
. A1 ~ .y
Vie[tn], A= /31( ) - %1Bi (ii)
is defined as follows:

Viel2n] p” 00 €y + X,

where y; and A; are some constant values regarding X.
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A n
where sequences (A;)IL; and (ﬂl(l)) ,are indepen-
i=
dent of challenge %1.
Thus, by Eq. (i) and Eq. (ii), previous property leads
to
n

)AC?ﬂ = l_l(flﬁ, + Ai) +p£:1)1 (x1).
i=1
Besides, there exists a polynomial © € Fp, [X] such
that

n n
[ [+ ai) =22 ] ] g+ 01
i=1 i=1
and © is of degree at most n — 1 by construction.
(Step5.4) Consequently, the two results obtained in step (Step5.3)

lead to
([‘[ﬂi— )x1 + p (&) +0(31) =0.
i=1 —

of degree at most n — 1

By the Schwartz-Zippel lemma, we conclude with
overwhelming probability the following result

p= nﬂi-

i=1

Results obtained in steps (Step 1) to (Step 5), give us the follow-
ing result, proving that, with overwhelming probability, we have

. def —
successfully extract a witness w = (f,¢) € Fp, % Fp, such that

(0,26 w) € REG-

v n
EIﬁEF,I,HéfEFp,,, .
cp = Compzn (ck, B 8)
n

B= l_lﬁi
i=1

= = = = =

(=l N Ryl <+ "

Proof step — Iy by & Iy 2

2 2 3 2 2

2 2 2 2 )

& g g & &

| Property 2 2 @ @ 2

Binding of
commitment X1 X1 X1 X1
scheme
Schwartz-Zippel X1

Extractor uses

rewinding? Yes (2 witnesses)

Table 4: Assessment of cryptographic or probabilistic prop-
erties used to prove Knowledge Soundness of Single Value
Product Argument protocol
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B.5 Hadamard product argument protocol
We define

RBG

n+1
HPA = Gp,,

N——
Public parameter set

X (Matnx,n(]F‘pq) X IF;,"" X qu X ]Fp,/)

m
X ((}p” X (}P”)
e
Statement set

Witness set
to be the Hadamard product relation defined by
~N\Mm
(ck, (cr. Cﬂ), ((1‘(1)) v? é—’)) € REPGA

j=1
~\Mm
cr = ComMatnXm(]Fp,,) (Ck, (]"(J))j=1 ; V)
def -cC B -
JLEN cp omgz (c L b §)
m

7= (W
R

Hence, we define a 5-move zero-knowledge protocol for the
Hadamard product argument 7K@ [RE&] to be the protocol de-
fined as follows in Protocol 9.

THEOREM B.5 (KNOWLEDGE SOUNDNESS OF ZK @) [RBGY). The

HPA

5-move zero-knowledge protocol ZK () [REPGA] for the Hadamard

product relation ‘RE& is knowledge sound.

Proor. We define the extractor Eyypa for the Bayer-Groth Hadamard

product argument to be the algorithm defined as follows in Extractor 10'°.

Let n,m € N* be two natural numbers. Let € N* be a security
parameter. Let £* be a polynomial-time and deterministic adversar-
ial prover. Let o = ck < Iyypa(n) be an honest public parameter for
the Hadamard product relation RE&. Let A be a probabilistic and
polynomial-time adversary. Let y « A(n, ck) be an adversarial
statement where

def
¥ = (cricp) € GZ; x Gy,

Next, the adversary A calls the extractor Epa on inputs ck and y
with access to P* and Vyypa and obtains a witness candidate woyt
- in particular, Epp has not aborted - where

def _
Wout = (r, v, :(m), gm)~
The only thing it remains to prove is to verify if we have indeed a
witness for RE’& with public parameter o and adversarial statement
X, i.e. we have to show the following property:

(ck, (crs cﬁ), Wout) € RE&.
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Anon.

More precisely, by definition of the relation REPGA, we have to prove
the three following properties
cr = Comya,,, (F,,) (ck,T5 v), (01)
cp= Com]FZ'I (Ck, E(m) H gm), (02)
O
=(m) — & (03)
j=1

(Step 1) — Preliminaries — Zero Argument consequences.

