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A CRYPTOGRAPHIC DEFINITIONS
From now on, we abbreviate Probabilistic Polynomial-time Turing
Machine into PPTM.

A.1 Commitment schemes
For an infinite countable set X, we define the property Φ[X] as
follows

Φ[X] holds def⇐⇒


X

def

=
⋃
𝜂∈N∗

X(𝜂) ;

∀𝜂 ∈ N∗, Card(X(𝜂) ) < +∞
(
X(𝜂) is finite

)
;

and log
2
Card(X(𝜂) ) ⩾ 𝜂.

(Φ)
Let M be an infinite countable set of messages such that Φ[M]
holds and, for all 𝜂 ∈ N∗,

(
M(𝜂) , ⊗

)
is an abelian group (let us say

multiplicative). Let KS[M] be a tuple

KS[M] def=
〈
PM, SM,VM,GenM,ComM

〉
where

• For any set X ∈
{
PM, SM,VM

}
the property Φ[X] holds ;

• The PPTM algorithm GenM : N∗ −→ PM takes as input a

security parameter 𝜂 ∈ N∗ and outputs a commitment key

𝑐𝑘 ← GenM (𝜂) ∈ P
(𝜂)
M

;

• The PPTM algorithm ComM : PM ×M × SM −→ VM takes

as inputs a commitment key 𝑐𝑘 ∈ PM, a message 𝑚 ∈ M
and a random value 𝑟 ∈ SM. Then it outputs a commit value

𝑎 ← ComM
(
𝑐𝑘,𝑚 ; 𝑟

)
∈ VM. Besides, for all security parame-

ter 𝜂 ∈ N∗, we must have 𝑐𝑘 ∈ P(𝜂)
M

,𝑚 ∈ M(𝜂) , 𝑟 ∈ S(𝜂)
M

and

𝑎 ∈ V(𝜂)
M

.

Definition A.1 (Perfect hiding).
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Definition A.2 (Binding error).

Definition A.3 (Homomorphic commitment scheme). We say that

the tuple KS[M] is a homomorphic commitment scheme for the
message setM when the following properties hold

• For all security parameter𝜂 ∈ N∗, the randomness space
(
S
(𝜂)
M

, ⊕
)

is an abelian group (let us say additive) and the commit value

space
(
V
(𝜂)
M

, ⊙
)
is also an abelian group (let us say multiplica-

tive) ;

• KS[M] is perfectly hiding ;

• There exists a negligible function 𝛿 : N∗ −→ [0, 1] such that

KS[M] is computationally binding with binding error 𝛿 ;

• For all security parameter 𝜂 ∈ N∗, for all commitment key

parameter 𝑐𝑘 ∈ P(𝜂)
M

, the following function 𝜙
(𝜂)
𝑐𝑘

is a group
homorphism:

𝜙
(𝜂)
𝑐𝑘

:

(
M(𝜂) , ⊗

)
×

(
S
(𝜂)
M

, ⊕
)
−→

(
V
(𝜂)
M

, ⊙
)

(𝑚, 𝑟 ) ↦−→ ComM(𝜂)
(
𝑐𝑘,𝑚 ; 𝑟

)
A.2 Zero-Knowledge proofs
In all this subsection, we fix a natural number 𝜇 ∈ N and a relation

R ⊆ PPR × XR ×WR . Let ZK(𝜇) [R]
def

=
(
I,P,V

)
be a (2𝜇 + 1)-

move interactive protocol for R.

Definition A.4 (Perfect completeness). The protocol ZK(𝜇) [R] is
said to be perfectly complete when, for all PPTM adversary A, the

following property holds:

∀𝜂 ∈ N∗, Pr𝜌∈T𝜂
[
1←G CompletenessA

ZK(𝜇) [R]
(
𝜂, 𝜌

) ]
= 0,

where the cryptographic completeness game is defined in Game 1.

CompletenessA
ZK(𝜇) [R]

(
𝜂, (𝜌ℎ, 𝜌𝑎)

)
– Completeness

𝜎 ← I(𝜂 ; 𝜌ℎ) ;
(𝑥,𝑤) ← A(𝜂, 𝜎 ; 𝜌𝑎) ;
𝔱𝔯 ←

(
P(𝑤) ⇌(𝜇)R V

)
(𝜂, 𝜎, 𝑥 ; 𝜌ℎ) ;

𝑏 ← 𝑣
𝜎, 𝑥
R

(
𝔱𝔯

)
∧ ¬

(
𝜑R

(
(𝜎, 𝑥,𝑤)

) )
;

returns 𝑏 ;

Game 1: Cryptographic completeness game for interactive
protocols

Definition A.5 (Public coin). The protocol ZK(𝜇) [R] is said to

be public coin when, for all security parameter 𝜂 ∈ N∗, for all
public parameter 𝜎 ∈ PPR , for all public statement 𝑥 ∈ XR , for
all witness𝑤 ∈ WR and for all PPTM prover P∗ (both honest or

dishonest), the following property holds

∀ 𝑖 ∈ ⟦1; 𝜇⟧, 𝑚2𝑖 =

(
𝑐𝑖

$← Ch𝑖R
)
,

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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where (𝑚𝑖 )2𝜇+1𝑖=1

def

=

(
P∗ (𝑤) ⇌(𝜇)R V

)
(𝜂, 𝜎, 𝑥) is an interaction of

ZK(𝜇) [R] with the honest verifierV .

Definition A.6 (Soundness error). Let A be a PPTM adversary.

We define the soundness error ofV against the adversarial prover
A, noted 𝜀A , to be the following function

𝜀A : N∗ −→ [0, 1]
𝜂 ↦−→ Pr𝜌∈T𝜂

[
1←G SoundnessA

ZK(𝜇) [R]
(
𝜂, 𝜌

) ]
,

where the cryptographic soundness game is defined in Game 2.

SoundnessA
ZK(𝜇) [R]

(
𝜂, (𝜌ℎ, 𝜌𝑎)

)
– Soundness

𝜎 ← I(𝜂 ; 𝜌ℎ) ;
𝑥 ← A(𝜂, 𝜎 ; 𝜌𝑎) ;
𝔱𝔯 ←

(
A(𝜌𝑎) ⇌(𝜇)R V(𝜌ℎ)

)
(𝜂, 𝜎, 𝑥) ;

𝑏 ← 𝑣
𝜎, 𝜒

R
(
𝔱𝔯

)
∧ 𝑥 ∉ L𝜎 (R) ;

returns 𝑏 ;

Game 2: Cryptographic soundness game for interactive pro-
tocols

Definition A.7 (Knowledge soundness). The protocol ZK(𝜇) [R] is
said to be knowledge sound with knowledge error 𝜅 : N∗ −→ [0, 1]
when, for all deterministic Polynomial-time adversarial proverP∗,
there exists a PPTM algorithm ER , called the knowledge extractor,
such that, for all PPTM adversaryA, and for all security parameter

𝜂 ∈ N∗, the following lower bound holds:

Pr𝜌∈T𝜂
[
1←G KnowSoundA, P∗

ZK(𝜇) [R], ER

(
𝜂, 𝜌

)
𝜀P∗ ∉ negl(𝜂)

]
⩾ 1 − 𝜅 (𝜂),

where the cryptographic knowledge soundness game is defined in

Game 3.

KnowSoundA, P∗
ZK(𝜇) [R], ER

(
𝜂, (𝜌ℎ, 𝜌𝑎)

)
– Knowledge soundness

𝜎 ← I(𝜂 ; 𝜌ℎ) ;
(𝑥, 𝜌∗) ← A(𝜂, 𝜎 ; 𝜌𝑎) ;
𝑤 ← EP

∗ (𝜌∗),V(𝜌ℎ)
R (𝜂, 𝜎, 𝑥) ;

𝑏 ← 𝜑R
(
(𝜎, 𝑥,𝑤)

)
;

returns 𝑏 ;

Game 3: Cryptographic knowledge soundness game for in-
teractive protocols

Definition A.8 (Perfect Honest-Verifier Zero-Knowledge). The pro-
tocolZK(𝜇) [R] is said to be perfectly Honest-Verifier Zero-Knowledge
when there exists a PPTM algorithm SimR , called the simulator,
such that, for all PPTM adversary A, the following property holds

∀𝜂 ∈ N∗, AdvHVZK

[
A

�� ZK(𝜇) [R], SimR ] (𝜂) = 0,

where the cryptographic Honest-Verifier Zero-Knowledge game is

defined in Game 4 and the advantage of the adversary A against
the HVZK game is defined as follows

∀𝜂 ∈ N∗, AdvHVZK

[
A

�� ZK(𝜇) [R], SimR ] (𝜂) def=����� 2 · Pr𝜌∈T𝜂 [
1←G HVZKA

ZK(𝜇) [R], ER

(
𝜂, 𝜌 ; 𝛽

) ]
− 1

�����.
Definition A.9 (Zero-Knowledge argument of knowledge). The

protocolZK(𝜇) [R] is said to be a zero-knowledge argument of knowl-
edge for the relation R when the following properties hold

• ZK(𝜇) [R] is perfectly complete ;
• ZK(𝜇) [R] is public coin ;

• There exists a negligible function 𝜅 : N∗ −→ [0, 1] such that

ZK(𝜇) [R] is knowledge sound with knowledge error 𝜅 ;

• ZK(𝜇) [R] is perfectly Honest-Verifier Zero-Knowledge.

B SPECIFICATION AND CRYPTOGRAPHIC
PROOFS OF BAYER-GROTH PROTOCOL

B.1 Shuffle argument protocol
We define

RBGSA ⊆
(
G𝑛+1𝑝𝜂

× PKCS
)︸               ︷︷               ︸

Public parameter set

×
(
H𝑁𝑝𝜂 × H

𝑁
𝑝𝜂

)︸          ︷︷          ︸
Statement set

×
(
𝔖𝑁 × F𝑁𝑝𝜂

)︸        ︷︷        ︸
Witness set

to be the shuffle relation defined as follows:(
(𝑐𝑘, 𝑝𝑘), (c, c′), (𝜋, r)

)
∈ RBGSA

def⇐⇒ c′ = EncCS (𝑝𝑘, 1 ; r) ⊙ c𝜋

Hence, we define a 13-move shuffle argument protocolZK(6) [RBGSA ]
(Protocol 1) following the definition given in [1].

Theorem B.1 (Knowledge soundness of ZK(6) [RBGSA ]). The
13-move shuffle argument protocol ZK(6) [RBGSA ] is knowledge sound.

Proof. We define the extractor ESA for the Bayer-Groth shuffle

argument to be the algorithm defined as follows in Extractor 2.
Let 𝑁 = 𝑛𝑚 ∈ N∗ be a natural number. Let 𝜂 ∈ N∗ be a security

parameter. Let P∗ be a polynomial-time (in 𝜂) and deterministic

adversarial prover. Let 𝜎 = (𝑐𝑘, 𝑝𝑘) ← ISA (𝜂) be an honest public

parameter for the shuffle relation RBGSA . Let A be a probabilistic

and polynomial-time adversary. Let 𝜒 ← A(𝜂, 𝜎) be an adversarial

statement where

𝜒
def

= (c, c′) ∈ H𝑁𝑝𝜂 × H
𝑁
𝑝𝜂
.

Then, the adversary A calls the extractor ESA on inputs 𝜎 and 𝜒

with access to oracles P∗ andVSA and obtains

𝜏SA
def

=

(
c𝐴,

(
𝑥𝑙 , c

(𝑙)
𝐵

, (𝑦𝑙 , 𝑧𝑙 ),
(
c(𝑙)
𝐷

, c(𝑙)−𝑧 , 𝛽
(𝑙) ,𝐶 (𝑙)

)
,

(
Γ (𝑙) , v(𝑙)

)
︸       ︷︷       ︸
Witness of the

Product Argument

,

(
𝐵 (𝑙) , t(𝑙) , 𝜚 (𝑙)

)
︸             ︷︷             ︸

Witness of the Multi-
Exponentiation Argument

)𝑁
𝑙=1

)
.

2
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HVZKA
ZK(𝜇) [R], SimR

(
𝜂, (𝜌ℎ, 𝜌𝑎) ; 𝛽

)
– Honest-Verifier Zero-Knowledge

Case 𝛽 = 0 – Real world Case 𝛽 = 1 – Simulated world
𝜎 ← I(𝜂 ; 𝜌ℎ) ; 𝜎 ← I(𝜂 ; 𝜌ℎ) ;
(𝑥,𝑤, 𝜌∗) ← A(𝜂, 𝜎 ; 𝜌𝑎) ; (𝑥,𝑤, 𝜌∗) ← A(𝜂, 𝜎 ; 𝜌𝑎) ;
𝔱𝔯 ←

(
P(𝑤 ; 𝜌ℎ) ⇌

(𝜇)
R V(𝜌

∗)
)
(𝜂, 𝜎, 𝑥) ; 𝔱𝔯 ← SimR (𝜂, 𝜎, 𝑥, 𝜌∗ ; 𝜌ℎ) ;

𝑏 ← 𝑣
𝜎, 𝑥
R

(
𝔱𝔯

)
∧ 𝜑R

(
(𝜎, 𝑥,𝑤)

)
; 𝑏 ← 𝑣

𝜎, 𝑥
R

(
𝔱𝔯

)
∧ 𝜑R

(
(𝜎, 𝑥,𝑤)

)
;

𝑔𝛽 ← A(𝔱𝔯 ; 𝜌𝑎) ; 𝑔𝛽 ← A(𝔱𝔯 ; 𝜌𝑎) ;
returns

(
𝑏 ∧ ¬𝑔𝛽

)
; // ¬𝑔𝛽 = 1 ⇐⇒ 𝑔𝛽 = 0 = 𝛽 . returns

(
𝑏 ∧ 𝑔𝛽

)
; // 𝑔𝛽 = 1 = 𝛽 .

Game 4: Cryptographic Honest-Verifier Zero-Knowledge game for interactive protocols

(Step 1) – Obtain1 the permutation witness 𝜋 .
(Step1.1) By the knowledge soundness of the product argument pro-

tocol (see Theorem B.3), we have

∀ 𝑙 ∈ ⟦1;𝑁⟧,
𝑚∏
𝑗=1

𝑛∏
𝑖=1

Γ
(𝑙)
𝑖, 𝑗

= 𝛽 (𝑙) and

c(𝑙)
𝐷
⊙ c(𝑙)−𝑧 = ComMat𝑛×𝑚 (F𝑝𝜂 )

(
𝑐𝑘, Γ (𝑙) ; v(𝑙)

)
.

Because c(𝑙)−𝑧 ⊙c(𝑙)𝑧 = ComMat𝑛×𝑚 (F𝑝𝜂 )
(
𝑐𝑘, 𝑍 (𝑙)−𝑍 (𝑙) ; 0

)
=

1 and because ⊙ is associative, we have

c(𝑙)
𝐷

= c(𝑙)
𝐷
⊙ c(𝑙)−𝑧 ⊙ c(𝑙)𝑧

=

(
ComMat𝑛×𝑚 (F𝑝𝜂 )

(
𝑐𝑘, Γ (𝑙) ; v(𝑙)

) )
⊙

(
ComMat𝑛×𝑚 (F𝑝𝜂 )

(
𝑐𝑘, 𝑍 (𝑙) ; 0

) )
= ComMat𝑛×𝑚 (F𝑝𝜂 )

(
𝑐𝑘, Γ (𝑙) + 𝑍 (𝑙) ; v(𝑙)

)
.

Thus, if we define, for all 𝑙 ∈ ⟦1;𝑁⟧, 𝑖 ∈ ⟦1;𝑛⟧ and 𝑗 ∈
⟦1;𝑚⟧, 𝑑 (𝑙)

𝑘
= Γ
(𝑙)
𝑖, 𝑗
+ 𝑧𝑙 where 𝑘 = ( 𝑗 − 1)𝑛 + 𝑖 , the pair

of vectors

(
d(𝑙) , v(𝑙)

)
∈ F𝑁𝑝𝜂 × F

𝑚
𝑝𝜂

is an oppening of the

commit value c(𝑙)
𝐷

.

(Step1.2) Using the definition of 𝛽 (𝑙) given by Extractor 2 at line 7,

previous results obtained in step (Step1.1) lead to

𝑁∏
𝑘=1

(
𝑑
(𝑙)
𝑘
− 𝑧𝑙

)
=

𝑁∏
𝑘=1

(
𝑦𝑙𝑘 + (𝑥𝑙 )𝑘 − 𝑧𝑙

)
,

which is a polynomial equation of degree 𝑁 in 𝑧𝑙 . By the

Schwartz-Zippel lemma, we conclude the following equality
of polynomials

𝑁∏
𝑘=1

(
𝑑
(𝑙)
𝑘
− 𝑋

)
=

𝑁∏
𝑘=1

(
𝑦𝑙𝑘 + (𝑥𝑙 )𝑘 − 𝑋

)
.

However, polynomials

(
𝑑
(𝑙)
𝑘
− 𝑋

)
and

(
𝑦𝑙𝑘 + (𝑥𝑙 )𝑘 − 𝑋

)
are irreductible (degree 1) and the decomposition in irre-

ductible polynomials is unique. Consequently, there exists

a permutation 𝜋 (𝑙) ∈ 𝔖𝑁 such that

∀𝑘 ∈ ⟦1;𝑁⟧, 𝑑 (𝑙)
𝑘

= 𝑦𝑙𝜋
(𝑙) (𝑘) + (𝑥𝑙 )𝜋

(𝑙 ) (𝑘) .