(Step1.1) By the knowledge soundness of the zero argument
protocol (see Theorem B.6), we obtain

‘o= F))"

cp = ComMatnXm(]Fp,,) (ck, (F )j=1

~\M

. CY = ComMatnXm(Fp,,) (Ck, (Y(])) )

m

Jj=1
e 0= TW x, YU-D,

Jj=1
Using definitions given by the extractor Epjpa
(see Extractor 10), these hypothesis become:

(H;) Forall je[1,m—1],
Ty = Cf, = Com]pzq (ck, N2 [Jj) see line 5
= Com]FZr, (Ck, U+ ; 0j+1) see line 9

and, for the special case j = m, we have

cy=¢p = Com]pz (ck,f‘(m) ; ym) see line 5
J n
(Hy) Forall j € [0;m—2],
c%]:: = ij = Comlpz” (ck,?(j) ; Vj) see line 5

= Com]p; (ck, wHglU+l) R uj+1gj+1) see line 8
n

and, for the special case j = m — 1, we have

m-1
J S (m— )
g = 1_[ C%H = Com]pz” (ck,Y(m . vm_l) see line 5
J=
m-1 m—1
= Com]pz ck, Z =10 Z w g see line 8
"
= =

(H3) The following equation holds:
m
0= 10 %, YU

-1
= rU+D &, (qu(j)) + T 4, ¥m=D o6 lines 8 and 9

3

~.
1l
—_

(Step1.2) Notice that, thanks to the rewinding lemma, with
overwhelming probability, extractor Eppa does not
abort.

(Step 2) - Let us show equation Eq. (01).

(Step2.1) Using Hypo. (H1), we already have

Vje2;m], or; = Com]];;” (ck,I‘(j) ; vj).
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Protocol 9: 5-move zero-knowledge protocol 7K [QEPGA] for the Bayer-Groth Hadamard product argument

(e}

)

(3-5)

©)

Public Input :Two natural numbers n, m € N*. A security parameter € N*. A commitment key ck = (g,8) € G;:']l for the commitment scheme KS [Mat,xm (Fp,l )]

Two commit values ¢y € GI','; andcp € GP?]‘

\m — $
Private Input: A matrix I' = (I‘(”) € Mat,xm (]Fp,] ), a vector of random values v <$— ]Fm”, avector f§ € ]F",, , and a random value & «— ]Fp,] , such that
Jj=1
— - m .
cr = ComMatnXm(Fp”)(ck,F; v),cp = Comlgg (ck, B &),and f = (HTV).
n J=1

Begin protocol

. J —
(Commit message) The prover Pypa defines, forall j € [1;m — 1], YY) r®) ¢ F and Y™ « S € F” . Next, the prover generates random values
Py Pn &
k=1

$
G2s - vy Gm-1 — ]FP,, and computes commit values cr; < ComIFZ” (Ck, Yj; gj) € GP” for all j € [2;m — 1]. Then, Pipa defines g; «— v; € ]FP" and
Sm— &€ ]FP” and then sets cy; < cry € GP'I and ¢y, < cp € GP;; . Finally, the prover P}pa sends to the verifier Vijpa the commit value cy.

$
(Challenge message) The verifier Viipa generates two challenges u, v «— P;W and sends them to the prover.
: i m-1 i
(Zero argument call) For all i € [[1; m-— 1]], let cg, the value defined by g, < c%i € GP:] , let ¢y be the value defined by ¢y 1:1—11 C?i+1 € G’Pn ,and let c_; the

commit value c_; « Com]FZ'7 (ck,—150) € Gpy- Let o ]F;” X ]F;” — Fp,, be the bilinear application defined by, for two vectorsa = (a;)iL, € ]Fz" and

def I i . . . . .
b= (b)), € ]FZ”’ ax,b = Z a;b;v'. Then, both prover Pppa and verifier Viipa engage in the X-protocol X [R?AG] for the relation ’R%\G with public parameter
i=1
46k, publi « ; oy C7) ) and pri
OzA = CK, public statement xz4 = (crz, <o s CTyys c,l), (crl sy cr”kl 5 CY) , and private statement

. m=1 m-1l
A def ((I‘(Z), .., rim), —1), (Uz, e Um, 0), (uYI, Lumiy(me) oy uJY(/“)), (ugl, Lu™ e, ujgjﬂ)). We denote by 774 the proof transcript
j=1 j=1
obtained at the end of this X-protocol.