1
Using line 9 of Extractor 2.

At this point, we have obtained an opening of commit

value c(𝑙)
𝐷

. It is not this commit value we want to open but

c𝐴 . Recalls that commit value c(𝑙)
𝐷

is computed this way:

c(𝑙)
𝐷

def

=
(
c𝐴 ↑ 𝑦𝑙

)
⊙ c(𝑙)

𝐵
. This is precisely why we also need

to call extractor EMEA to obtain an opening of c(𝑙)
𝐵

.

(Step1.3) By the knowledge soundness of the multi-exponentiation

argument protocol (see Theorem B.2), we have

∀ 𝑙 ∈ ⟦1;𝑁⟧, c(𝑙)
𝐵

= ComMat𝑛×𝑚 (F𝑝𝜂 )
(
𝑐𝑘, 𝐵 (𝑙) ; t(𝑙)

)
and

𝐶 (𝑙) = EncCS (𝑝𝑘, 1 ; 𝜚 (𝑙) ) ·
𝑁∏
𝑘=1

(
𝑐 ′
𝑘

)𝑏 (𝑙 )
𝑘

where, for 𝑖 ∈ ⟦1;𝑛⟧ and 𝑗 ∈ ⟦1;𝑚⟧, 𝑏 (𝑙)( 𝑗−1)𝑛+𝑖
def

= 𝐵
(𝑙)
𝑖, 𝑗

;

i.e. we have an opening for commit value c(𝑙)
𝐵

. Then, for all

𝑙 ∈ ⟦1;𝑁⟧, as c(𝑙)
𝐷

=
(
c𝐴 ↑ 𝑦𝑙

)
⊙c(𝑙)

𝐵
with𝑦𝑙 ≠ 0, properties

over ⊙ and ↑ lead to the following equality

c𝐴 = ComMat𝑛×𝑚 (F𝑝𝜂 )
©­­«𝑐𝑘,

©­«
𝑑
(𝑙)
𝑘
− 𝑏 (𝑙)

𝑘

𝑦𝑙

ª®¬
𝑁

𝑘=1

;

1

𝑦𝑙

(
v(𝑙) − t(𝑙)

)ª®®¬ .
Hence, for all 𝑙, 𝑘 ∈ ⟦1;𝑁⟧ and 𝑖 ∈ ⟦1;𝑚⟧, we define(
𝑎
(𝑙)
𝑘

, 𝑠
(𝑙)
𝑖

)
∈ F2𝑝𝜂 such that

𝑑
(𝑙)
𝑘

def

= 𝑦𝑙𝑎
(𝑙)
𝑘
+ 𝑏 (𝑙)

𝑘
and 𝑣

(𝑙)
𝑖

def

= 𝑦𝑙𝑠
(𝑙)
𝑖
+ 𝑡 (𝑙)

𝑖
.

(Step1.4) Now, let us suppose just for a moment that we have:

∃ 𝑙, 𝑙 ′ ∈ ⟦1;𝑁⟧, a(𝑙) ≠ a(𝑙
′) .

But, by the previous point, the following property holds:

c𝐴 = ComMat𝑛×𝑚 (F𝑝𝜂 )
(
𝑐𝑘, a(𝑙) ; −→𝜍 (𝑙)

)
= ComMat𝑛×𝑚 (F𝑝𝜂 )

(
𝑐𝑘, a(𝑙

′)
;
−→𝜍 (𝑙

′) ) .
Thus, as the commitment scheme KS[Mat𝑛×𝑚 (F𝑝𝜂 )] is
computationally binding, with overwhelming probability,

we conclude a contradiction. Therefore, we have shown

that the following property holds:

∀ 𝑙, 𝑙 ′ ∈ ⟦1;𝑁⟧, a(𝑙) = a(𝑙
′) .

We denote this common value a ∈ F𝑁𝑝𝜂 and we have found

an opening

(
a,−→𝜍

)
∈ F𝑁𝑝𝜂 ×F

𝑚
𝑝𝜂

independent from challenges
3
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Protocol 1: 13-move zero-knowledge protocol ZK(6) [RBGSA ] for the Bayer-Groth proof of shuffle

Public Input :A natural number 𝑁 = 𝑛𝑚 ∈ N∗. A security parameter 𝜂 ∈ N∗. A commitment key 𝑐𝑘 = (𝑔, g) ∈ G𝑛+1𝑝𝜂
for the commitment scheme

KS[Mat𝑛×𝑚 (F𝑝𝜂 ) ]. A public key 𝑝𝑘 ∈ PKCS of the cryptosystem CS. Two lists of ciphertexts c = (𝑐𝑖 )𝑁𝑖=1 ∈ H𝑁𝑝𝜂 and

c′ = (𝑐′
𝑖
)𝑁
𝑖=1
∈ H𝑁𝑝𝜂 .

Private Input :A permutation 𝜋 ∈ 𝔖𝑁 and a vector of random values r
$← F𝑁𝑝𝜂 such that c′ = EncCS (𝑝𝑘, 1 ; r) ⊙ c𝜋 .

Begin protocol

(1) (Commit message) The prover PBG chooses a vector of random values
−→𝜍 $← F𝑚𝑝𝜂 and set a← (𝜋 (𝑖))𝑁

𝑖=1
∈ F𝑁𝑝𝜂 . Then, PBG computes the

commit value c𝐴 ← ComMat𝑛×𝑚 (F𝑝𝜂 )
(
𝑐𝑘, a ; −→𝜍

)
∈ G𝑚𝑝𝜂 and sends it to the verifier VBG.

(2) (Challenge message) VBG chooses uniformly at random a challenge 𝑥
$← F∗𝑝𝜂 and sends it to PBG.

(3) (Commit message) PBG chooses a vector of random values t
$← F𝑚𝑝𝜂 and set b← (𝑥𝜋 (𝑖 ) )𝑁

𝑖=1
∈ F𝑁𝑝𝜂 . Then, PBG computes the commit value

c𝐵 ← ComMat𝑛×𝑚 (F𝑝𝜂 )
(
𝑐𝑘, b ; t

)
∈ G𝑚𝑝𝜂 and sends it to VBG.

(4) (Challenge message) VBG chooses uniformly at random two challenges 𝑦
$← F∗𝑝𝜂 and 𝑧

$← F∗𝑝𝜂 then sends them back to PBG.
(5-11) (Product argument call) Let c−𝑧 be the commit value defined by c−𝑧 ← ComMat𝑛×𝑚 (F𝑝𝜂 )

(
𝑐𝑘, (−𝑧, . . . ,−𝑧)︸          ︷︷          ︸

𝑁 = 𝑛𝑚 times

; 0︸︷︷︸
∈ F𝑚𝑝𝜂

)
∈ G𝑚𝑝𝜂 . The prover PBG

computes the commit value c𝐷 ← (c𝐴 ↑ 𝑦) ⊙ 𝑐𝐵 ∈ G𝑚𝑝𝜂 , the vector d← 𝑦a + b ∈ F𝑁𝑝𝜂 and the vector of random values v← 𝑦
−→
𝜍 + t ∈ F𝑚𝑝𝜂 .

Then, both prover PBG and verifier VBG engage in the 7-move zero-knowledge protocol ZK(3) [RBGPA ] for the relation R
BG
PA with public parameter

𝜎PA = 𝑐𝑘 , public statement 𝑥PA =

(
c𝐷 ⊙ c−𝑧 ,

𝑁∏
𝑖=1
(𝑦𝑖 + 𝑥𝑖 − 𝑧)

)
, and private statement 𝑤PA =

(
d − z, v

)
. We denote by 𝜏PA the proof transcript

obtained at the end of this 7-move protocol.

(11-13) (Multi-exponentiation argument call) PBG computes 𝜚 ← − ⟨r | b⟩ ∈ F𝑝𝜂 and sets x← (𝑥𝑖 )𝑁
𝑖=1
∈ F𝑁𝑝𝜂 . Then, both prover PBG and verifier

VBG engage in the Σ-protocol Σ
[
RBGMEA

]
for the relation RBGMEA with public parameter 𝜎MEA = (𝑐𝑘, 𝑝𝑘) , public statement 𝑥MEA = (c′, c ⊛ x, c𝐵 ) ,

and private statement 𝑤MEA =
(
b, t, 𝜚

)
. We denote by 𝜏MEA the proof transcript obtained at the end of this Σ-protocol.

(14) (Conclusion’s bit) The verifier VBG accepts if and only if properties 𝑣
𝜎PA, 𝑥PA
PA

(
𝜏PA

)
and 𝑣

𝜎MEA, 𝑥MEA
MEA

(
𝜏MEA

)
hold.

Extractor 2: Extractor ESA for the 13-move zero-knowledge protocol ZK(6) [RBGSA ] of the Bayer-Groth shuffle argument

Input :A security parameter 𝜂 ∈ N∗. A natural number 𝑁 = 𝑛𝑚 ∈ N∗. A public parameter (𝑐𝑘, 𝑝𝑘) ∈ G𝑛+1𝑝𝜂
× PKCS for the

Bayer-Groth shuffle relation RBGSA . A statement (c, c′) ∈
(
H𝑁𝑝𝜂

)
2

.

Blackbox access to :An adversarial prover P∗ and an honest verifier VSA.

1 Begin extractor

2 calls P∗ to get c𝐴 ∈ G𝑚𝑝𝜂 ; // State at the end of this line: st1
def

=
[
(𝑐𝑘, 𝑝𝑘) ; (c, c′) ; c𝐴

]
3 rewinds P∗ and VSA at state st1 for 𝑙 = 1 to 𝑁

4 calls VSA to get 𝑥𝑙
$← F∗𝑝𝜂 \ {𝑥𝑖 }

𝑙−1
𝑖=1

;

5 calls P∗ to get c(𝑙 )
𝐵
∈ G𝑚𝑝𝜂 ;

6 calls VSA to get 𝑦𝑙 , 𝑧𝑙
$← F∗𝑝𝜂 ;

7 computes



c(𝑙 )
𝐷

←
(
c𝐴 ↑ 𝑦𝑙

)
⊙ c(𝑙 )

𝐵
∈ G𝑚𝑝𝜂

c(𝑙 )−𝑧 ← ComMat𝑛×𝑚 (F𝑝𝜂 )
(
𝑐𝑘,−𝑍 (𝑙 ) ; 0

)
∈ G𝑚𝑝𝜂 where 𝑍 (𝑙 ) ← (𝑧𝑙 )𝑁𝑖=1 ∈ Mat𝑛×𝑚 (F𝑝𝜂 )

𝛽 (𝑙 ) ←
𝑁∏
𝑘=1

(
𝑦𝑙𝑘 + (𝑥𝑙 )𝑘 − 𝑧𝑙

)
∈ F𝑝𝜂

𝐶 (𝑙 ) ←
𝑁∏
𝑘=1

(𝑐𝑘 ) (𝑥𝑙 )
𝑘 ∈ H𝑝𝜂

;

8 calls EMEA with oracles P∗ and VSA on inputs
(
(𝑐𝑘, 𝑝𝑘),

(
(c′

𝑖
)𝑚
𝑖=1

,𝐶 (𝑙 ) , c(𝑙 )
𝐵

))
to get

(
𝐵 (𝑙 ) , t(𝑙 ) , 𝜚 (𝑙 )

)
∈

(
Mat𝑛×𝑚 (F𝑝𝜂 ) × F𝑚𝑝𝜂 × F

𝑁
𝑝𝜂

)
;

9 calls EPA with oracles P∗ and VSA on inputs
(
𝑐𝑘,

(
c(𝑙 )
𝐷
⊙ c(𝑙 )−𝑧 , 𝛽 (𝑙 )

) )
to get

(
Γ (𝑙 ) , v(𝑙 )

)
∈

(
Mat𝑛×𝑚 (F𝑝𝜂 ) × F𝑚𝑝𝜂

)
;

10 returns 𝜏SA
def

=

(
c𝐴,

(
𝑥𝑙 , c

(𝑙 )
𝐵

, (𝑦𝑙 , 𝑧𝑙 ),
(
c(𝑙 )
𝐷

, c(𝑙 )−𝑧 , 𝛽 (𝑙 ) ,𝐶 (𝑙 )
)
,

(
Γ (𝑙 ) , v(𝑙 )

)
,

(
𝐵 (𝑙 ) , t(𝑙 ) , 𝜚 (𝑙 )

))𝑁
𝑙=1

)
.

4
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(𝑥𝑙 )𝑁𝑙=1 of the commit value c𝐴:

c𝐴 = ComMat𝑛×𝑚 (F𝑝𝜂 )
(
𝑐𝑘, a ; −→𝜍

)
.

(Step1.5) Thanks to step (Step1.2), step (Step1.3) and step (Step1.4),
we obtain the following equalities

∀ 𝑙, 𝑘 ∈ ⟦1;𝑁⟧, 𝑦𝑙𝜋 (𝑙) (𝑘) + (𝑥𝑙 )𝜋
(𝑙 ) (𝑘) = 𝑦𝑙𝑎𝑘 + 𝑏

(𝑙)
𝑘

.

Actually, these equalities are 𝑁 polynomial equations of

degree 1 in𝑦𝑙 , for each 𝑙 ∈ ⟦1;𝑁⟧. Thus, by𝑁 2
applications

of the Schwartz-Zippel lemma, we obtain

∀ 𝑙, 𝑘 ∈ ⟦1;𝑁⟧, 𝑎𝑘 = 𝜋 (𝑙) (𝑘) and 𝑏 (𝑙)
𝑘

= (𝑥𝑙 )𝜋
(𝑙 ) (𝑘) .

Consequently, as the sequence (𝑎𝑘 )𝑁𝑘=1 is independent from
challenges (𝑥𝑙 )𝑁𝑙=1, so it goes for the permutation sequence(
𝜋 (𝑙)

)𝑛
𝑙=1, we denote by 𝜋 this common value. Putting all

together, we conclude the following property:

∃ 𝜋 ∈ 𝔖𝑁 , ∃−→𝜍 ∈ F𝑚𝑝𝜂 ,
c𝐴 = ComMat𝑛×𝑚 (F𝑝𝜂 )

(
𝑐𝑘,

(
𝜋 (𝑘)

)𝑁
𝑘=1 ;

−→𝜍 (𝑙)
)
.

(Step 2) – Construct2 the vector of random values r.
(Step2.1) We have seen in step (Step1.3) that the following property

holds:

∀ 𝑙 ∈ ⟦1;𝑁⟧, 𝐶 (𝑙) = EncCS (𝑝𝑘, 1 ; 𝜚 (𝑙) ) ·
𝑁∏
𝑘=1

(
𝑐 ′
𝑘

)𝑏 (𝑙 )
𝑘 . (Φ)

Besides, step (Step1.5) gives us the following property:

∀𝑘, 𝑙 ∈ ⟦1;𝑁⟧, 𝑏 (𝑙)
𝑘

= (𝑥𝑙 )𝜋 (𝑘) . (Ψ)

Thus, Eq. (Φ) becomes, by using Eq. (Ψ) and the defini-

tion of 𝐶 (𝑙) given by Extractor 2 at line 7, the following

property:

∀ 𝑙 ∈ ⟦1;𝑁⟧,
𝑁∏
𝑘=1

(𝑐𝑘 ) (𝑥𝑙 )
𝑘

= EncCS (𝑝𝑘, 1 ; 𝜚 (𝑙) ) ·
𝑁∏
𝑘=1

(
𝑐 ′
𝑘

) (𝑥𝑙 )𝜋 (𝑘 )
i.e.

𝑁∏
𝑘=1

(𝑐𝑘 ) (𝑥𝑙 )
𝑘

= EncCS (𝑝𝑘, 1 ; 𝜚 (𝑙) ) ·
𝑁∏
𝑘=1

(
𝑐 ′
𝜋−1 (𝑘)

) (𝑥𝑙 )𝑘
(Υ)

(Step2.2) Let 𝑋 ∈ Mat𝑛×𝑚 (F𝑝𝜂 ) be the matrix defined by

𝑋
def

=

©­­­­«
𝑥1 𝑥2 · · · 𝑥𝑁
𝑥2
1

𝑥2
2
· · · 𝑥2

𝑁
.
.
.

.

.

.
. . .

.

.

.

𝑥𝑁
1

𝑥𝑁
2
· · · 𝑥𝑁

𝑁

ª®®®®¬
.

We notice that this matrix 𝑋 is in fact a Vandermonde

matrix of parameters the challenges (𝑥𝑙 )𝑁𝑙=1. Each challenge
of the sequence (𝑥𝑙 )𝑁𝑙=1 is generated independently and
uniformly at random in F∗𝑝𝜂 (challenges are computed by

2
Using line 8 of Extractor 2.

the honest verifierVBG). In particular, with overwhelming
probability3, the following property holds:

𝑁−1∧
𝑙=1

𝑁∧
𝑝 = 𝑙+1

(𝑥𝑙 ≠ 𝑥𝑝 ) .

Meaning that the Vandermonde matrix 𝑋 is invertible.

(Step2.3) On another hand, we denote, for all 𝑙 ∈ ⟦1;𝑁⟧, X(𝑙) the
𝑙-th column of the matrix𝑋 , we notice that Eq. (Υ) becomes

∀ 𝑖 ∈ ⟦1;𝑁⟧, c ⊛ X(𝑙) = EncCS (𝑝𝑘, 1 ; 𝜚 (𝑙) ) ·
(
c′
𝜋−1 ⊛ X(𝑙)

)
.