O

(Conclusion’s bit) The verifier Vza checks if ¢y, = cr; and cy,, = cg. Then, Vza accepts if and only if v ZAXZA 774) holds.
1 1 m = Cp ZA

Extractor 10: Extractor Sppa for the 5-move zero-knowledge protocol ZK® [RES\] of the Bayer-Groth Hadamard product argument

1

2

3

4

. * . def .
Input : A security parameter 7 € N*. Two natural numbers n, m € N*. A public parameter o = ck e G;;l for the Bayer-Groth Hadamard product relation
BG def
REG. A statement y ‘= (cr, cp) € G[',';I X Gp,.
Blackbox access to: A deterministic adversarial prover £* and an honest verifier Vijpa.
Begin extractor

def m
calls P* to get ¢y = (cy;)i, € G;,';] ;
if cy; # cry or ¢y, # cp then abort;

$
calls Viypa to get (u,0) ]F;” X ]F;v ;
Clypq ifi<m

- .\ m . . . lef
e < (Cl'i)i=1 € Gpy where, forall i € [1;m], VA { cq = Comle (ck,—1;0) otherwise, i.e.i = m.
n

computes uitl s :
Ko ifi<m-1
m-1 m i !
. . om— ; SRR
o — (ch_)i:O € Gp” where, forall i € [0;m — 1], i ml_I C,Y‘J otherwise, i.e.i = m — 1.
Jj=1 J+1

. IF;” XF;” — ]F,f”
X (@ b)) = Tabe
i=1

~ o\ o \m—1
calls Eza with oracles £* and Vipa on inputs ((ck, *3), <Cf, Cf)) to get ((I‘U))jil,ﬁ, (Y(J))fO ,_v)) € (Matnx,,, (]Fp,]) X ]FZ"] X MatnXm(]Fpﬂ) X ]F‘Zi,) H
m u YU ifj<m
= =) i . =) ~ -2 .
= (_ ! )j:I N Mat"XM(Fp”) where, forall j € [1;m]. 87 ut~m (Y(m_l) - mE uJE(J+l)) otherwise, i.e. j =m
j=1
computes ) ;
u vy ifj<m
- \m m i . . m=2
s < (gf)j:l € Fon where, forall j € [1;m]. ¢; < ul-m (Vm,l - ufgj+1) otherwise, i.e. j = m.
Jj=1
. . -0 ifi>1
n\™ el 0) r ifj >
T« (I‘ J )FI € Mat,,Xm(]FP”) where, forall j € [1;m], TV) « { = otherwise, i.e. j = 1
computes ;
\m m . . ) pj-1 sij>1
v — (v])jzl € ]Fp” where, forall j € [1;m]], v; « { a otherwise, i.e. j = 1.

returns (F, v, E0m), gm)~
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(Step2.2) Next, by definition given in line 9, we have
r® def M and 1 def G1-
By definition given in line 8, we have

def _
and ¢ = u L.

(1) def —15(0)
Then, Hypo. (H>) leads to
c% = Comﬂ:;” (ck,Y(O) ; vo) = Com]p;” (ck,uE(l) ; ugl)

It follows, because Com]pz is homomorphic and be-

n
cause u # 0, the following equations
u =(1) u
oy, = (Com]pzn (ck,:, ; gl))
ie. cy = ComF;” (ck,E(l) : gl) = Com]pzn (ck,F(l) : 01).

(Step2.3) Because Eypa has not aborted, the if-condition in
line 3 does not hold. In particular, we have cy, = cry.
This finally leads to

r, = Com]F;" (ck,F(l) ; 01).

(Step 3) — Let us show equation Eq. (Os).
(Step3.1) Using Hypo. (H2), we have

m-1 m—1 m—1
u o _ J=(+1) . Jp.
l_[ Yy = Com]pzﬂ ck, Z wE ; ' gjv1
Jj=1 Jj=1 Jj=1
m—1

= 1_[ (Com]ng7 (ck,EUH) H §j+1))uj

~.