Thus
4
, previous equation becomes

c ⊛ 𝑋 =

(
EncCS (𝑝𝑘, 1 ; −→𝜚 )

)
⊙

(
c′
𝜋−1 ⊛ 𝑋

)
,

where
−→𝜚 def

=
(
𝜚 (𝑙)

)𝑁
𝑙=1 ∈ F

𝑁
𝑝𝜂
. As

• 𝑋 is invertible,

•

(
c ⊛ 𝑋

)
⊛ 𝑋−1 = c ⊛

(
𝑋𝑋−1

)
= c ⊛ 𝐼𝑁 ,

5
and

• c ⊛ 𝐼𝑁 = c, 6

we conclude

c =

((
EncCS (𝑝𝑘, 1 ; −→𝜚 )

)
⊙

(
c′
𝜋−1 ⊛ 𝑋

))
⊛ 𝑋−1

Next, because the following property

∀𝑛 ∈ N∗, ∀x, y ∈ H𝑛𝑝𝜂 , ∀𝑀 ∈ Mat𝑛 (F𝑝𝜂 ),(
x ⊙ y

)
⊛ 𝑀 =

(
x ⊛ 𝑀

)
⊙

(
y ⊛ 𝑀

)
3

Comment [MC1]: Surely we have to use the property transfer

under adversarial selection here!

4
Let 𝑛 ∈ N∗ be a natural number. Let x ∈ H𝑝𝜂 be a ciphertexts vector of dimension

𝑛 and let𝑀 ∈ Mat𝑛 (F𝑝𝜂 ) be a square matrix of dimension 𝑛 × 𝑛. We extend the

function ⊛ : H𝑛𝑝𝜂 × F
𝑛
𝑝𝜂
−→ H𝑝𝜂 for matrix with coefficients in F𝑝𝜂 as follows:

x ⊛ 𝑀
def

=

(
x ⊛ M( 𝑗 )

)𝑛
𝑗=1
∈ H𝑛𝑝𝜂 ,

where M( 𝑗 ) is the 𝑗 -th column of𝑀 .

5
Let 𝑛 ∈ N∗ be a natural number. Let x ∈ H𝑛𝑝𝜂 be a ciphertexts vector of dimension 𝑛

and let𝐴, 𝐵 ∈ Mat𝑛 (F𝑝𝜂 ) be two square matrix of dimensions 𝑛 × 𝑛. By definition

of ⊛, we have(
x ⊛ 𝐴

)
⊛ 𝐵 =

( (
x ⊛ 𝐴

)
⊛ B( 𝑗 )

)𝑛
𝑗=1

=

(
𝑛∏

𝑘=1

(
x ⊛ 𝐴

)𝑏𝑘,𝑗
𝑘

)𝑛
𝑗=1

=

(
𝑛∏

𝑘=1

(
x ⊛ A(𝑘 )

)𝑏𝑘,𝑗 )𝑛
𝑗=1

=
©­«

𝑛∏
𝑘=1

(
𝑛∏
𝑖=1

(𝑥𝑖 )𝑎𝑖,𝑘
)𝑏𝑘,𝑗 ª®¬

𝑛

𝑗=1

=

(
𝑛∏

𝑘=1

𝑛∏
𝑖=1

(𝑥𝑖 )𝑎𝑖,𝑘𝑏𝑘,𝑗
)𝑛
𝑗=1

=
©­«

𝑛∏
𝑖=1

(𝑥𝑖 )
𝑛∑

𝑘=1
𝑎𝑖,𝑘𝑏𝑘,𝑗 ª®¬

𝑛

𝑗=1

=

(
x ⊛ (𝐴𝐵) ( 𝑗 )

)𝑛
𝑗=1

= x ⊛ (𝐴𝐵) . □

6
Let 𝑛 ∈ N∗ be a natural number. Let x ∈ H𝑛𝑝𝜂 be a ciphertexts vector of dimension

𝑛 and let 𝐼𝑛 ∈ Mat𝑛 (F𝑝𝜂 ) be the identity square matrix of dimensions 𝑛 ×𝑛: for all
𝑖, 𝑗 ∈ ⟦1;𝑛⟧, (𝐼𝑛)𝑖,𝑗 = 𝛿𝑖 𝑗 the Kroenecker symbol. By definition of ⊛, we have

x ⊛ 𝐼𝑁 =

(
x ⊛ I(𝑖 )

𝑁

)𝑁
𝑖=1

=

(
𝑛∏
𝑗=1

(𝑥 𝑗 )𝛿𝑗𝑖
)𝑁
𝑖=1

=
(
𝑥𝑖

)𝑁
𝑖=1

= x. □

5
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holds
7
, it leads to

c =

((
EncCS (𝑝𝑘, 1 ; −→𝜚 )

)
⊛ 𝑋−1

)
⊙

((
c′
𝜋−1 ⊛ 𝑋

)
⊛ 𝑋−1

)
=

((
EncCS (𝑝𝑘, 1 ; −→𝜚 )

)
⊛ 𝑋−1

)
⊙ c′

𝜋−1 .

Finally, we use:

(1) the following identity
8(

EncCS (𝑝𝑘, 1 ; −→𝜚 )
)
⊛ 𝑋−1 = EncCS

(
𝑝𝑘, 1 ⊛ 𝑋−1 ; (𝑋−1)𝑇 · −→𝜚

)
,

(2) and the property
9 1 ⊛ 𝑋−1 = 1,

to obtain

c = EncCS

(
𝑝𝑘, 1 ;

(
𝑋−1

)𝑇 · −→𝜚 )
⊙ c′

𝜋−1 . (Υ′)

(Step2.4) Now, we apply both sides of the previous identity the func-

tion𝜓𝑁 defined as follows

𝜓𝑁 : H𝑁𝑝𝜂 −→ H𝑝𝜂

x ↦−→ EncCS

(
𝑝𝑘, 1 ; −

(
𝑋−1

)𝑇 · −→𝜚 )
⊙ x.

7
Let 𝑛 ∈ N∗ be a natural number. Let x, y ∈ H𝑛𝑝𝜂 be two ciphertexts vectors of

dimension𝑛, and let𝑀 ∈ Mat𝑛 (F𝑝𝜂 ) be a matrix of dimensions𝑛×𝑛. By definition
of ⊛ and ⊙, we have(
x ⊙ y

)
⊛ 𝑀 =

( (
𝑥𝑖𝑦𝑖

)𝑛
𝑖=1

)
⊛ 𝑀 =

(( (
𝑥𝑖𝑦𝑖

)𝑛
𝑖=1

)
⊛ M( 𝑗 )

)𝑛
𝑗=1

=

(
𝑛∏
𝑖=1

(𝑥𝑖𝑦𝑖 )𝑚𝑖,𝑗

)𝑛
𝑗=1

=

((
𝑛∏
𝑖=1

(𝑥𝑖 )𝑚𝑖,𝑗

)
·
(

𝑛∏
𝑖=1

(𝑦𝑖 )𝑚𝑖,𝑗

))𝑛
𝑗=1

=

( (
x ⊛ M( 𝑗 )

)
·
(
y ⊛ M( 𝑗 )

) )𝑛
𝑗=1

=
(
x ⊛ 𝑀

)
⊙

(
y ⊛ 𝑀

)
. □

8
Let 𝑛 ∈ N∗ be a natural number. Let x ∈ G𝑛𝑝𝜂 and y ∈ F𝑛𝑝𝜂 be two vectors, both

of dimension 𝑛. Let 𝑀 ∈ Mat𝑛 (F𝑝𝜂 ) be a square matrix of dimensions 𝑛 × 𝑛. By
definition of ⊛ and because CS is homomorphic, we have(

EncCS (𝑝𝑘, x ; y)
)
⊛ 𝑀 =

((
EncCS (𝑝𝑘, x ; y)

)
⊛ M( 𝑗 )

)𝑛
𝑗=1

=

(
𝑛∏
𝑖=1

(
EncCS (𝑝𝑘, 𝑥𝑖 ; 𝑦𝑖 )

)𝑚𝑖,𝑗

)𝑛
𝑗=1

=

(
𝑛∏
𝑖=1

(
EncCS

(
𝑝𝑘, (𝑥𝑖 )𝑚𝑖,𝑗

; 𝑦𝑖𝑚𝑖,𝑗

)))𝑛
𝑗=1

=

(
EncCS

(
𝑝𝑘,

𝑛∏
𝑖=1

(𝑥𝑖 )𝑚𝑖,𝑗
;

𝑛∑︁
𝑖=1

𝑦𝑖𝑚𝑖,𝑗

))𝑛
𝑗=1

=

(
EncCS

(
𝑝𝑘, x ⊛ M( 𝑗 ) ;

(
𝑀𝑇 · y

) ( 𝑗 ) ))𝑛
𝑗=1

= EncCS

(
𝑝𝑘, x ⊛ 𝑀 ; 𝑀𝑇 · y

)
. □

9
Let 𝑛 ∈ N∗ be a natural number. We denote by 1 ∈ H𝑛𝑝𝜂 the ciphertexts vector of

dimension 𝑛 such that, for all 𝑖 ∈ ⟦1;𝑛⟧, 1𝑖
def

= 1. Let𝑀 ∈ Mat𝑛 (F𝑝𝜂 ) be a square
matrix of dimensions 𝑛 × 𝑛. By definition of ⊛, we have

1 ⊛ 𝑀 =

(
1 ⊛ 𝑀 ( 𝑗 )

)𝑛
𝑗=1

=

(
𝑁∏
𝑖=1

1
𝑚𝑖,𝑗

)𝑛
𝑗=1

= 1. □

Thus, it leads to
1011

EncCS

(
𝑝𝑘, 1 ; −

(
𝑋−1

)𝑇 · −→𝜚 )
⊙ c = c′

𝜋−1 .

By an index change
12
, we finally obtain the following equa-

tion
13

c′ = EncCS (𝑝𝑘, 1 ; r) ⊙ c𝜋
with r def

= −
( (
𝑋−1

)𝑇 · −→𝜚 )
𝜋
∈ F𝑁𝑝𝜂 .

Results obtained in step (Step 1) and step (Step 2), give us the
following result, proving that, with overwhelming probability, we

have successfully extract a witness 𝑤
def

= (𝜋, r) ∈ 𝔖𝑁 × F𝑁𝑝𝜂 such

10
Let 𝑛 ∈ N∗ be a natural number. Let x, y ∈ G𝑛𝑝𝜂 and r,−→𝜍 ∈ F𝑛𝑝𝜂 be four vectors, all

of dimension 𝑛. By definition of ⊙ and because CS is homomorphic, we have(
EncCS (𝑝𝑘, x ; r)

)
⊙

(
EncCS (𝑝𝑘, y ;

−→𝜍 )
)

=

((
EncCS (𝑝𝑘, 𝑥𝑖 ; 𝑟𝑖 )

)
·
(
EncCS (𝑝𝑘, 𝑦𝑖 ; 𝑠𝑖 )

))𝑛
𝑖=1

=

(
EncCS

(
𝑝𝑘, 𝑥𝑖 · 𝑦𝑖 ; 𝑟𝑖 + 𝑠𝑖

) )𝑛
𝑖=1

= EncCS

(
𝑝𝑘, x ⊙ y ; r + −→𝜍

)
. □

Now, let m ∈ G𝑛𝑝𝜂 be a vector of dimension 𝑛. We denote by 0 ∈ F𝑛𝑝𝜂 the vector of

dimension 𝑛 defined by, for all 𝑖 ∈ ⟦1;𝑛⟧, 0𝑖 = 0. By definition of EncCS , we have

EncCS (𝑝𝑘,m ; 0) =
(
EncCS (𝑝𝑘,𝑚𝑖 ; 0)

)𝑛
𝑖=1

= (1)𝑛𝑖=1 = 1. □

11
Let 𝑛 ∈ N∗ be a natural number. Let x, y, z ∈ H𝑛𝑝𝜂 be three vectors of dimension 𝑛.

By definition of ⊙, we have

x ⊙
(
y ⊙ z

)
= x ⊙

(
𝑦𝑖 · 𝑧𝑖

)𝑛
𝑖=1

=
(
𝑥𝑖 · 𝑦𝑖 · 𝑧𝑖

)𝑛
𝑖=1

.

Thus, by associativity of the internal law · : H𝑝𝜂 ×H𝑝𝜂 −→ H𝑝𝜂 , so it goes for the
function ⊙ : H𝑛𝑝𝜂 × H

𝑛
𝑝𝜂
−→ H𝑛𝑝𝜂 .

Besides, as 1 is the neutral element of the group

(
H𝑝𝜂 , ·

)
, so it goes with 1 for the

group

(
H𝑛𝑝𝜂 , ⊙

)
.

□

12
Let 𝑛 ∈ N∗ be a natural number. Let x, y ∈ H𝑛𝑝𝜂 be two ciphertexts vectors of

dimension 𝑛. Let 𝜎 ∈ 𝔖𝑛 be a permutation. Let z ∈ H𝑛𝑝𝜂 be the permuted result of

the ⊙ product of previous vectors: z𝜎
def

= x ⊙ y. On one hand, we have(
z𝜎

)
𝜎−1 =

( (
𝑧𝜎 (𝑖 )

)𝑛
𝑖=1

)
𝜎−1

=

(
𝑧
𝜎−1

(
𝜎 (𝑖 )

) )𝑛
𝑖=1

= z.

On another hand, we have(
x ⊙ y

)
𝜎
=

( (
𝑥𝑖 · 𝑦𝑖

)𝑛
𝑖=1

)
𝜎
=

(
𝑥𝜎 (𝑖 ) · 𝑦𝜎 (𝑖 )

)𝑛
𝑖=1

= x𝜎 ⊙ y𝜎 .

Now, let m ∈ G𝑛𝑝𝜂 and r ∈ Mat𝑛 (F𝑝𝜂 ) be two vectors of dimension 𝑛. We have(
EncCS (𝑝𝑘,m ; r)

)
𝜎
=

( (
EncCS (𝑝𝑘,𝑚𝑖 ; 𝑟𝑖 )

)𝑛
𝑖=1

)
𝜎
=

(
EncCS (𝑝𝑘,𝑚𝜎 (𝑖 ) ; 𝑟𝜎 (𝑖 ) )

)𝑛
𝑖=1

= EncCS (𝑝𝑘,m𝜎 ; r𝜎 ) .

Thus, we finally obtain

z =
(
z𝜎

)
𝜎−1 =

(
EncCS (𝑝𝑘,m𝜎−1 ; r

𝜎−1 )
)
⊙ y

𝜎−1 . □

13
More precisely, with 𝑋−1

def

=
(
𝑥̃𝑖,𝑗

)𝑁
𝑖,𝑗=1

∈ Mat𝑁 (F𝑝𝜂 ) given by the computation
of the inverse of the Vandermonde matrix 𝑋 (see [2]) with coefficients the

sequence of challenges (𝑥𝑙 )𝑁𝑙=1 , we have

∀ 𝑗 ∈ ⟦1;𝑁⟧, 𝑟 𝑗
def

= −
𝑁∑︁
𝑙=1

𝜚 (𝑙 ) · 𝑥̃𝑙,𝜋 ( 𝑗 ) .

6
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that

(
𝜎, 𝜒,𝑤

)
∈ RBGSA .

∃ 𝜋 ∈ 𝔖𝑁 , ∃ r ∈ F𝑁𝑝𝜂 ,
c′ = EncCS (𝑝𝑘, 1 ; r) ⊙ c𝜋 .
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2
)

Knowledge
soundness

𝑁 ×
EPA

𝑁 ×
EMEA

Binding of
commitment

scheme
× 1

Schwartz-Zippel × 1 ×𝑁 2

Property transfer
under adversarial

selection
Yes

Extractor uses
rewinding? Yes (𝑁 witnesses – 2 witnesses each)

Table 1: Assessment of cryptographic or probabilistic proper-
ties used to prove Knowledge Soundness of Shuffle Argument
protocol

□

B.2 Multi-exponentiation argument protocol
We define

RBGMEA ⊆
(
G𝑛+1𝑝𝜂

× PKCS
)︸               ︷︷               ︸

Public parameter set

×
(
(H𝑛𝑝𝜂 )

𝑚 × H𝑝𝜂 × G𝑚𝑝𝜂
)︸                        ︷︷                        ︸

Statement set

×
(
Mat𝑛×𝑚 (F𝑝𝜂 ), F𝑚𝑝𝜂 , F𝑝𝜂

)︸                           ︷︷                           ︸
Witness set

to be the multi-exponentiation relation defined by(
(𝑐𝑘, 𝑝𝑘),

(
(c′𝑖 )

𝑚
𝑖=1,𝐶, c𝐵

)
,
(
𝐵, t, 𝜚

) )
∈ RBGMEA

def⇐⇒


c𝐵 = ComMat𝑛×𝑚 (F𝑝𝜂 )

(
𝑐𝑘, 𝐵 ; t

)
𝐶 = EncCS (𝑝𝑘, 1 ; 𝜚 ) ·

𝑚∏
𝑖=1

c′𝑖 ⊛ b𝑖

Hence, we define a Σ-protocol for the relation ofmulti-exponentiation

Σ
[
RBGMEA

]
to be the protocol defined as follows in Protocol 3.

Theorem B.2 (Knowledge soundness of Σ
[
RBGMEA

]
). The Σ-

protocol Σ
[
RBGMEA

]
for the multi-exponentiation relationRBGMEA is knowl-

edge sound.

Proof. We define the extractor EMEA for the Bayer-Groth multi-

exponentiation argument to be the algorithm defined as follows in

Extractor 4.
Let 𝑛,𝑚 ∈ N∗ be two natural numbers. Let 𝜂 ∈ N∗ be a security

parameter. Let P∗ be a polynomial-time and deterministic adver-

sarial prover. Let 𝜎 = (𝑐𝑘, 𝑝𝑘) ← IMEA (𝜂) be an honest public

parameter for the multi-exponentiation relation RBGMEA. Let A be a

probabilistic and polynomial-time adversary. Let 𝜒 ← A(𝜂, 𝜎) be
an adversarial statement where

𝜒
def

=

(
(c′𝑖 )

𝑚
𝑖=1,𝐶, c𝐵

)
∈

(
H𝑛𝑝𝜂

)𝑚 × H𝑝𝜂 × G𝑚𝑝𝜂 .
Then, the adversary A calls the extractor EMEA on inputs 𝜎 and 𝜒

with access toP∗ andVMEA and obtains𝜏MEA
def

=

(
𝔱𝔯
𝜎, 𝜒
𝛼, 𝔷RBGMEA, P

∗ (𝑥𝑙 )
)
2𝑚

𝑙=1
.