(Step3.2) By application of the function logg : Gp, — Fp,,
the previous equation becomes

m-1 m-1

> wllog ey, = Y ul 1Ogg(C0m1F;n (Ck,E(j“) ; §j+1)),
j=1 Jj=1

which is a polynomial equation of degree at most
m — 1 in challenge u. Thus, by the Schwartz-Zippel
lemma, we conclude with overwhelming probability
the following property

Vie[t,m-1], logg Crjyy = logg(ComF;” (ck,E(jH) ; gj+1)).
The injectivity of function logg leads to
Vielzm], e, = Compzn (ck,E(j) ; gj).

(Step3.3) In the particular case of j = m, we have
¢y, = Com]pZ’7 (ck, glm . gm).

And, because Epypp has not aborted, line 3 leads to
¢x,, = cg. Consequently, we finally obtain the follow-
ing equation

cg = Com]FZn (ck, glm . gm). ‘

(Step 4) — Let us finally show equation Eq. (O3).

Anon.

(Step4.1) Using Hypo. (H3) and because %, is bilinear (see
line 7), we have
Lo )
0= u (P04, 20)) 4 1M &, (m=1) (V)
j=1
(Step4.2) Next, Hypo. (H;) leads to

COm]an (ck, -1; 0) =c_; = Com]pZ’7 (ck, rm . IJM)'

Thus, because KS [Fg”] is computationally binding,
with overwhelming probability, the equation above
leads to '™ = —1. Moreover, by definition of y(m-1)
given in line 8, we have

v(m-1) _ Z W=+
Jj=1
(Step4.3) Therefore, by the two results obtained in previous

step (Step4.2) and because %, is bilinear, equation
Eq. (V) becomes

m—1

Jj=

which is a polynomial equation in challenge u. Thus,
by the Schwartz-Zippel lemma, with overwhelming
probability, this previous equation Eq. (V’) leads to

Vje[1im=1], 1%, 20D =10+ 5 20), (¥)
(Step4.4) By definition of the bilinear map *, given in line 7,
P y P *u g
previous property Eq. (¥) becomes

n

n
Vje [[l;m - 1]], Z Ei’j+1vl = Zri,j.,.lEi’jZJl,
i=1 i=1
which are m — 1 polynomial equations in challenge
v. Thus, by the Schwartz-Zippel lemma, with over-
whelming probability, and then by definition of oper-
ator O, these equations above become

Vjeltym-1], 20+ =10+ o 50,

(Step4.5) By immediate induction, this leads to

m
Z(m) _ (@ r(j)) oz
j=2

Consequently, by definition of r given in line 9,
we finally obtain

m
=(m) — @ .
=1

Results obtained in steps (Step 2) to (Step 4), give us the follow-
ing result, proving that, with overwhelming probability, we have
successfully extract a witness

Wout def (r, v, E(m),gm) € MatnXm(]Fp”) xIFZ; X ]P‘Z,7 xFp,
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such that (ck, y, wout) € RES\.

—
ar e Matnxm(Fp”), dve IP‘;,';, Ap e IF"”, Jte Fp”,
cr = ComMatnxm (]Fp”) (Ck, F; V)
-
cp = ComFZq (ck, i §)

7 =0Oro
j=1

- « < < <
Proof step — & & -5 -9 9
QJ Q Q Q QJ
3 2 2 3 2
2 2 2 £ 2
b 5 5 5 - 5
| Property ] £ 2 2 #
Knowledge 1x
soundness Eza
Binding of
commitment X 1
scheme
Schwartz-Zippel X1 X1 x
(m-1)
Extractor uses . . .
.. Yes (to obtain a suitable commit vector value cy)
rewinding?

Table 5: Assessment of cryptographic or probabilistic proper-
ties used to prove Knowledge Soundness of Hadamard Product
Argument protocol

B.6 Zero argument protocol
We define
RBC ¢ (GZ;l X (an Xy, — Fpn)) X (GI’;’” X Gl',"n)

~——— —
Statement set

Public parameter set

X (MatnXm(qu) X IFZ; X Matpxm (Fp,) X IF‘Z;)

Witness set
to be the zero argument relation defined by
) (FONT 7 (30N BG
(k0 (e ) (£9) 7, 7 (10) 7))
~n\ M N
Cp = ComMatnxm(Fp,,) ck, (I‘(J))j:1 ;1

~ o nym—1
g ¢y = ComMatnXm(]qu) ck, (Y(]))j ,_1})

=0
>
0= TW 4 yU-D.
=
Hence, we define a 2-protocol for the zero argument relation
) [RZBAG] to be the protocol defined as follows in Protocol 11.

THEOREM B.6 (KNOWLEDGE SOUNDNEsS OF Z|REC|). The >-

protocol X [‘R?AG] for the Bayer-Groth zero relation R?AG isknowledge
sound.

19
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Proor. We define the extractor Eza for the Bayer-Groth zero
argument to be the algorithm defined as follows in Extractor 12.

Let n,m € N* be two natural numbers. Let n € N* be a security
parameter. Let #* be a polynomial-time and deterministic adver-
sarial prover. Let (ck, x) < Jza (1) ve an honest public parameter
for the zero argument relation RZBS. Let A be a probabilistic and
polynomial-time adversary. Let y « A(n, o) be an adversarial
statement where

def
X = (cl:,cf) EGI’ZI XGZ‘U.

Then, the adversary A calls the extractor Ez4 on inputs ¢ and y
with access to P* and Vza and obtains a sequence of valid proof

2m+1
(wl))

o X

transcripts 7z def ( T .Letl e [[1;2m+ 1] be

a, .
37BG, p =1
an index. We denote by

o def (Cfo’ci” ,c\y) € qu X GP” X GIZJTH the first message ;
and
def [=~(1 D I I
¢ ange e wan) (100030000 € B, x5y,
FZ” X Fp, X Fp, the response message on challenge w;.

This way, we have the following property
o, X — e
~(1 1) (1 I I
on (\ 40500, 0))

o 70f (tra’x (wl)) =1.

BG &, 34BG
Ron Rop P

Vie[1;2m+1],

By definition of the Bayer-Groth zero argument protocol, as the
proof transcripts are valid, for all [ € [1;2m + 1], we have

c¥,,,, = Comg, (ck,050), (H1)
m N
! =(1 I I
l._(! clij’ = Com]yzn (ck, I‘((u) ; ,uo())), (‘7{2( ))
i=
m m-i ~
l_[ = ComFZ:, (ck, Yg) ; vfol)), (7{3(1))
i=0
2m k
=(1 o 1 I
1_[ c;)li = Com]yp” (ck, F((U) * Yi)) ; G(E)))- (‘7‘{4( ))
k=0

(Step 1) —Preliminaries - Vandermonde matrix of challenges
sequence (a)l)lzinfrl
Let Q) € Mat2m+1(Fp”) and Qpart € Matmﬂ(Fp”) be

two matrix defined as follows

1 1 - 1
qgf w1 w2 W2m+1
Qail = .
2m 2m 2m
@7 @, Dorm+1
1 1 1
def w1 w2 Wm+1
and Qpart = . .
m m m
@y @ Dy
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2205 2263

Protocol 11: 2-protocol 2 [RZBAG] for the Bayer-Groth zero argument
2206 2264

Public Input :Two natural numbers n, m € N*. A security parameter 5 € N*. A commitment key ck = (g,g) € GZ:I for the