Let 𝑙 ∈ ⟦1; 2𝑚⟧ be an index. We denote by

• 𝛼
def

=

(
𝑐𝐵0

,
(
𝑐𝐹𝑘

)
2𝑚−1
𝑘=0 ,

(
𝐸𝑘

)
2𝑚−1
𝑘=0

)
∈ G𝑝𝜂 × G2𝑚𝑝𝜂 × H

2𝑚
𝑝𝜂

the first

message ; and

• 𝔷RBG
MEA, P∗

(
𝛼, 𝑥𝑙

) def

=

(
b(𝑙) , 𝑡 (𝑙) , 𝑓 (𝑙) , 𝜍 (𝑙) , 𝜏 (𝑙)

)
∈ F𝑛𝑝𝜂 × F𝑝𝜂 ×

F𝑝𝜂 × F𝑝𝜂 × F𝑝𝜂 the response message on challenge 𝑥𝑙 .

This way, we have the following property

∀ 𝑙 ∈ ⟦1; 2𝑚⟧,


• 𝔱𝔯

𝜎, 𝜒
𝛼, 𝔷RBGMEA, P

∗ (𝑥𝑙 ) =

〈(
𝑐𝐵0

,
(
𝑐𝐹𝑘

)
2𝑚−1
𝑘=0 ,

(
𝐸𝑘

)
2𝑚−1
𝑘=0

)
,

𝑥𝑙 ,

(
b(𝑙) , 𝑡 (𝑙) , 𝑓 (𝑙) , 𝜍 (𝑙) , 𝜏 (𝑙)

)〉
• 𝑣

𝜎, 𝜒

RBG
MEA

(
𝔱𝔯
𝜎, 𝜒
𝛼, 𝔷RBGMEA, P

∗ (𝑥𝑙 )
)
= 1.

By definition of the Bayer-Groth multi-exponentiation argument

protocol, as the proof transcripts are valid, for all 𝑙 ∈ ⟦1; 2𝑚⟧, we
have

𝑐𝐹𝑚 = ComF𝑝𝜂
(
𝑐𝑘, 0 ; 0

)
and 𝐸𝑚 = 𝐶 (H1)

𝑐𝐵0
·
(
c𝐵 ⊛ x̃(𝑙)

)
= ComF𝑛𝑝𝜂

(
𝑐𝑘, b(𝑙) ; 𝑡 (𝑙)

)
(H (𝑙)

2
)

𝑐𝐹0 ·
2𝑚−1∏
𝑘=1

𝑐
(𝑥̃𝑙 )𝑘
𝐹𝑘

= ComF𝑝𝜂
(
𝑐𝑘, 𝑓 (𝑙) ; 𝜍 (𝑙)

)
(H (𝑙)

3
)

𝐸0 ·
2𝑚−1∏
𝑘=1

𝐸
(𝑥̃𝑙 )𝑘
𝑘

= EncCS (𝑝𝑘,𝑔𝑓
(𝑙 )

; 𝜏 (𝑙) ) ·
𝑚∏
𝑖=1

(
c′𝑖 ⊛

(
(𝑥𝑙 )𝑚−𝑖b(𝑙)

))
(H (𝑙)

4
)

(Step 1) – Get an opening of commit values
(
𝑐𝐵𝑘

)𝑚
𝑘=0

(Step1.1) We define the matrix 𝑋̃𝐵 ∈ Mat𝑚+1 (F𝑝𝜂 ) by

𝑋̃𝐵
def

=

©­­­­«
1 1 · · · 1

𝑥1 𝑥2 · · · 𝑥𝑚+1
.
.
.

.

.

.
. . .

.

.

.

𝑥𝑚
1

𝑥𝑚
2
· · · 𝑥𝑚

𝑚+1

ª®®®®¬
which is an invertible transposed Vandermonde ma-

trix because, with overwhelming probability, the fol-
lowing property holds:

𝑚∧
𝑙=1

𝑚+1∧
𝑝 = 𝑙+1

(𝑥𝑙 ≠ 𝑥𝑝 ) .

(Step1.2) We define the following quantities

• 𝐵𝑥̃ ∈ Mat𝑛×(𝑚+1) (F𝑝𝜂 ) the matrix with 𝑛 lines

and (𝑚 + 1) columns where columns of 𝐵𝑥̃ are

given by vectors b(𝑙) for all 𝑙 ∈ ⟦1;𝑚 + 1⟧. More

precisely, we have

∀ 𝑖 ∈ ⟦1;𝑛⟧, ∀ 𝑙 ∈ ⟦1;𝑚 + 1⟧,
(
𝐵𝑥̃

)
𝑖,𝑙

def

=
(
b(𝑙)

)
𝑖 .

7
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Protocol 3: Σ-protocol Σ
[
RBGMEA

]
for the Bayer-Groth multi-exponentiation argument

Public Input :Two natural numbers 𝑛,𝑚 ∈ N∗. A security parameter 𝜂 ∈ N∗. A commitment key 𝑐𝑘 = (𝑔, g) ∈ G𝑛+1𝑝𝜂
for the

commitment scheme KS[Mat𝑛×𝑚 (F𝑝𝜂 )]. A public key 𝑝𝑘 ∈ PKCS of the cryptosystem CS. A list of ciphertexts

vectors (c′
𝑖
)𝑚
𝑖=1
∈ (H𝑛𝑝𝜂 )

𝑚
, a ciphertext 𝐶 ∈ H𝑝𝜂 and a commit value c𝐵 ∈ G𝑚𝑝𝜂 .

Private Input :A matrix 𝐵 = (b𝑖 )𝑚𝑖=1 ∈ Mat𝑛×𝑚 (F𝑝𝜂 ), a vector of random values t
$← F𝑚𝑝𝜂 and a random value 𝜚

$← F𝑝𝜂 such that

c𝐵 = ComMat𝑛×𝑚 (F𝑝𝜂 )
(
𝑐𝑘, 𝐵 ; t

)
, and 𝐶 = EncCS (𝑝𝑘, 1 ; 𝜚 )

𝑚∏
𝑖=1

c′
𝑖
⊛ b𝑖 .

Begin protocol

(1) (Commit message) The prover PMEA chooses a vector of random values b0
$← F𝑛𝑝𝜂 , a random value 𝑡0

$← F𝑝𝜂 , and, for all

𝑖 ∈ ⟦0; 2𝑚 − 1⟧, three random values 𝑓𝑖 , 𝑠𝑖 , 𝜏𝑖
$← F𝑝𝜂 . Then, the prover sets 𝑓𝑚, 𝑠𝑚 ← 0 ∈ F𝑝𝜂 and 𝜏𝑚 ← 𝜚 ∈ F𝑝𝜂 . PMEA

computes 𝑐𝐵0
← ComF𝑛𝑝𝜂

(
𝑐𝑘, b0 ; 𝑡0

)
∈ G𝑝𝜂 , and, for all 𝑘 ∈ ⟦0; 2𝑚 − 1⟧, 𝑐𝐹𝑘 ← ComF𝑝𝜂

(
𝑐𝑘, 𝑓𝑘 ; 𝜍𝑘

)
∈ G𝑝𝜂 and

𝐸𝑘 ← EncCS (𝑝𝑘,𝑔𝑓𝑘 ; 𝜏𝑘 ) ·
𝑚∏
𝑖=1

c′
𝑖
⊛ b(𝑘−𝑚)+𝑖 ∈ H𝑝𝜂 . Finally, PMEA sends toVMEA values

(
𝑐𝐵0

, (𝑐𝐹𝑖 )2𝑚−1𝑖=0
, (𝐸𝑖 )2𝑚−1𝑖=0

)
.

(2) (Challenge message)VMEA chooses uniformly at random a challenge 𝑥
$← F∗𝑝𝜂 and sends it to PMEA.

(3) (Response message) Let x̃ be the vector defined by x̃← (𝑥𝑖 )𝑚
𝑖=1
∈ F𝑚𝑝𝜂 . The prover PMEA computes values b← b0 + 𝐵 · x̃ ∈ F𝑛𝑝𝜂 ,

𝑡 ← 𝑡0 + ⟨t | x̃⟩ ∈ F𝑝𝜂 , 𝑓 ←
2𝑚−1∑
𝑘=0

𝑓𝑘𝑥
𝑘 ∈ F𝑝𝜂 , 𝜍 ←

2𝑚−1∑
𝑘=0

𝜍𝑘𝑥
𝑘 ∈ F𝑝𝜂 , and 𝜏 ←

2𝑚−1∑
𝑘=0

𝜏𝑘𝑥
𝑘 ∈ F𝑝𝜂 . Then, PMEA sends to the

verifier values

(
b, 𝑡, 𝑓 , 𝜍, 𝜏

)
.

(4) (Conclusion’s bit) The verifierVMEA accepts if and only if the following equations hold

𝑐𝐹𝑚 = ComF𝑝𝜂
(
𝑐𝑘, 0 ; 0

)
, 𝐸𝑚 = 𝐶, 𝑐𝐵0

(
c𝐵 ⊛ x̃

)
= ComF𝑛𝑝𝜂

(
𝑐𝑘, b ; 𝑡

)
, 𝑐𝐹0

2𝑚−1∏
𝑘=1

𝑐𝑥̃
𝑘

𝐹𝑘
= ComF𝑝𝜂

(
𝑐𝑘, 𝑓 ; 𝜍

)
,

and 𝐸0

2𝑚−1∏
𝑘=1

𝐸𝑥̃
𝑘

𝑘
= EncCS (𝑝𝑘,𝑔𝑓 ; 𝜏)

𝑚∏
𝑖=1

c′𝑖 ⊛
(
𝑥𝑚−𝑖b

)
.

Extractor 4: Extractor EMEA for the Σ-protocol Σ
[
RBGMEA

]
of the Bayer-Groth multi-exponentiation argument

Input :A security parameter 𝜂 ∈ N∗. Two natural numbers 𝑛,𝑚 ∈ N∗. A public parameter

𝜎
def

= (𝑐𝑘, 𝑝𝑘) ∈ G𝑛+1𝑝𝜂
× PKCS for the Bayer-Groth multi-exponentiation relation RBGMEA. A statement

𝜒
def

=
(
(c′
𝑖
)𝑚
𝑖=1

,𝐶, c𝐵
)
∈

(
H𝑛𝑝𝜂

)𝑚 × H𝑝𝜂 × G𝑚𝑝𝜂 .
Blackbox access to :A deterministic adversarial prover P∗ and an honest verifierVMEA.

1 Begin extractor

2 calls P∗ to get 𝛼 def

=

(
𝑐𝐵0

, (𝑐𝐹𝑖 )2𝑚−1𝑖=0
, (𝐸𝑖 )2𝑚−1𝑖=0

)
∈

(
G𝑝𝜂 × G2𝑚𝑝𝜂 × H

2𝑚
𝑝𝜂

)
;

3 // State at this point: st1
def

=

[
(𝑐𝑘, 𝑝𝑘) ;

(
(c′𝑖 )

𝑚
𝑖=1,𝐶, c𝐵

)
;

(
𝑐𝐵0

, (𝑐𝐹𝑖 )
2𝑚−1
𝑖=0 , (𝐸𝑖 )2𝑚−1𝑖=0

)]
.

4 rewinds P∗ and VMEA at state st1 and begins with 𝑙 ← 1 ∈ N
5 calls VMEA to get 𝑥𝑙

$← F∗𝑝𝜂 ;

6 calls P∗ to get 𝑧𝑙 ← 𝔷RBG
MEA, P∗

(
𝛼, 𝑥𝑙

)
∈

(
F𝑛𝑝𝜂 × F𝑝𝜂 × F𝑝𝜂 × F𝑝𝜂 × F𝑝𝜂

)
;

7 if 𝑣𝜎, 𝜒RBG
MEA

(
𝔱𝔯
𝜎, 𝜒
𝛼, 𝔷RBGMEA, P

∗ (𝑥𝑙 )
)
and

𝑙−1∧
𝑖=1

𝑙∧
𝑗 = 𝑖+1

(𝑥𝑖 ≠ 𝑥 𝑗 ) then 𝑙 ← 𝑙 + 1 ;

8 until 𝑙 > 2𝑚 ; // i.e. until 2𝑚 valid proof transcripts with pairwise distinct challenges are obtained.

9 returns 𝜏MEA
def
=

(
𝔱𝔯
𝜎, 𝜒
𝛼, 𝔷RBGMEA, P

∗ (𝑥𝑙 )
)
2𝑚

𝑙=1

.

8
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• t𝑥̃ ∈ F𝑚+1𝑝𝜂
the vector defined by t𝑥̃

def

=
(
𝑡 (𝑙)

)𝑚+1
𝑙=1 .

By properties of the operator ⊛14, we have(
𝑐𝐵0

, . . . , 𝑐𝐵𝑚
)
=

(
𝑐𝐵0

, . . . , 𝑐𝐵𝑚
)
⊛

(
𝑋̃𝐵𝑋̃

−1
𝐵

)
see footnote 6

=

( (
𝑐𝐵0

, . . . , 𝑐𝐵𝑚
)
⊛ 𝑋̃𝐵

)
⊛ 𝑋̃−1

𝐵

see footnote 5
= ComMat𝑛×(𝑚+1) (F𝑝𝜂 )

(
𝑐𝑘, 𝐵𝑥̃ ; t𝑥̃

)
⊛ 𝑋̃−1

𝐵

by definitions of 𝐵𝑥̃ and t𝑥̃ and by
(
𝐸𝑞. (H (𝑙)

2
)

)𝑚+1
𝑙=1

= ComMat𝑛×(𝑚+1) (F𝑝𝜂 )
(
𝑐𝑘, 𝐵𝑥̃ 𝑋̃

−1
𝐵

; t𝑥̃ 𝑋̃−1𝐵

)
.

see footnote 14

(Step1.3) Now, let us suppose just for a moment that we have
15

∃𝐵𝑥̃
(
𝑋̃𝐵

)−1
, 𝐵𝑥̃ ′

(
𝑋̃ ′𝐵

)−1 ∈ Mat𝑛×(𝑚+1) (F𝑝𝜂 ), 𝐵𝑥̃
(
𝑋̃𝐵

)−1
≠ 𝐵𝑥̃ ′

(
𝑋̃ ′𝐵

)−1
.

But, by the previous point, the following property

holds(
𝑐𝐵0

, . . . , 𝑐𝐵𝑚
)
= ComMat𝑛×(𝑚+1) (F𝑝𝜂 )

(
𝑐𝑘, 𝐵𝑥̃

(
𝑋̃𝐵

)−1
; t𝑥̃

(
𝑋̃𝐵

)−1)
= ComMat𝑛×(𝑚+1) (F𝑝𝜂 )

(
𝑐𝑘, 𝐵𝑥̃ ′

(
𝑋̃ ′𝐵

)−1
; t𝑥̃ ′

(
𝑋̃ ′𝐵

)−1)
Thus, as the commitment schemeKS[Mat𝑛×(𝑚+1) (F𝑝𝜂 )]
is computationally binding, with overwhelming prob-
ability, we conclude a contradiction. Therefore, we
have shown that the following property holds

∀𝐵𝑥̃ , 𝐵𝑥̃ ′ ∈ Mat𝑛×(𝑚+1) (F𝑝𝜂 ), ∀ 𝑋̃𝐵, 𝑋̃
′
𝐵 ∈ Mat𝑚+1 (F𝑝𝜂 ),

𝐵𝑥̃
(
𝑋̃𝐵

)−1
= 𝐵𝑥̃ ′

(
𝑋̃ ′𝐵

)−1
.

We denote this common value 𝐵̃ ∈ Mat𝑛×(𝑚+1) (F𝑝𝜂 )
with columns

(
b𝑘

)
2𝑚
𝑘=0. Thus, we have found an open-

ing

(
𝐵̃, t

)
∈ Mat𝑛×(𝑚+1) (F𝑝𝜂 ) × F𝑚+1𝑝𝜂

independent
from challenges (𝑥𝑙 )2𝑚𝑙=1 of the commit value c𝐵 :

∀𝑘 ∈ ⟦0;𝑚⟧, 𝑐𝐵𝑘
= ComF𝑛𝑝𝜂

(
𝑐𝑘, b𝑘 ; 𝑡𝑘

)
.