2207 2265
2208 commitment scheme KS[Mat,xm (qu)]- A bilinear map * : IFZ” X Fz” — Fp,. Two commit values cf. €y € G;,’Z] . 2266
2209 . L= = (/) m - 0 m-1 2267
Private Input:Two matrix I' = (I | . € MatnXm(Fp”) andY = (YY) . € Mat,,Xm(]Fprl), and two vectors of random values
2210 j= j= 2268
2211 — = $ _m _ def 5= def S 2269
s L,V FP:; such that c;. = ComMatnxm(]Fp") (ck,T;7H), ¢y = ComMatnxm(qu) (ck,Y; V), and o
moo
2213 0= I xYU-D, 2271
2214 j=1 2272
ao1s Begin protocol 2973
. T v $ $
2216 (1) (Commit message) The prover Pz generates two random vectors O ym 2 IFZ” and two random values po, vin < Fp, . 2274
2217 ~ ~ 2275
. Y (0) . ) . . ( (m) . )
s Then, the prover computes values Cf, < Come” (ck, 'Y o) € Gp”, g, < Comppq ck,Y i Vm) € Gpn, and, for all e
ot Mmoo $ y
2219 ke [0;2m], ¥ «— 3 TW) »Y(m-k+)) ¢ Fp, Next, Pz generates a vector of random values ¢ = ()2 Fiz,’”""'l, sets 27
2220 j=0 2278
2221 Sm+1 < 0 € Fp,, and computes commit value cy < Compzm+ (ck,¥; —g>) € Gf,;”“. Finally, the prover Pza sends commit values 2279
P
2222 . 2280
¢, ¢ ,cy) to the verifier Vya.
2223 ( o> Y \P) ZA $ 2281
224 (2) (Challenge message) The verifier V7o generates a challenge v «— F}‘,” and sends it to the prover Pza. 2282
2225 . mos() " m ~ M i) " 2283
S ) (Response message) The prover Pz5 computes values T’ « j§0 wITY) € Fpr/’ o EO w'pi € Fp,, Y JEO w™IYV) € Fp,,’ st
2227 m ) om L 2285
2228 ve Y oM™y e FPW’ and ¢ «— 3 wkgk € Fp". Then, Pz sends those values (F, wY,v, g) to the verifier. 2286
i=0 k=0
2229 . . . . . . . 2287
@ (Conclusion’s bit) The verifier Vza accepts if and only if the following equations hold
2230 2288
m m
- -c k050 o' = C kT o™ _ ¢ kY -
. cy,,,, = Comg, (ck,0;0), cf = Comgy (ck.T's p), ¢ =Comgs (ckY;v), oo
i=0 i=0
2233 2291
2m k 2292
2234 ~ o~ 229
) and I_[ ¢ = 5 ¢).
2235 k{3 ComFP'l (Ck’ TxY; g) 2293
k=0
2236 2294
2237 L 2295
2238 2296
2239 BG 2297
2240 Extractor 12: Extractor Eza for the X-protocol £ [RZ | of the Bayer-Groth zero argument 2208
2241 . % % . def 2299
- Input : A security parameter 7 € N*. Two natural numbers n,m € N*. A public parameter ¢ = (ck, %) for the -
i Bayer-Groth zero argument relation RBG with a bilinear map % : F? xF! — Fp, and a commitment key 00
2243 ZA Py =P d’]f 2301
1 . €
2244 ck € (9.8 € GZ: for the commiment scheme KS[Matuxm(Fp,)]. A statement y = (Cf’ CY-) € GZ’U X GZ’”. 2302
2245 Blackbox access to: A deterministic adversarial prover £* and an honest verifier Vza. 2303
2246 1 Begin extractor 2304
2247 def def 2305
€ . . €
2248 2 calls P* to get ¢ = (Cfo’ CYm’C‘I’) € (Gpn X Gl’rz X G?,TH) ; // State at this point:| st; = (ck, *), (Cl:, CY), (Cl:o, cf C\]/) . 2306
2249 2307
2250 3 rewinds £* and Vz, at state st; and begins with [ < 1 e N 2308
) $ -
2251 4 calls Vza to get w; — Fp, ; 2309
2252 K 2310
* n n .
y253 5 calls P* to get z; — 3REC, P (a,00) € (FP” X Fp, X FPn x Fp, X Fpﬂ) ; -
2254 ey [k x -1 1 2312
556 if o7l (tra’ a6 e (wl)) and A A (0i # @j) thenl — [ +1; 2313
2256 “ e =1 j=i+l 2314
9957 7 until/ > 2m+1; 2315
. de 2m+1 .
#5%  g | returns rza fef (trZ: A (wl)) . e
2259 L Ron F =1 2317
2260 2318
2261 2319

2262 20 2320
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2343
2344
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2346
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2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
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Qai and Qpqrt are both transposed Vandermonde matrix

with parameters the challenges sequence (a)l)l 1+ which
is a sequence of pairwise distincts values with overwhelm-
ing probability in 7. Thus, Q| and Qpart are invertible
matrix.