14
Let 𝑛,𝑚 ∈ N∗ be two natural numbers. Let 𝑐𝑘 ∈ G𝑛+1𝑝𝜂

be a commitment key pa-

rameter for the commitment schemeKS[Mat𝑛×𝑚 (F𝑝𝜂 ) ]. Let𝑀 ∈ Mat𝑛×𝑚 (F𝑝𝜂 )
be a matrix of dimensions 𝑛 ×𝑚 and let 𝐵 ∈ Mat𝑚 (F𝑝𝜂 ) be a square matrix

of dimensions𝑚 ×𝑚. Let r ∈ F𝑚𝑝𝜂 be a vector of dimension𝑚. By definition of

ComMat𝑛×𝑚 (F𝑝𝜂 ) , we have(
ComMat𝑛×𝑚 (F𝑝𝜂 )

(
𝑐𝑘,𝑀 ; r

) )
⊛ 𝐵 =

(
ComMat𝑛×𝑚 (F𝑝𝜂 )

(
𝑐𝑘,𝑀 ; r

)
⊛ B( 𝑗 )

)𝑚
𝑗=1

=

(
ComF𝑛𝑝𝜂

(
𝑐𝑘,𝑀 · B( 𝑗 ) ; ⟨r | B( 𝑗 ) ⟩

))𝑚
𝑗=1

= ComMat𝑛×𝑚 (F𝑝𝜂 )
(
𝑐𝑘,𝑀𝐵 ; r𝐵

)
. □

15
More precisely, we suppose the existence of 𝐵𝑥̃ , 𝐵𝑥̃′ ∈ Mat𝑛×(𝑚+1) (F𝑝𝜂 ) two
matrix of dimensions 𝑛 × (𝑚 + 1) and 𝑋̃𝐵 , 𝑋̃

′
𝐵
∈ Mat𝑚+1 (F𝑝𝜂 ) two square matrix

of dimensions𝑚 + 1 such that we are in one of the two following cases:

• Case 1: Their exists a sequence

(
𝑥̃𝑙

)𝑚+1
𝑙=1

of challenges in F∗𝑝𝜂 and at
least another challenge 𝑥̃ ′

𝑙
0

∈ F∗𝑝𝜂 with 𝑥̃ ′
𝑙
0

≠ 𝑥̃𝑙
0

for some 𝑙0 ∈

⟦1;𝑚 + 1⟧ such that 𝑋̃𝐵
def

= 𝑉 (𝑥̃1, . . . , 𝑥̃𝑙
0
−1, 𝑥̃𝑙

0
, 𝑥̃𝑙

0
+1, . . . , 𝑥̃𝑚+1) and

𝑋̃ ′
𝐵

def

= 𝑉 (𝑥̃1, . . . , 𝑥̃𝑙
0
−1, 𝑥̃ ′𝑙

0

, 𝑥̃𝑙
0
+1, . . . , 𝑥̃𝑚+1) ;

• Case 2: Their exists at least one column 𝑙0 ∈ ⟦1;𝑚+1⟧ such thatB(𝑙0 )
𝑥̃

≠ B(𝑙0 )
𝑥̃′ .

(Step 2) – Get an opening of commit values
(
𝑐𝐹𝑘

)
2𝑚−1
𝑘=0

(Step2.1) We define the matrix 𝑋̃𝐹 ∈ Mat2𝑚 (F𝑝𝜂 ) by

𝑋̃𝐹
def

=

©­­­­«
1 1 · · · 1

𝑥1 𝑥2 · · · 𝑥2𝑚
.
.
.

.

.

.
. . .

.

.

.

𝑥2𝑚−1
1

𝑥2𝑚−1
2

· · · 𝑥2𝑚−1
2𝑚

ª®®®®¬
,

which is again an invertible transposed Vandermonde

matrix because (𝑥𝑙 )2𝑚𝑙=1 are pairwise distincts, with

overwhelming probability.
(Step2.2) We define the following quantities

f𝑥̃
def

=
(
𝑓 (𝑙)

)
2𝑚
𝑙=1 ∈ F

2𝑚
𝑝𝜂

and
−→𝜍 𝑥̃

def

=
(
𝜍 (𝑙)

)
2𝑚
𝑙=1 ∈ F

2𝑚
𝑝𝜂

.

Thus, we have(
𝑐𝐹0 , . . . , 𝑐𝐹2𝑚−1

)
=

( (
𝑐𝐹0 , . . . , 𝑐𝐹2𝑚−1

)
⊛ 𝑋̃𝐹

)
⊛ 𝑋̃−1𝐹

= ComF𝑝𝜂
(
𝑐𝑘, f𝑥̃ ;

−→𝜍 𝑥̃

)
⊛ 𝑋̃−1𝐹

by hypothesis
(
𝐸𝑞. (H (𝑙)

3
)

)
2𝑚

𝑙=1

= ComF𝑝𝜂
(
𝑐𝑘, f𝑥̃ 𝑋̃

−1
𝐹 ;
−→𝜍 𝑥̃ 𝑋̃

−1
𝐹

)
.

(Step2.3) As seen in step (Step1.3), by the binding property for

the commitment scheme KS[F𝑝𝜂 ], we conclude with
overwhelming probability, the existence of a sequence(
(𝑓𝑘 , 𝜍𝑘 )

)
2𝑚−1
𝑘=0 ∈

(
F𝑝𝜂 ×F𝑝𝜂

)
2𝑚

which is independent

from challenges
(
𝑥𝑙

)
2𝑚
𝑙=1 and such that

∀𝑘 ∈ ⟦0; 2𝑚 − 1⟧, 𝑐𝐹𝑘 = ComF𝑝𝜂
(
𝑐𝑘, 𝑓𝑘 ; 𝜍𝑘

)
.

(Step 3) – Obtain the computation of values
(
𝐸𝑘

)
2𝑚−1
𝑘=0

(Step3.1) By hypothesis Eq. (H (𝑙)
2

), and by definition of vectors(
b𝑖

)𝑚
𝑖=0 (see step (Step1.3)), for all 𝑙 ∈ ⟦1;𝑚 + 1⟧, we

have

𝑛∑︁
𝑖=0

(𝑥𝑙 )𝑖b𝑖 = 𝐵̃ · X̃(𝑙)
𝐵

=
(
𝐵̃𝑋̃𝐵

) (𝑙)
=

(
𝐵𝑥̃ 𝑋̃

−1
𝐵 𝑋̃𝐵

) (𝑙)
= B(𝑙)

𝑥̃
.

Thus, by definition of 𝐵𝑥̃ , the following equation

holds

∀ 𝑙 ∈ ⟦1;𝑚 + 1⟧, b(𝑙) =
𝑚∑︁
𝑖=0

(𝑥𝑙 )𝑖b𝑖 . (Φ)

(Step3.2) Likewise but with hypothesis Eq. (H (𝑙)
3

) and defini-

tion of vector f𝑥̃ (see step (Step2.3)), the following
property holds

∀ 𝑙 ∈ ⟦1; 2𝑚⟧, 𝑓 (𝑙) =
2𝑚−1∑︁
𝑖=0

(𝑥𝑙 )𝑘 𝑓𝑘 . (Ψ)

9
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(Step3.3) For all 𝑙 ∈ ⟦1;𝑚 + 1⟧, Eq. (Φ) leads to
𝑚∏
𝑖=1

c′𝑖 ⊛
(
(𝑥𝑙 )𝑚−𝑖b(𝑙)

)
=

𝑚∏
𝑖=1

c′𝑖 ⊛
©­«
𝑚∑︁
𝑗=0

(𝑥𝑙 )𝑚−𝑖+𝑗b( 𝑗)
ª®¬

=

𝑚∏
𝑖=1

𝑚∏
𝑗=0

(
c′𝑖 ⊛ b( 𝑗)

) (𝑥̃𝑙 )𝑚−𝑖+𝑗

=

2𝑚−1∏
𝑘=0

©­­­«
𝑚∏
𝑗=0

1⩽𝑚−𝑖+𝑗⩽𝑚

(
c𝑚−𝑘+𝑗 ⊛ b( 𝑗)

)ª®®®¬
(𝑥𝑙 )𝑘

We define E def

=
(
𝐸𝑘

)
2𝑚−1
𝑘=0 ∈ H2𝑚𝑝𝜂 and, for all 𝑖 ∈

⟦0; 2𝑚 − 1⟧, ỹ(𝑖) ∈ F2𝑚𝑝𝜂 the (𝑖 + 1)-th column of the

matrix 𝑋̃−1
𝐹

. Let 𝑖 ∈ ⟦0; 2𝑚 − 1⟧. We have
16

𝐸𝑖 = E ⊛
(
𝑋̃𝐹 · ỹ(𝑖)

)
because 𝑋̃𝐹 · ỹ(𝑖) = u𝑖

=

2𝑚−1∏
𝑘=0

𝐸

(
𝑋̃𝐹 ·ỹ(𝑖 )

)
𝑘

𝑘
by definition of ⊛

By definition of 𝑋̃𝐹 , for all 𝑘 ∈ ⟦0; 2𝑚 − 1⟧, we have(
𝑋̃𝐹 · ỹ(𝑖)

)
𝑘 =

2𝑚∑︁
𝑙=1

(
𝑋̃𝐹

)
𝑘,𝑙𝑦
(𝑖)
𝑙

=

2𝑚∑︁
𝑙=1

𝑥𝑘
𝑙
𝑦
(𝑖)
𝑙

.

Thus, we can compute 𝐸𝑖 as follows

𝐸𝑖 =

2𝑚−1∏
𝑘=0

2𝑚∏
𝑙=1

𝐸
𝑥̃𝑘
𝑙
𝑥̃
(𝑖 )
𝑙

𝑘
=

2𝑚∏
𝑙=1

(
2𝑚−1∏
𝑘=0

𝐸
𝑥̃𝑘
𝑙

𝑙

) 𝑦̃ (𝑖 )
𝑙

=

2𝑚∏
𝑙=1

(
EncCS (𝑝𝑘,𝑔𝑓

(𝑙 )
; 𝜏 (𝑙) ) ·

𝑚∏
𝑖=1

(
c′𝑖 ⊛

(
𝑥𝑚−𝑖
𝑙

b(𝑙)
) ))𝑥̃ (𝑖 )𝑙

by hypothesis
(
𝐸𝑞. (H (𝑙)

4
)

)
2𝑚

𝑙=1

=

2𝑚∏
𝑙=1

©­­­­­­­«

EncCS (𝑝𝑘,𝑔𝑓
(𝑙 )

; 𝜏 (𝑙) ) ·

2𝑚−1∏
𝑘=0

©­­­­«
𝑚∏
𝑗=0

1⩽𝑚−𝑘+𝑗⩽𝑚

(
c′
𝑚−𝑘+𝑗 ⊛ b( 𝑗)

)ª®®®®¬
𝑥̃𝑘
𝑙

ª®®®®®®®¬

𝑦̃
(𝑖 )
𝑙

= EncCS
©­«𝑝𝑘,𝑔

2𝑚∑
𝑙=1

𝑓 (𝑙 ) 𝑦̃ (𝑖 )
𝑙

;

2𝑚∑︁
𝑙=1

𝜏 (𝑙)𝑦 (𝑖)
𝑙

ª®¬
·
2𝑚−1∏
𝑘=0

©­­­«
𝑚∏
𝑗=0

1⩽𝑚−𝑘+𝑗⩽𝑚

(
c′
𝑚−𝑘+𝑗 ⊛ b( 𝑗)

)ª®®®¬
because CS is homomorphic

16
Let 𝑛 ∈ N∗ be a natural number. Let x ∈ H𝑛𝑝𝜂 be a ciphertexts vector of dimension

𝑛. Let 𝑖 ∈ ⟦1;𝑛⟧. By definition of ⊛, we have

x ⊛ u𝑖 =
𝑛∏
𝑗=1

𝑥
𝛿𝑗𝑖

𝑗
= 𝑥𝑖 . □

It follows

𝐸𝑖 = EncCS (𝑝𝑘,𝑔𝑓𝑖 ; 𝜏𝑖 ) ·
2𝑚−1∏
𝑘=0

©­­­«
𝑚∏
𝑗=0

1⩽𝑚−𝑘+𝑗⩽𝑚

(
c′
𝑚−𝑘+𝑗 ⊛ a( 𝑗)

)ª®®®¬
𝛿𝑘𝑖

,

because, for all 𝑘 ∈ ⟦0; 2𝑚 − 1⟧, the following prop-
erties hold

• 𝑓𝑘
def

=
(
f𝑥̃ 𝑋̃
−1
𝐹

)
𝑘 =

2𝑚∑︁
𝑙=1

𝑓 (𝑙)𝑦 (𝑘)
𝑙

;

• ∀ 𝑗 ∈ ⟦0; 2𝑚 − 1⟧,
2𝑚∑︁
𝑙=1

𝑥𝑘
𝑙
𝑦
( 𝑗)
𝑘

=
(
𝑋̃−1𝐹 ỹ( 𝑗)

)
𝑘 =

𝛿𝑘 𝑗 ;

• We define 𝑡𝑘 to be 𝜏𝑘
def

=

2𝑚∑︁
𝑙=1

𝜏 (𝑙)𝑦 (𝑘)
𝑙
∈ F𝑝𝜂 .

Consequently, we conclude the following property

∀𝑘 ∈ ⟦0; 2𝑚 − 1⟧, 𝐸𝑘 = EncCS (𝑝𝑘,𝑔𝑓𝑘 ; 𝜏𝑘 )
𝑚∏
𝑖=1

(
c′𝑖 ⊛ b𝑘−𝑚+𝑖

)
where 𝑓𝑘 =

2𝑚∑︁
𝑙=1

𝑓 (𝑙)𝑦 (𝑘)
𝑙

and 𝜏𝑘 =

2𝑚∑︁
𝑙=1

𝜏 (𝑙)𝑦 (𝑘)
𝑙

.

(Step 4) – Obtain the computation of value 𝐶
By hypothesis Eq. (H1), we have 𝑐𝐹𝑚 = ComF𝑝𝜂

(
𝑐𝑘, 0 ; 0

)
and 𝐸𝑚 = 𝐶 . As the commitment scheme KS[F𝑝𝜂 ] is
computationally binding, with overwhelming probability,

we have 𝑓𝑚 = 0. This leads to

𝐶 = 𝐸𝑚 = EncCS (𝑝𝑘,𝑔0 ; 𝑡𝑚)
𝑚∏
𝑖=1

(
c′𝑖 ⊛ b𝑖

)
.

Results obtained in steps (Step 1) to (Step 4) give us the following
result, proving that, with overwhelming probability, we have success-

fully extract a witness𝑤
def

=
(
𝐵, t, 𝜚

)
∈ Mat𝑛×𝑚 (F𝑝𝜂 ) × F𝑚𝑝𝜂 × F𝑝𝜂

such that

(
𝜎, 𝜒,𝑤

)
∈ RBGMEA.

∃𝐵 ∈ Mat𝑛×𝑚 (F𝑝𝜂 ), ∃ t ∈ F𝑚𝑝𝜂 , ∃ 𝜚 ∈ F𝑝𝜂 ,
c𝐵 = ComMat𝑛×𝑚 (F𝑝𝜂 )

(
𝑐𝑘, 𝐵 ; t

)
𝐶 = EncCS (𝑝𝑘, 1 ; 𝜚 ) ·

𝑚∏
𝑖=1

(
c′
𝑖
⊛ b𝑖

)
where B( 𝑗)

def
= b( 𝑗) , for all 𝑗 ∈ ⟦1;𝑚⟧.

10
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Proof step→

↓ Property
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p
(
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ep

1.
1
)
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p
(
St
ep

1.
3
)

s
t
e
p
(
St
ep

2.
1
)

s
t
e
p
(
St
ep

2.
3
)

Binding of
commitment

scheme
× 1 × 1

Property transfer
under adversarial

selection
Yes Yes

Extractor uses
rewinding? Yes (2𝑚 valid proof transcripts)

Table 2: Assessment of cryptographic or probabilistic
properties used to prove Knowledge Soundness of Multi-
Exponentiation Argument protocol

□

B.3 Product argument protocol
We define

RBGPA ⊆ G𝑛+1𝑝𝜂︸︷︷︸
Public parameter set

×
(
G𝑚𝑝𝜂 × F𝑝𝜂

)︸         ︷︷         ︸
Statement set

×
(
Mat𝑛×𝑚 (F𝑝𝜂 ) × F𝑚𝑝𝜂

)︸                       ︷︷                       ︸
Witness set

to be the product relation defined by

(
𝑐𝑘, (cΓ, 𝛽), (Γ, v)

)
∈ RBGPA

def⇐⇒


cΓ = ComMat𝑛×𝑚 (F𝑝𝜂 )

(
𝑐𝑘, Γ ; v

)
𝑛∏
𝑖=1

𝑚∏
𝑗=1

Γ𝑖, 𝑗 = 𝛽

Hence, we define a 7-move product argument protocol to be the

protocol defined as follows in Protocol 5.

Theorem B.3 (Knowledge soundness of ZK(3) [RBGPA ]). The
7-move zero-knowledge protocol ZK(3) [RBGPA ] is knowledge sound.

Proof. We define the extractor EPA for the Bayer-Groth product

argument to be the algorithm defined as follows in Extractor 6.
Let 𝑛,𝑚 ∈ N∗ be two natural numbers. Let 𝜂 ∈ N∗ be a security

parameter. Let P∗ be a polynomial-time and deterministic adver-

sarial prover. Let 𝑐𝑘 ← IPA (𝜂) be an honest public parameter for

the product argument relation RBGPA . Let A be a probabilistic and

polynomial-time adversary. Let 𝜒 ← A(𝜂, 𝑐𝑘) be an adversarial

statement where

𝜒
def

=
(
cΓ, 𝛽

)
∈ G𝑚𝑝𝜂 × F𝑝𝜂 .

Then, the adversary A calls the extractor EPA on inputs 𝑐𝑘 and 𝜒

with access to P∗ andVPA and obtains

𝜏PA
def

=

(
𝑐𝛽 ,

(
Γ, v,
−→
𝛽 (1) , 𝜉𝛿

)︸            ︷︷            ︸
Witness of the Hadamard

Product Argument

,
(−→
𝛽 (2) , 𝜉2

)︸      ︷︷      ︸
Witness of the Single

Value Product Argument

)
.