(Step 2) — Get an opening of commit value cy.

(Step2.1) We denote by ¥, € ]1-'4’1%,’”"4r1 and Ty € FIZ,;”“ the two
vectors defined by
2m+1
def [=~(1 ~(1 def 1 2m+1
v, « (r&)*Yﬁ)L cand T () @
-1 =

Thus, we have

cy = (cy ® Qy) ® Q;ﬁ see footnotes 5 and 6

= (Compi,;ﬂ (ck, Y,; ?w)) ® Q;]} see Eq. (V) and Hypo. H;

= Com]Fg:H (ck, v, - Q;” ; g " Q;l}) see footnote 14

(Step2.2) Next, by the binding property of KS [Ff,;””], with
overwhelming probability, there exists a sequence

((‘I’k, §k)),2:0

of the sequence of challenges (wl)lz:"iﬂ
the following property holds

of elements in Fp, X Fp, independent

and such that

Vk € [0;2m], C\yk = Compp (ck, ¥ s cx)
where ‘I’k = (‘P Qa”) and ¢x def (?w . Q_l)k

all

(Step 3) — Get an opening of commit value c;.
We denote by I, € Mat, (m41) (Fp,) the matrix and
Lo € FI’;"]“ the vector defined as follows
~ ~ m+1 m+1
Thus, similarly to the previous step (Step 2) but with

matrix Qpart instead of matrix Q, and with binding prop-
erty on the commitment scheme KS[Mat (1) (Fp, )]

>

instead of KS [Ff,’”"“], extractor &z obtains an opening

m
of cj.. Thus, there exists a sequence ((f‘(j), 'uj)) of ele-
Jj=0
ments in FZ" X Fp, independent of the challenges sequence

(wl)lZZH such that

Vjefo;m], °f, = Comgn (ck, N yj)

~ def 1 \U+D def (—
where T') = (D‘)Qp;rt) and pj = (,u[,J Qpart)

(Step 4) - Get an opening of commit value c;.

For all ] € [1;2m + 1]], we rewrite Hypo. ‘H3(1) as follows:
T M0
[ n vl .
l—[ CYm,j = Com]pprl (ck, Yo, 5 v )
j=0
Let c’Y € IF‘Z;“ be the vector defined by, for all j € [0; m],
, def

C. = Cy

i, T We denote by Y, € Mat,x (m+1) (Fp,) the

21
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matrix and 7V, € len“ the vector defined as follows
~  def m+1 def m+1
L= ( (1))1 1’ and 7, = ( (l))l 1

Thus, similarly to previous points with commit vector CIT ,
Vandermonde matrix Qpart, and by the binding property
of KS [IF'I’,';“], &Eza obtains an opening of c’Y , and then

m
of c;. Therefore, there exists a sequence ((?(1), v ]))

Jj=0
of elements in IF';” X Fp, independent of the challenges

sequence (wl)lz:"iﬂ such that

vje[o;m], cf, = Com]Fn (ck,?(j); vj
. (m+1-j)

where Y def (YwQ ;rt)
def (—) -1

an

1{i =

(Step 5) — It remains to prove the following equation:
S0 4 g0
0= F0) % 0D,
j=t
(Step5.1) Foralll € [1;m+ 1] and i € [1;n], we have

m

o (+1)
w (]) = Z @ ( part)
Jj=0 i \J=0 i
by step (Step 3)
m+1 .
1\
= Z (Qpaft)j,l (r Qpart)
Jj=1 i

see definition of Qpart in step (Step 1)

m+1

2 @part) (T,

((r Q;a,t)gzpart)i’l (Fo)yy = (E) .

1

Consequently, we have the following property

m
Vie[t,m+1], f“fj) = Zw;f’(j).
=

(Step5.2) Similarly, for all [ € [1;m + 1], we have

S ) = S -1\
Z @ Y= Z(Qpart)mﬂ—j,l (Y‘UQpart) =Yy -
j=0 Jj=0

by step (Step 4)
(Step5.3) As in steps (Step5.1) and (Step5.2) but with full Van-

dermonde matrix Q| instead of Qpart, step (Step 2)
leads to

2m
Vie[12m+1], T« YD = Zw{“l’k.
k=0
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(Step5.4) Hence, from equations obtained in steps (Step5.1)
to (Step5.3), and using Hypo. H;, we conclude, for
alll € [1;m + 1], the following equation:

2m m o m . )
Z (,)gc\Pk = (Z (/);F(l) * Z w;"_JY(])
k=0 i=0 j=0

(Step5.5) By the previous step and because x is a bilinear map,
foralll € [1;m+ 1], we have

m m m m
( 3 w;’f(i)) N ( D wlm‘fi((f)) W LIS
i=0 j=0

i=0 j=0
m m

N D S Sl P
k=0 Jj=0

0<j+m—k<m

where 'k — i+m-—j"

which is a polynomial equation of degree at most
2m in the challenges sub-sequence (wl)l":{l. Thus,
by the Schwartz-Zippel lemma, with overwhelming
probability, equation obtained in the previous step

leads to
m . .
Vk e [0;2m], ¥ = Z 1) g yG+m—k)
=0

0<j+m—k<m

(Step5.6) In the particular case of k = m + 1, property obtained
in previous step (Step5.5) leads to

m
Y1 = Z W) % vU-D
Jj=1
But, we have
* ¢y, = Comg, (ck,0; 0) by Hypo. H; ; and
e cy ., = Com]pp” (ck, Wil s gm+1) by definition
of Y41 — see step (Step 2).
Therefore, the binding property of KS[Fy, ] leads to
Y41 = 0 with overwhelming probability. Conse-
quently, the following equality holds:

m
0= S F0) % U1

Results obtained in steps (Step 2) to (Step 5), give us the follow-
ing result, proving that, with overwhelming probability, we have

. def [~ =
successfully extract a witness w = (F,?, Y,—v)) € MatnXm(]Fp”) X

FZ; X Matnxm(]Fp,/) X IFZ’” such that (ck, X w) € RZBAG.

~.
I

J:
Cl: = ComMatnxm (FP'I) (Ck, T N _,u))
CY = OmMatnxm (]FPI/) (Ck,Y; —V))

0= 3 F0) g0
j=1

22

Anon
=3z 223
Proof step — Iy I & o 2 oy
- 3 - - L L
< @ < < & @
a, ~ o o, o ~
| Property < 2 2 2 2 2
Binding of
commitment X1 X1 X1 X1
scheme
Schwartz-Zippel X1
Property transfer
under adversarial Yes
selection
Extractor uses
Ny Yes ()
rewinding?

Table 6: Assessment of cryptographic or probabilistic prop-
erties used to prove Knowledge Soundness of Zero Argument
protocol
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Zero-Knowledge
protocol

Uses Rewinding?

Needs Schwartz-Zippel?

Needs Binding
property?

Uses Knowledge
Soundness?

Uses property transfer
under adversarial

selection
Single value product Yes: 2 valid proof . .
argument (SVPA) transcripts Yes: x1 Yes: x4 No No
Zero argument (ZA) Yes: 2m + 1 \{ahd proof Yes: x 1 Yes: x 4 No Yes: 1 X pairwise distincts
transcripts challenges
Hadamard product Yes: 1 suitable commit i . .
argument (HPA) vector value Yes: X (m+1) Yes: X 1 Yes: 1 X Eza No
Product argument (PA) No No Yes: X 1 Yes: 1x gi\::“ and 1 No
Multi-exponentiation Yes: 2m valid proof . Yes: 2 X pairwise distincts
argument (MEA) transcripts No Yes: x 2 No challenges
Shuffle argument (SA) Yes: N times for a total of Yes: x (N + 1) Yes: % 1 Yes: N X Epp and N X Yes: 1 X pairwise distincts

2N witnesses

EMEA

challenges

Table 7: Quick overview of arguments needed to prove knowledge soundness
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