(Step 1) By the knowledge soundness of the Hadamard product

argument protocol (see Theorem B.5), we have, with over-

whelming probability in 𝜂, the following equations

cΓ = ComMat𝑛×𝑚 (F𝑝𝜂 )
(
𝑐𝑘, Γ ; v

)
(H (1)HPA)

𝑐𝛽 = ComF𝑛𝑝𝜂
(
𝑐𝑘,
−→
𝛽 (1) ; 𝜉𝛿

)
(H (2)HPA)

−→
𝛽 (1) =

𝑚⊙
𝑗=1

Γ( 𝑗) (H (3)HPA)

(Step 2) Besides, by the knowledge soundness of the Single value
product argument protocol (see Theorem B.4), we have,

with overwhelming probability in 𝜂, the following equa-

tions

𝑐𝛽 = ComF𝑛𝑝𝜂
(
𝑐𝑘,
−→
𝛽 (2) ; 𝜉2

)
(H (1)SVPA)

𝛽 =

𝑛∏
𝑖=1

𝛽
(2)
𝑖

(H (2)SVPA)

(Step 3) By equations Eq. (H (2)HPA) and Eq. (H (1)SVPA), we have

𝑐𝛽 = ComF𝑛𝑝𝜂
(
𝑐𝑘,
−→
𝛽 (1) ; 𝜉𝛿

)
= ComF𝑛𝑝𝜂

(
𝑐𝑘,
−→
𝛽 (2) ; 𝜉2

)
.

Thus, because the commitment scheme KS[F𝑛𝑝𝜂 ] is com-
putationally binding, we conclude with overwhelming

probability in 𝜂 that

−→
𝛽 (1) =

−→
𝛽 (2) . We denote this com-

mon value

−→
𝛽 ∈ F𝑛𝑝𝜂 .

Results obtained in steps (Step 1) to (Step 3) give us the follow-
ing result

17
, proving that, with overwhelming probability, we have

successfully extract a witness 𝑤
def

=
(
Γ, v

)
∈ Mat𝑛×𝑚 (F𝑝𝜂 ) × F𝑚𝑝𝜂

such that

(
𝜎, 𝜒,𝑤

)
∈ RBGPA .

∃ Γ ∈ Mat𝑛×𝑚 (F𝑝𝜂 ), ∃ v ∈ F𝑚𝑝𝜂 ,
cΓ = ComMat𝑛×𝑚 (F𝑝𝜂 )

(
𝑐𝑘, Γ ; v

)
𝛽 =

𝑛∏
𝑖=1

𝑚∏
𝑗=1

Γ𝑖, 𝑗

17
More precisely, on one hand we have

𝛽 =

𝑛∏
𝑖=1

𝛽𝑖 by step (Step 3) and Eq. (H (2)SVPA)

=

𝑛∏
𝑖=1

(
𝑚⊙
𝑗=1

Γ( 𝑗 )
)
𝑖

by step (Step 3) and Eq. (H (3)HPA)

=

𝑛∏
𝑖=1

𝑚∏
𝑗=1

Γ𝑖,𝑗 . by definition of operator ⊙

And on another hand, 𝐸𝑞. (H (1)HPA) gives us

cΓ = ComMat𝑛×𝑚 (F𝑝𝜂 )
(
𝑐𝑘, Γ ; v

)
.

11
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Protocol 5: 7-move zero-knowledge protocol ZK(3) [RBGPA ] for the Bayer-Groth product argument

Public Input :Two natural numbers 𝑛,𝑚 ∈ N∗. A security parameter 𝜂 ∈ N∗. A commitment key 𝑐𝑘 = (𝑔, g) ∈ G𝑛+1𝑝𝜂
for the

commitment scheme KS[Mat𝑛×𝑚 (F𝑝𝜂 )]. A commit value cΓ ∈ G𝑚𝑝𝜂 , and a value 𝛽 ∈ F𝑝𝜂 .

Private Input :A matrix 𝐴 ∈ Mat𝑛×𝑚 (F𝑝𝜂 ), and a vector of random values v
$← F𝑚𝑝𝜂 such that cΓ = ComMat𝑛×𝑚 (F𝑝𝜂 )

(
𝑐𝑘, Γ ; v

)
and

𝑛∏
𝑖=1

𝑚∏
𝑗=1

Γ𝑖, 𝑗 = 𝛽 .

Begin protocol

(1) (Commit message) The prover PPA chooses uniformly at random a value 𝜉
$← F𝑝𝜂 and computes the commit value

𝑐𝑏 ← ComF𝑛𝑝𝜂

(
𝑐𝑘,

(
𝑚∏
𝑗=1

Γ𝑖, 𝑗

)𝑛
𝑖=1

; 𝜉

)
∈ G𝑝𝜂 . Then, PPA sends this commit value 𝑐𝛽 to the verifierVPA.

(1-5) (Hadamard product argument call) Both prover PPA and verifierVPA engage in the 5-move zero-knowledge protocol

ZK(2) [RBGHPA] for the relation R
BG
HPA with public parameter 𝜎HPA

def

= 𝑐𝑘 , public statement 𝜒HPA
def

=
(
cΓ, 𝑐𝛽

)
, and private statement

𝑤HPA
def

=

(
Γ, v

𝑚⊙
𝑗=1

Γ( 𝑗) , 𝜉

)
. We denote by 𝜏HPA the proof transcript obtained at the end of this 5-move protocol.

(5-7) (Single value product argument call) Both prover PPA and verifierVPA engage in the Σ-protocol Σ
[
RBGSVPA

]
for the relation

RBGSVPA with public parameter 𝜎SVPA
def

= 𝑐𝑘 , public statement 𝜒SVPA
def

= (𝑐𝛽 , 𝛽), and private statement𝑤SVPA
def

=

(
𝑚⊙
𝑗=1

Γ( 𝑗) , 𝜉

)
. We

denote by 𝜏SVPA the proof transcript obtained at the end of this Σ-protocol.

(8) (Conclusion’s bit) The verifierVPA accepts if and only if the following property holds

(
𝑣
𝜎HPA, 𝜒HPA
HPA

(
𝜏HPA

)
∧ 𝑣𝜎SVPA, 𝜒SVPASVPA

(
𝜏SVPA

) )
.

Extractor 6: Extractor EPA for the 7-move zero-knowledge protocol ZK(3) [RBGPA ] of the Bayer-Groth product argument

Input :A security parameter 𝜂 ∈ N∗. Two natural numbers 𝑛,𝑚 ∈ N∗. A public parameter 𝜎
def

= 𝑐𝑘 ∈ G𝑛+1𝑝𝜂
for the

Bayer-Groth product relation RBGPA . A statement 𝜒
def

=
(
cΓ, 𝛽

)
∈ G𝑚𝑝𝜂 × F𝑝𝜂 .

Blackbox access to :A deterministic adversarial prover P∗ and an honest verifierVPA.

1 Begin extractor
2 calls P∗ to get 𝑐𝛽 ∈ G𝑝𝜂 ;

3
calls EHPA with oracles P∗ and VPA on inputs

(
𝜎, (cΓ, 𝑐𝛽 )

)
to get

(
Γ, v,
−→
𝛽 (1) , 𝜉𝛿

)
∈

(
Mat𝑛×𝑚 (F𝑝𝜂 ) × F𝑚𝑝𝜂 × F

𝑛
𝑝𝜂
× F𝑝𝜂

)
;

4 calls ESVPA with oracles P∗ and V𝑃𝐴 on inputs
(
𝜎, (𝑐𝛽 , 𝛽)

)
to get

(−→
𝛽 (2) , 𝜉2

)
∈

(
F𝑛𝑝𝜂 × F𝑝𝜂

)
;

5 returns 𝜏PA
def
=

(
𝑐𝛽 ,

(
Γ, v,
−→
𝛽 (1) , 𝜉𝛿

)
,

(−→
𝛽 (2) , 𝜉2

))
.

Proof step→

↓ Property

s
t
e
p
(S
te
p
1)

s
t
e
p
(S
te
p
2)

s
t
e
p
(S
te
p
3)

Knowledge
Soundness

1 ×
EHPA

1 ×
ESVPA

Binding of
commitment

scheme
× 1

Extractor uses
rewinding? No

Table 3: Assessment of cryptographic or probabilistic proper-
ties used to proveKnowledge Soundness of Product Argument
protocol

□

B.4 Single value product argument protocol
We define

RBGSVPA ⊆ G𝑛+1𝑝𝜂︸︷︷︸
Public parameter set

×
(
G𝑝𝜂 × F𝑝𝜂

)︸         ︷︷         ︸
Statement set

×
(
F𝑛𝑝𝜂 × F𝑝𝜂

)︸        ︷︷        ︸
Witness set
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Protocol 7: Σ-protocol Σ
[
RBGSVPA

]
for the Bayer-Groth single value product argument

Public Input :A natural number 𝑛 ∈ N∗. A security parameter 𝜂 ∈ N∗. A commitment key 𝑐𝑘 = (𝑔, g) ∈ G𝑛+1𝑝𝜂
for the commitment

scheme KS[F𝑛𝑝𝜂 ]. A commit value 𝑐𝛽 ∈ G𝑝𝜂 and a value 𝛽 ∈ F𝑝𝜂 .

Private Input :A vector

−→
𝛽 ∈ F𝑛𝑝𝜂 and a random value 𝜉

$← F𝑝𝜂 such that 𝑐𝛽 = ComF𝑛𝑝𝜂
(
𝑐𝑘,
−→
𝛽 ; 𝜉

)
, and 𝛽 =

𝑛∏
𝑖=1

𝛽𝑖 .

Begin protocol

(1) (Commit message) The prover PSVPA computes, for all 𝑗 ∈ ⟦1;𝑛⟧, ˜𝛽 ( 𝑗) ←
𝑗∏

𝑖=1
𝛽𝑖 ∈ F𝑛𝑝𝜂 . Then, he chooses uniformly at random

values Δ1, . . . ,Δ𝑛
$← F𝑝𝜂 , 𝛿2, . . . , 𝛿𝑛−1

$← F𝑝𝜂 , and 𝜉𝛿 , 𝜉Λ, 𝜉Δ
$← F𝑝𝜂 . Next, PSVPA sets 𝛿1 ← Δ1 ∈ F𝑝𝜂 and 𝛿𝑛 ← 0 ∈ F𝑝𝜂 then

computes

𝑐Δ ← ComF𝑛𝑝𝜂
(
𝑐𝑘,∆ ; 𝜉Δ

)
∈ G𝑝𝜂 , 𝑐𝛿 ← ComF𝑛−1𝑝𝜂

(
𝑐𝑘,

(
−𝛿𝑖Δ𝑖+1

)𝑛−1
𝑖=1 ; 𝜉𝛿

)
∈ G𝑝𝜂 , and

𝑐Λ ← ComF𝑛−1𝑝𝜂

(
𝑐𝑘,

(
𝛿𝑖 − 𝛽𝑖𝛿𝑖−1 − ˜𝛽𝑖−1Δ𝑖

)𝑛
𝑖=2

; 𝜉Λ

)
∈ G𝑝𝜂

Finally, PSVPA sends toVSVPA values

(
𝑐Δ, 𝑐𝛿 , 𝑐Λ

)
.

(2) (Challenge message) The verifierVSVPA chooses uniformly at random a challenge 𝑥
$← F∗𝑝𝜂 and sends it to PSVPA.

(3) (Response message) The prover PSVPA computes values
ˆ𝜉 ← 𝑥𝜉 + 𝜉Δ ∈ F𝑝𝜂 , ˆ𝜁 ← 𝑥𝜉Λ + 𝜉𝛿 ∈ F𝑝𝜂 , and, for all 𝑖 ∈ ⟦1;𝑛⟧,

ˆ𝛽𝑖 ← 𝑥𝛽𝑖 + Δ𝑖 ∈ F𝑝𝜂 and
ˆ𝛿𝑖 ← 𝑥 ˜𝛽𝑖 + 𝛿𝑖 ∈ F𝑝𝜂 . Then, PSVPA sends values

( (
ˆ𝛽𝑖
)𝑛
𝑖=1,

(
ˆ𝛿𝑖
)𝑛
𝑖=1,

ˆ𝜉, ˆ𝜁

)
toVSVPA.

(4) (Conclusion’s bit) The verifierVSVPA accepts if and only if the following equations hold

𝑐𝑥
𝛽
𝑐Δ = ComF𝑛𝑝𝜂

(
𝑐𝑘,

(
ˆ𝛽𝑖
)𝑛
𝑖=1,

ˆ𝜉

)
, 𝑐𝑥Λ𝑐𝛿 = ComF𝑛−1𝑝𝜂

(
𝑐𝑘,

(
𝑥 ˆ𝛿𝑖− ˆ𝛿𝑖−1 ˆ𝛽𝑖

)𝑛
𝑖=2

, ˆ𝜁

)
, ˆ𝛿1 = ˆ𝛽1, and

ˆ𝛿𝑛 = 𝑥𝛽.

Extractor 8: Extractor ESVPA for the Σ-protocol Σ
[
RBGSVPA

]
of the Bayer-Groth single value product argument

Input :A security parameter 𝜂 ∈ N∗. A natural number 𝑛 ∈ N∗. A public parameter 𝜎
def

= 𝑐𝑘 ∈ G𝑛+1𝑝𝜂
for the

Bayer-Groth single value product relation RBGSVPA. A statement 𝜒
def

= (𝑐𝛽 , 𝛽) ∈ G𝑝𝜂 × F𝑝𝜂 .
Blackbox access to :A deterministic adversarial prover P∗ and an honest verifierVSVPA.

1 Begin extractor

2 calls P∗ to get 𝛼 def

=
(
𝑐Δ, 𝑐𝛿 , 𝑐Λ

)
∈

(
G𝑝𝜂 × G𝑝𝜂 × G𝑝𝜂

)
; // State at this point: st1

def

=

[
𝑐𝑘 ; (𝑐𝛽 , 𝛽) ;

(
𝑐Δ, 𝑐𝛿 , 𝑐Λ

) ]
.

3 rewinds P∗ and VSVPA at state st1 and begins with 𝑙 ← 1 ∈ N
4 calls VSVPA to get 𝑥𝑙

$← F∗𝑝𝜂 ;

5 calls P∗ to get 𝔷RBG
SVPA, P∗

(
𝛼, 𝑥𝑙

)
∈

(
F𝑛𝑝𝜂 × F

𝑛
𝑝𝜂
× F𝑝𝜂 × F𝑝𝜂

)
;

6 if 𝑣𝑐𝑘, 𝜒RBG
SVPA

(
𝔱𝔯
𝑐𝑘, 𝜒
𝛼, 𝔷RBGSVPA, P

∗ (𝑥𝑙 )
)
and

𝑙−1∧
𝑖=1

(𝑥𝑖 ≠ 𝑥𝑙 ) then 𝑙 ← 𝑙 + 1 ;

7 until 𝑙 > 2 ;

8 returns 𝜏SVPA
def
=

(
𝔱𝔯
𝑐𝑘, 𝜒
𝛼, 𝔷RBGSVPA, P

∗ (𝑥1), 𝔱𝔯
𝑐𝑘, 𝜒
𝛼, 𝔷RBGSVPA, P

∗ (𝑥2)
)
.

to be the single value product relation defined by

(
𝑐𝑘, (𝑐𝛽 , 𝛽), (

−→
𝛽 , 𝜉)

)
∈ RBGSVPA

def⇐⇒


𝑐𝛽 = ComF𝑛𝑝𝜂

(
𝑐𝑘,
−→
𝛽 ; 𝜉

)
𝛽 =

𝑛∏
𝑖=1

𝛽𝑖

Hence, we define a Σ-protocol for the relation of single value

product Σ
[
RBGSVPA

]
to be the protocol defined as follows inProtocol 7.

Theorem B.4 (Knowledge soundness of Σ
[
RBGSVPA

]
). The Σ-

protocol Σ
[
RBGSVPA

]
for the single value product relation RBGSVPA is

knowledge sound.
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Proof. We define the extractor ESVPA for the Bayer-Groth sin-

gle value product argument to be the algorithm defined as follows

in Extractor 8.
Let 𝑛 ∈ N∗ be a natural number. Let 𝜂 ∈ N∗ be a security pa-

rameter. Let P∗ be a polynomial-time and deterministic adversarial

prover. Let 𝜎 = 𝑐𝑘 ← ISVPA (𝜂) be an honest public parameter for

the single value product relation RBGSVPA. LetA be a probabilistic and

polynomial-time adversary. Let 𝜒 ← A(𝜂, 𝑐𝑘) be an adversarial

statement where

𝜒
def

=
(
𝑐𝛽 , 𝛽

)
∈ G𝑝𝜂 × F𝑝𝜂 .

Next, the adversary A calls the extractor ESVPA on inputs 𝑐𝑘 and

𝜒 with access to P∗ and VSVPA and obtains a pair of valid proof

transcripts 𝜏SVPA where

𝜏SVPA
def

=

(
𝔱𝔯
𝑐𝑘, 𝜒
𝛼, 𝔷RBGSVPA, P

∗ (𝑥1), 𝔱𝔯
𝑐𝑘, 𝜒
𝛼, 𝔷RBGSVPA, P

∗ (𝑥2)
)
.

We denote by

• 𝛼
def

=
(
𝑐Δ, 𝑐𝛿 , 𝑐Λ

)
∈ G𝑝𝜂 × G𝑝𝜂 × G𝑝𝜂 the first message ; and

• for 𝑙 ∈ {1, 2}, the response message on challenge 𝑥𝑙 is

𝔷RBG
SVPA, P∗

(
𝛼, 𝑥𝑙

) def

=

( (
ˆ𝛽
(𝑙)
𝑖

)𝑛
𝑖=1,

(
ˆ𝛿
(𝑙)
𝑖

)𝑛
𝑖=1,

ˆ𝜉 (𝑙) , ˆ𝜁 (𝑙)
)

∈
(
F𝑛𝑝𝜂 × F

𝑛
𝑝𝜂
× F𝑝𝜂 × F𝑝𝜂

)
.

By definition of the Bayer-Groth single value product argument

protocol, as the proof transcripts in 𝜏SVPA are valid, for 𝑙 ∈ {1, 2},
we have

𝑐
𝑥𝑙
𝛽
𝑐Δ = ComF𝑛𝑝𝜂

(
𝑐𝑘,

(
ˆ𝛽
(𝑙)
𝑖

)𝑛
𝑖=1

;
ˆ𝜉 (𝑙)

)
(H (𝑙)

1
)

𝑐
𝑥𝑙
Λ 𝑐𝛿 = ComF𝑛−1𝑝𝜂

(
𝑐𝑘,

(
𝑥𝑙

ˆ𝛿
(𝑙)
𝑖
− ˆ𝛿
(𝑙)
𝑖−1

ˆ𝛽
(𝑙)
𝑖

)𝑛
𝑖=2

;
ˆ𝜁 (𝑙)

)
(H (𝑙)

2
)

ˆ𝛿
(𝑙)
1

= ˆ𝛽
(𝑙)
1

and
ˆ𝛿
(𝑙)
𝑛 = 𝑥𝑙 𝛽 (H (𝑙)

3
)

(Step 1) – Get an opening of commit value 𝑐𝛽 .

(Step1.1) Hypothesis Eq. (H (𝑙)
1

) and homomorphism ofComF𝑛𝑝𝜂
lead to

𝑐
𝑥1−𝑥2
𝛽

= ComF𝑛𝑝𝜂

(
𝑐𝑘,

(
ˆ𝛽
(1)
𝑖
− ˆ𝛽
(2)
𝑖

)𝑛
𝑖=1

;
ˆ𝜉 (1) − ˆ𝜉 (2)

)
.

Because 𝑥1 ≠ 𝑥2, we have

𝑐𝛽 =

(
ComF𝑛𝑝𝜂

(
𝑐𝑘,

(
ˆ𝛽
(1)
𝑖
− ˆ𝛽
(2)
𝑖

)𝑛
𝑖=1

;
ˆ𝜉 (1) − ˆ𝜉 (2)

)) 1

𝑥̂
1
−𝑥̂

2

= ComF𝑛𝑝𝜂

(
𝑐𝑘,

1

𝑥1 − 𝑥2

(
ˆ𝛽
(1)
𝑖
− ˆ𝛽
(2)
𝑖

)𝑛
𝑖=1

;

1

𝑥1 − 𝑥2

(
ˆ𝜉 (1) − ˆ𝜉 (2)

))
.

(Step1.2) Therefore, the pair

(
(𝛽𝑖 )𝑛𝑖=1, 𝑟

)
∈ F𝑛𝑝𝜂 × F𝑝𝜂 is an

opening of 𝑐𝛽 with

∀ 𝑖 ∈ ⟦1;𝑛⟧, 𝛽𝑖
def

=
1

𝑥1 − 𝑥2

(
ˆ𝛽
(1)
𝑖
− ˆ𝛽
(2)
𝑖

)
and 𝜉

def

=
1

𝑥1, 𝑥2

(
ˆ𝜉 (1) − ˆ𝜉 (2)

)
,

which is independent of challenges 𝑥1 and 𝑥2 because
the commitment scheme KS[F𝑛𝑝𝜂 ] is computationally
binding.

(Step 2) – Get an opening of commit value 𝑐Δ.
(Step2.1) We have,

• 𝑐Δ = 𝑐
−𝑥1
𝛽

ComF𝑛𝑝𝜂

(
𝑐𝑘,

(
ˆ𝛽
(1)
𝑖

)𝑛
𝑖=1

;
ˆ𝜉 (1)

)
by hypoth-

esis Eq. (H (𝑙)
1

) applied to 𝑙 = 1 ; and

• by step (Step 1), 𝑐𝛽 = ComF𝑛𝑝𝜂
(
𝑐𝑘, (𝛽𝑖 )𝑛𝑖=1 ; 𝜉

)
.

This leads to

𝑐Δ =

(
ComF𝑛𝑝𝜂

(
𝑐𝑘, (𝛽𝑖 )𝑛𝑖=1 ; 𝜉

) )−𝑥1
· ComF𝑛𝑝𝜂

(
𝑐𝑘,

(
ˆ𝛽
(1)
𝑖

)𝑛
𝑖=1

;
ˆ𝜉 (1)

)
= ComF𝑛𝑝𝜂

(
𝑐𝑘,

(
ˆ𝛽
(1)
𝑖
− 𝑥1𝛽𝑖

)𝑛
𝑖=1

, ˆ𝜉 (1) − 𝑥1𝜉
)
.

(Step2.2) Therefore, the pair

(
(Δ𝑖 )𝑛𝑖=1, 𝜉Δ

)
∈ F𝑛𝑝𝜂 × F𝑝𝜂 is an

opening of 𝑐Δ with

∀ 𝑖 ∈ ⟦1;𝑛⟧, Δ𝑖
def

= ˆ𝛽
(1)
𝑖
− 𝑥1𝛽𝑖 and 𝜉Δ

def

= ˆ𝜉 (1) − 𝑥1𝜉,

which is independent of challenge 𝑥1 because the com-

mitment scheme KS[F𝑛𝑝𝜂 ] is computationally binding.
(Step 3) – Get an opening of commit value 𝑐Λ.

(Step3.1) By hypothesis Eq. (H (𝑙)
2

) and because 𝑥1 ≠ 𝑥2, we

have

𝑐Λ = ComF𝑛−1𝑝𝜂

(
𝑐𝑘,

1

𝑥1 − 𝑥2

(
𝑥1 ˆ𝛿
(1)
𝑖
− ˆ𝛿 (1)

𝑖−1
ˆ𝛽
(1)
𝑖
−𝑥2 ˆ𝛿 (2)𝑖

+ ˆ𝛿 (2)
𝑖−1

ˆ𝛽
(2)
𝑖

)𝑛
𝑖=2

;

1

𝑥1 − 𝑥2

(
ˆ𝜁 (1) − ˆ𝜁 (2)

))
.

(Step3.2) Thus,

(
(𝜆𝑖 )𝑛𝑖=2, 𝜉Λ

)
∈ F𝑛−1𝑝𝜂

× F𝑝𝜂 is an opening – in-
dependent of challenges 𝑥1 and 𝑥2 by the binding
property for the commiment scheme KS[F𝑛−1𝑝𝜂

] – of

𝑐Λ with

∀ 𝑖 ∈ ⟦2;𝑛⟧, 𝜆𝑖
def

=
1

𝑥1 − 𝑥2

(
𝑥1 ˆ𝛿
(1)
𝑖
− ˆ𝛿
(1)
𝑖−1

ˆ𝛽
(1)
𝑖
− 𝑥2 ˆ𝛿 (2)𝑖

+ ˆ𝛿
(2)
𝑖−1

ˆ𝛽
(2)
𝑖

)
and 𝜉Λ

def

=
1

𝑥1 − 𝑥2

(
ˆ𝜁 (1) − ˆ𝜁 (2)

)
.

(Step 4) – Get an opening of commit value 𝑐𝛿 .
(Step4.1) We have,

• 𝑐𝛿 = 𝑐
−𝑥1
Λ ComF𝑛𝑝𝜂

(
𝑐𝑘,

(
𝑥1 ˆ𝛿
(1)
𝑖
− ˆ𝛿 (1)

𝑖−1
ˆ𝛽
(1)
𝑖

)𝑛
𝑖=2

;
ˆ𝜁 (1)

)
by hypothesis Eq. (H (𝑙)

2
) applied to 𝑙 = 1 ; and

• by step (Step 3), 𝑐Λ = ComF𝑛𝑝𝜂
(
𝑐𝑘, (𝜆𝑖 )𝑛𝑖=2 ; 𝜉Λ

)
.

This leads to

𝑐𝛿 = ComF𝑛−1𝑝𝜂

(
𝑐𝑘,

(
𝑥1 ˆ𝛿
(1)
𝑖
− ˆ𝛿
(1)
𝑖−1

ˆ𝛽
(1)
𝑖
− 𝑥1𝜆𝑖

)𝑛
𝑖=2

;
ˆ𝜁 (1) − 𝑥1𝜉Λ

)
.

(Step4.2) Thus,

(
(𝛾𝑖 )𝑛𝑖=2, 𝜉𝛿

)
∈ F𝑛−1𝑝𝜂

× F𝑝𝜂 is an opening – in-
dependent of challenge 𝑥1 by the binding property for

the commitment scheme KS[F𝑛−1𝑝𝜂
] – of 𝑐𝛿 with

∀ 𝑖 ∈ ⟦2;𝑛⟧, 𝛾𝑖
def

= 𝑥1 ˆ𝛿
(1)
𝑖
− ˆ𝛿
(1)
𝑖−1

ˆ𝛽
(1)
𝑖
− 𝑥1𝜆𝑖

and 𝜉𝛿
def

= ˆ𝜁 (1) − 𝑥1𝜉Λ .
14
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(Step 5) – It remains to verify equation 𝛽 =
𝑛∏
𝑖=1

𝛽𝑖 .

(Step5.1) By step (Step 4) and because sequences (𝜆𝑖 )𝑛𝑖=2 and
(𝛾𝑖 )𝑛𝑖=2 are independent of challenge 𝑥1, we have:

∀ 𝑖 ∈ ⟦2;𝑛⟧, 𝑥1 ˆ𝛿 (1)𝑖
= ˆ𝛿
(1)
𝑖−1

ˆ𝛽
(1)
𝑖
+ 𝑝 (𝑖)

1
(𝑥1) (∗)

where 𝑝
(𝑖)
1

is a polynomial of degree 1 in variable

𝑥1
18
.

(Step5.2) Now, let us prove the following property P( 𝑗) for
𝑗 ∈ ⟦1;𝑛⟧ by induction:

𝑥
𝑗−1
1

ˆ𝛿
(1)
𝑗

=

𝑗∏
𝑖=1

ˆ𝛽
(1)
𝑖
+ 𝑝 ( 𝑗)

𝑗−1 (𝑥1) where 𝑝
( 𝑗)
𝑗−1 is a polynomial of

degree at most 𝑗 − 1 in variable 𝑥1 . (P( 𝑗))

• Initialisation ( 𝑗 = 1): By hypothesis Eq. (H (𝑙)
3

),

we have
ˆ𝛿
(1)
1

= ˆ𝛽
(1)
1

. Thus, we have 𝑥1−1
1

ˆ𝛿1 =∏
1

𝑖=1
ˆ𝛽𝑖 +0 with 𝑝 (1)

0

def

= 0 a polynomial of degree

at most 0. Consequently, P(1) holds.
• Heredity (let 𝑗 ∈ ⟦2;𝑛⟧):We suppose P( 𝑗 − 1).

By Eq. (∗), we have 𝑥1 ˆ𝛿 (1)𝑗
= ˆ𝛿
(1)
𝑗−1

ˆ𝛽
(1)
𝑗
+ 𝑝 ( 𝑗)

1
(𝑥1)

with 𝑝
( 𝑗)
1

of degree at most 1. Thus, we have

𝑥
𝑗−1
1

ˆ𝛿
(1)
𝑗

= 𝑥
𝑗−2
1

ˆ𝛿
(1)
𝑗−1

ˆ𝛽
(1)
𝑗
+ 𝑥 𝑗−2

1
𝑝
( 𝑗)
1
(𝑥1)

=

(
𝑗−1∏
𝑖=1

ˆ𝛽
(1)
𝑖

)
· ˆ𝛽 (1)

𝑗
+ ˆ𝛽
(1)
𝑗

𝑝
( 𝑗−1)
𝑗−2 (𝑥1) + 𝑥

𝑗−2
1

𝑝
( 𝑗)
1
(𝑥)

because P( 𝑗 − 1) holds

=

𝑗∏
𝑖=1

ˆ𝛽
(1)
𝑖
+

( deg ⩽ 𝑗−2︷            ︸︸            ︷
ˆ𝛽
(1)
𝑗

𝑝
( 𝑗−1)
𝑗−2 (𝑥1) +

deg ⩽ 𝑗−1︷          ︸︸          ︷
𝑥
𝑗−2
1

𝑝
( 𝑗)
1
(𝑥1)︸                                  ︷︷                                  ︸

deg ⩽ max

(
𝑗−2, 𝑗−1

)
= 𝑗−1

)
.

Consequently, we have

𝑥
𝑗−1
1

ˆ𝛿
(1)
𝑗

=

𝑗∏
𝑖=1

ˆ𝛽
(1)
𝑖
+ 𝑝 ( 𝑗)

𝑗−1 (𝑥1)

where 𝑝
( 𝑗)
𝑗−1 is a polynomial of degree at most 𝑗−1

in 𝑥1.

Thus, by induction, for all 𝑗 ∈ ⟦1;𝑛⟧, the property
P( 𝑗) holds. In particular, because 𝑥1𝛽 = ˆ𝛿

(1)
𝑛 (hy-

pothesis Eq. (H (𝑙)
3

)), for 𝑗 = 𝑛, we have

𝑥𝑛
1
𝛽 = 𝑥𝑛−1

1

ˆ𝛿
(1)
𝑛 =

𝑛∏
𝑖=1

ˆ𝛽𝑖 + 𝑝
(𝑛)
𝑛−1 (𝑥1)︸    ︷︷    ︸

of degree ⩽ 𝑛−1

. (𝑖)

(Step5.3) On another hand, by the opening of 𝑐Δ (see step (Step 2)),
we have

∀ 𝑖 ∈ ⟦1;𝑛⟧, Δ𝑖 = ˆ𝛽
(1)
𝑖
− 𝑥1𝛽𝑖 , (𝑖𝑖)

18
More precisely, polynomial 𝑝

(𝑖 )
1

is defined as follows:

∀ 𝑖 ∈ ⟦2;𝑛⟧, 𝑝 (𝑖 )
1
(𝑋 ) def= 𝛾𝑖 + 𝜆𝑖𝑋,

where 𝛾𝑖 and 𝜆𝑖 are some constant values regarding 𝑋 .

where sequences (Δ𝑖 )𝑛𝑖=1 and
(
ˆ𝛽
(1)
𝑖

)𝑛
𝑖=1

are indepen-

dent of challenge 𝑥1.

Thus, by Eq. (𝑖) and Eq. (𝑖𝑖), previous property leads

to

𝑥𝑛
1
𝛽 =

𝑛∏
𝑖=1

(
𝑥1𝛽𝑖 + Δ𝑖

)
+ 𝑝 (𝑛)

𝑛−1 (𝑥1).

Besides, there exists a polynomial Θ ∈ F𝑝𝜂 [𝑋 ] such
that

𝑛∏
𝑖=1

(
𝑥1𝛽𝑖 + Δ𝑖

)
= 𝑥𝑛

1

𝑛∏
𝑖=1

𝛽𝑖 + Θ(𝑥1)

and Θ is of degree at most 𝑛 − 1 by construction.

(Step5.4) Consequently, the two results obtained in step (Step5.3)
lead to(
𝑛∏
𝑖=1

𝛽𝑖 − 𝛽
)
𝑥𝑛
1
+ 𝑝

(𝑛)
𝑛−1 (𝑥1) + Θ(𝑥1)︸                ︷︷                ︸

of degree at most 𝑛 − 1

= 0.

By the Schwartz-Zippel lemma, we conclude with

overwhelming probability the following result

𝛽 =

𝑛∏
𝑖=1

𝛽𝑖 .

Results obtained in steps (Step 1) to (Step 5), give us the follow-
ing result, proving that, with overwhelming probability, we have

successfully extract a witness 𝑤
def

=
(−→
𝛽 , 𝜉

)
∈ F𝑛𝑝𝜂 × F𝑝𝜂 such that(

𝜎, 𝜒,𝑤
)
∈ RBGSVPA.

∃−→𝛽 ∈ F𝑛𝑝𝜂 , ∃ 𝜉 ∈ F𝑝𝜂 ,
𝑐𝛽 = ComF𝑛𝑝𝜂

(
𝑐𝑘,
−→
𝛽 ; 𝜉

)
𝛽 =

𝑛∏
𝑖=1

𝛽𝑖

Proof step→

↓ Property

s
t
e
p
(S
te
p
1)

s
t
e
p
(S
te
p
2)

s
t
e
p
(S
te
p
3)

s
t
e
p
(S
te
p
4)

s
t
e
p
(
St
ep

5.
4
)

Binding of
commitment

scheme
× 1 × 1 × 1 × 1

Schwartz-Zippel × 1

Extractor uses
rewinding? Yes (2 witnesses)

Table 4: Assessment of cryptographic or probabilistic prop-
erties used to prove Knowledge Soundness of Single Value
Product Argument protocol

Comment [MC2]: Verify if we need property transfer under adver-

sarial selection here

□
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B.5 Hadamard product argument protocol
We define

RBGHPA ⊆ G𝑛+1𝑝𝜂︸︷︷︸
Public parameter set

×
(
G𝑚𝑝𝜂 × G𝑝𝜂

)︸          ︷︷          ︸
Statement set

×
(
Mat𝑛×𝑚 (F𝑝𝜂 ) × F𝑚𝑝𝜂 × F

𝑛
𝑝𝜂
× F𝑝𝜂

)︸                                         ︷︷                                         ︸
Witness set

to be the Hadamard product relation defined by(
𝑐𝑘,

(
cΓ, 𝑐𝛽

)
,

((
Γ( 𝑗)

)𝑚
𝑗=1

, v,
−→
𝛽 , 𝜉

))
∈ RBGHPA

def⇐⇒



cΓ = ComMat𝑛×𝑚 (F𝑝𝜂 )

(
𝑐𝑘,

(
Γ( 𝑗)

)𝑚
𝑗=1

; v
)

𝑐𝛽 = ComF𝑛𝑝𝜂
(
𝑐𝑘,
−→
𝛽 ; 𝜉

)
−→
𝛽 =

𝑚⊙
𝑗=1

Γ( 𝑗)

Hence, we define a 5-move zero-knowledge protocol for the

Hadamard product argument ZK(2) [RBGHPA] to be the protocol de-

fined as follows in Protocol 9.

Theorem B.5 (Knowledge soundness of ZK(2) [RBGHPA]). The
5-move zero-knowledge protocol ZK(2) [RBGHPA] for the Hadamard
product relation RBGHPA is knowledge sound.

Proof. We define the extractorEHPA for the Bayer-GrothHadamard

product argument to be the algorithm defined as follows inExtractor 1019.
Let 𝑛,𝑚 ∈ N∗ be two natural numbers. Let 𝜂 ∈ N∗ be a security

parameter. Let P∗ be a polynomial-time and deterministic adversar-

ial prover. Let 𝜎 = 𝑐𝑘 ← IHPA (𝜂) be an honest public parameter for

the Hadamard product relation RBGHPA. Let A be a probabilistic and

polynomial-time adversary. Let 𝜒 ← A(𝜂, 𝑐𝑘) be an adversarial

statement where

𝜒
def

=
(
𝑐Γ, 𝑐𝛽

)
∈ G𝑚𝑝𝜂 × G𝑝𝜂 .

Next, the adversary A calls the extractor EHPA on inputs 𝑐𝑘 and 𝜒

with access to P∗ andVHPA and obtains a witness candidate𝑤out
– in particular, EHPA has not aborted – where

𝑤out
def

=

(
Γ, v,Ξ(𝑚) , 𝜍𝑚

)
.

The only thing it remains to prove is to verify if we have indeed a

witness for RBGHPA with public parameter 𝜎 and adversarial statement

𝜒 , i.e. we have to show the following property:(
𝑐𝑘,

(
cΓ, c𝛽

)
,𝑤out

)
∈ RBGHPA .

19

Comment [MC3]: Funny fact:

– Warning – Extractor 10 at line 3 leads to some probability of failure. It

depends whether P∗ gives a suitable commit vector value cΥ or not.

– Proposed fix – A possible fix to this issue is to rewind P∗ until we have

a suitable commit vector value cΥ .

More precisely, by definition of the relation RBGHPA, we have to prove
the three following properties

cΓ = ComMat𝑛×𝑚 (F𝑝𝜂 )
(
𝑐𝑘, Γ ; v

)
, (O1)

𝑐𝛽 = ComF𝑛𝑝𝜂

(
𝑐𝑘,Ξ(𝑚) ; 𝜍𝑚

)
, (O2)

Ξ(𝑚) =
𝑚⊙
𝑗=1

Γ( 𝑗) (O3)

(Step 1) – Preliminaries – Zero Argument consequences.

(Step1.1) By the knowledge soundness of the zero argument

protocol (see Theorem B.6), we obtain

• cΓ̃ = ComMat𝑛×𝑚 (F𝑝𝜂 )

(
𝑐𝑘,

(
Γ̃( 𝑗)

)𝑚
𝑗=1

;
−→𝜇

)
;

• cΥ̃ = ComMat𝑛×𝑚 (F𝑝𝜂 )

(
𝑐𝑘,

(
Υ̃( 𝑗)

)𝑚
𝑗=1

;
−→𝜈

)
; and

• 0 =

𝑚∑︁
𝑗=1

Γ̃( 𝑗) ★𝑣 Υ̃( 𝑗−1) .

Using definitions given by the extractor EHPA
(see Extractor 10), these hypothesis become:

(H1) For all 𝑗 ∈ ⟦1;𝑚 − 1⟧,

𝑐Γ𝑗+1 = 𝑐 Γ̃𝑗
= ComF𝑛𝑝𝜂

(
𝑐𝑘, Γ̃( 𝑗) ; 𝜇 𝑗

)
see line 5

= ComF𝑛𝑝𝜂

(
𝑐𝑘, Γ( 𝑗+1) ; 𝑣 𝑗+1

)
see line 9

and, for the special case 𝑗 =𝑚, we have

𝑐−1 = 𝑐 Γ̃𝑗
= ComF𝑛𝑝𝜂

(
𝑐𝑘, Γ̃(𝑚) ; 𝜇𝑚

)
see line 5

(H2) For all 𝑗 ∈ ⟦0;𝑚 − 2⟧,

𝑐𝑢
𝑗+1

Υ𝑗+1
= 𝑐Υ̃𝑗

= ComF𝑛𝑝𝜂

(
𝑐𝑘, Υ̃( 𝑗) ; 𝜈 𝑗

)
see line 5

= ComF𝑛𝑝𝜂

(
𝑐𝑘,𝑢 𝑗+1Ξ( 𝑗+1) ; 𝑢 𝑗+1𝜍 𝑗+1

)
see line 8

and, for the special case 𝑗 =𝑚 − 1, we have

𝑐Υ̃𝑚−1
=

𝑚−1∏
𝑗=1

𝑐𝑢
𝑗

Υ𝑗+1
= ComF𝑛𝑝𝜂

(
𝑐𝑘, Υ̃(𝑚−1) ; 𝜈𝑚−1

)
see line 5

= ComF𝑛𝑝𝜂
©­«𝑐𝑘,

𝑚−1∑︁
𝑗=1

𝑢 𝑗Ξ( 𝑗+1) ;
𝑚−1∑︁
𝑗=1

𝑢 𝑗𝜍 𝑗+1
ª®¬ see line 8

(H3) The following equation holds:

0 =

𝑚∑︁
𝑗=1

Γ̃( 𝑗) ★𝑣 Υ̃( 𝑗−1)

=

𝑚−1∑︁
𝑗=1

Γ( 𝑗+1) ★𝑣

(
𝑢 𝑗Ξ( 𝑗)

)
+ Γ̃(𝑚) ★𝑣 Υ̃(𝑚−1) see lines 8 and 9

(Step1.2) Notice that, thanks to the rewinding lemma, with

overwhelming probability, extractor EHPA does not

abort.

(Step 2) – Let us show equation Eq. (O1).
(Step2.1) Using Hypo. (H1), we already have

∀ 𝑗 ∈ ⟦2;𝑚⟧, 𝑐Γ𝑗 = ComF𝑛𝑝𝜂

(
𝑐𝑘, Γ( 𝑗) ; 𝑣 𝑗

)
.
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Protocol 9: 5-move zero-knowledge protocol ZK(2) [RBGHPA] for the Bayer-Groth Hadamard product argument

Public Input :Two natural numbers 𝑛,𝑚 ∈ N∗ . A security parameter 𝜂 ∈ N∗ . A commitment key 𝑐𝑘 = (𝑔, g) ∈ G𝑛+1𝑝𝜂
for the commitment scheme KS[Mat𝑛×𝑚 (F𝑝𝜂 ) ].

Two commit values cΓ ∈ G𝑚𝑝𝜂 and 𝑐𝛽 ∈ G𝑝𝜂 .

Private Input :A matrix Γ =

(
Γ( 𝑗 )

)𝑚
𝑗=1
∈ Mat𝑛×𝑚 (F𝑝𝜂 ) , a vector of random values v

$← F𝑚𝑝𝜂 , a vector
−→
𝛽 ∈ F𝑛𝑝𝜂 , and a random value 𝜉

$← F𝑝𝜂 , such that

cΓ = ComMat𝑛×𝑚 (F𝑝𝜂 )
(
𝑐𝑘, Γ ; v

)
, 𝑐𝛽 = ComF𝑛𝑝𝜂

(
𝑐𝑘,
−→
𝛽 ; 𝜉

)
, and

−→
𝛽 =

𝑚⊙
𝑗=1

Γ( 𝑗 ) .

Begin protocol

(1) (Commit message) The prover PHPA defines, for all 𝑗 ∈ ⟦1;𝑚 − 1⟧, Υ( 𝑗 ) ←
𝑗⊙

𝑘=1

Γ(𝑘 ) ∈ F𝑛𝑝𝜂 and Υ(𝑚) ← −→𝛽 ∈ F𝑛𝑝𝜂 . Next, the prover generates random values

𝜍2, . . . , 𝜍𝑚−1
$← F𝑝𝜂 and computes commit values 𝑐Υ𝑗 ← ComF𝑛𝑝𝜂

(
𝑐𝑘,Υ𝑗 ; 𝜍 𝑗

)
∈ G𝑝𝜂 for all 𝑗 ∈ ⟦2;𝑚 − 1⟧. Then, PHPA defines 𝜍1 ← 𝑣1 ∈ F𝑝𝜂 and

𝜍𝑚 ← 𝜉 ∈ F𝑝𝜂 and then sets 𝑐Υ
1
← 𝑐Γ

1
∈ G𝑝𝜂 and 𝑐Υ𝑚 ← 𝑐𝛽 ∈ G𝑝𝜂 . Finally, the prover PHPA sends to the verifier VHPA the commit value cΥ .

(2) (Challenge message) The verifier VHPA generates two challenges 𝑢, 𝑣
$← F∗𝑝𝜂 and sends them to the prover.

(3-5) (Zero argument call) For all 𝑖 ∈ ⟦1;𝑚 − 1⟧, let 𝑐Υ̃𝑖 the value defined by 𝑐Υ̃𝑖
← 𝑐𝑢

𝑖

Υ𝑖
∈ G𝑝𝜂 , let 𝑐Υ̃ be the value defined by 𝑐Υ̃ ←

𝑚−1∏
𝑖=1

𝑐𝑢
𝑖

Υ𝑖+1
∈ G𝑝𝜂 , and let 𝑐−1 the

commit value 𝑐−1 ← ComF𝑛𝑝𝜂
(
𝑐𝑘,−1 ; 0

)
∈ G𝑝𝜂 . Let★𝑣 : F𝑛𝑝𝜂 × F

𝑛
𝑝𝜂
−→ F𝑝𝜂 be the bilinear application defined by, for two vectors a = (𝑎𝑖 )𝑛𝑖=1 ∈ F𝑛𝑝𝜂 and

b = (𝑏𝑖 )𝑛𝑖=1 ∈ F𝑛𝑝𝜂 , a★𝑣 b def

=
𝑛∑
𝑖=1

𝑎𝑖𝑏𝑖 𝑣
𝑖
. Then, both prover PHPA and verifier VHPA engage in the Σ-protocol Σ

[
RBG
ZA

]
for the relation RBG

ZA with public parameter

𝜎ZA
def

= 𝑐𝑘 , public statement 𝑥ZA
def

=

( (
𝑐Γ

2
, . . . , 𝑐Γ𝑚 , 𝑐−1

)
,
(
𝑐Υ̃

1

, . . . , 𝑐Υ̃𝑚−1 , 𝑐Υ̃
) )
, and private statement

𝑤ZA
def

=

((
Γ(2) , . . . , Γ(𝑚) ,−1

)
,
(
𝑣2, . . . , 𝑣𝑚, 0

)
,

(
𝑢Υ1, . . . ,𝑢

𝑚−1Υ(𝑚−1) ,
𝑚−1∑
𝑗=1

𝑢 𝑗Υ( 𝑗+1)
)
,

(
𝑢𝜍1, . . . ,𝑢

𝑚−1𝜍𝑚−1,
𝑚−1∑
𝑗=1

𝑢 𝑗𝜍 𝑗+1

))
. We denote by 𝜏ZA the proof transcript

obtained at the end of this Σ-protocol.

(6) (Conclusion’s bit) The verifier VZA checks if 𝑐Υ
1
= 𝑐Γ

1
and 𝑐Υ𝑚 = 𝑐𝛽 . Then, VZA accepts if and only if 𝑣

𝜎ZA, 𝑥ZA
ZA

(
𝜏ZA

)
holds.

Extractor 10: Extractor EHPA for the 5-move zero-knowledge protocol ZK(2) [RBGHPA] of the Bayer-Groth Hadamard product argument

Input :A security parameter 𝜂 ∈ N∗ . Two natural numbers 𝑛,𝑚 ∈ N∗ . A public parameter 𝜎
def

= 𝑐𝑘 ∈ G𝑛+1𝑝𝜂
for the Bayer-Groth Hadamard product relation

RBG
HPA . A statement 𝜒

def

=
(
cΓ, 𝑐𝛽

)
∈ G𝑚𝑝𝜂 × G𝑝𝜂 .

Blackbox access to :A deterministic adversarial prover P∗ and an honest verifier VHPA .

1 Begin extractor

2 calls P∗ to get cΥ
def

=
(
𝑐Υ𝑖

)𝑚
𝑖=1
∈ G𝑚𝑝𝜂 ;

3 if 𝑐Υ
1
≠ 𝑐Γ

1
or 𝑐Υ𝑚 ≠ 𝑐𝛽 then abort;

4 calls VHPA to get (𝑢, 𝑣) $← F∗𝑝𝜂 × F
∗
𝑝𝜂

;

5 computes



cΓ̃ ←
(
𝑐 Γ̃𝑖

)𝑚
𝑖=1
∈ G𝑚𝑝𝜂 where, for all 𝑖 ∈ ⟦1;𝑚⟧, 𝑐 Γ̃𝑖 ←

{
𝑐Γ𝑖+1 if 𝑖 <𝑚

𝑐−1
def

= ComF𝑛𝑝𝜂
(
𝑐𝑘,−1 ; 0

)
otherwise, i.e. 𝑖 =𝑚.

cΥ̃ ←
(
𝑐Υ̃𝑖

)𝑚−1
𝑖=0
∈ G𝑚𝑝𝜂 where, for all 𝑖 ∈ ⟦0;𝑚 − 1⟧, 𝑐Υ̃𝑖 ←


𝑐𝑢

𝑖+1
Υ𝑖+1

if 𝑖 <𝑚 − 1
𝑚−1∏
𝑗=1

𝑐𝑢
𝑗

Υ𝑗+1
otherwise, i.e. 𝑖 =𝑚 − 1.

;

6 sets ★𝑣 :

F𝑛𝑝𝜂 × F
𝑛
𝑝𝜂

−→ F𝑝𝜂(
(𝑎𝑖 )𝑛𝑖=1, (𝑏𝑖 )𝑛𝑖=1

)
↦−→

𝑛∑
𝑖=1

𝑎𝑖𝑏𝑖 𝑣
𝑖 ;

7 calls EZA with oracles P∗ and VHPA on inputs
(
(𝑐𝑘,★𝑣 ),

(
cΓ̃, cΥ̃

))
to get

((
Γ̃( 𝑗 )

)𝑚
𝑗=1

,
−→
𝜇 ,

(
Υ̃( 𝑗 )

)𝑚−1
𝑗=0

,
−→
𝜈

)
∈

(
Mat𝑛×𝑚 (F𝑝𝜂 ) × F𝑚𝑝𝜂 ×Mat𝑛×𝑚 (F𝑝𝜂 ) × F𝑚𝑝𝜂

)
;

8 computes



Ξ ←
(
Ξ( 𝑗 )

)𝑚
𝑗=1
∈ Mat𝑛×𝑚 (F𝑝𝜂 ) where, for all 𝑗 ∈ ⟦1;𝑚⟧, Ξ( 𝑗 ) ←


𝑢−𝑗 Υ̃( 𝑗−1) if 𝑗 <𝑚

𝑢1−𝑚
(
Υ̃(𝑚−1) −

𝑚−2∑
𝑗=1

𝑢 𝑗Ξ( 𝑗+1)
)

otherwise, i.e. 𝑗 =𝑚

−→𝜍 ←
(
𝜍 𝑗

)𝑚
𝑗=1
∈ F𝑚𝑝𝜂 where, for all 𝑗 ∈ ⟦1;𝑚⟧, 𝜍 𝑗 ←


𝑢−𝑗 𝜈𝑗−1 if 𝑗 <𝑚

𝑢1−𝑚
(
𝜈𝑚−1 −

𝑚−2∑
𝑗=1

𝑢 𝑗𝜍 𝑗+1

)
otherwise, i.e. 𝑗 =𝑚.

;

9 computes


Γ ←

(
Γ( 𝑗 )

)𝑚
𝑗=1
∈ Mat𝑛×𝑚 (F𝑝𝜂 ) where, for all 𝑗 ∈ ⟦1;𝑚⟧, Γ( 𝑗 ) ←

{
Γ̃( 𝑗−1) if 𝑗 > 1

Ξ(1) otherwise, i.e. 𝑗 = 1

v←
(
𝑣𝑗

)𝑚
𝑗=1
∈ F𝑚𝑝𝜂 where, for all 𝑗 ∈ ⟦1;𝑚⟧, 𝑣𝑗 ←

{
𝜇 𝑗−1 si 𝑗 > 1

𝜍1 otherwise, i.e. 𝑗 = 1.

;

10 returns
(
Γ, v,Ξ(𝑚) , 𝜍𝑚

)
.
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(Step2.2) Next, by definition given in line 9, we have

Γ(1) def= Ξ(1) and 𝑣1
def

= 𝜍1 .

By definition given in line 8, we have

Ξ(1) def= 𝑢−1Υ̃(0) and 𝜍1
def

= 𝑢−1𝜈0 .

Then, Hypo. (H2) leads to

𝑐𝑢Υ1
= ComF𝑛𝑝𝜂

(
𝑐𝑘, Υ̃(0) ; 𝜈0

)
= ComF𝑛𝑝𝜂

(
𝑐𝑘,𝑢Ξ(1) ; 𝑢𝜍1

)
It follows, because ComF𝑛𝑝𝜂 is homomorphic and be-

cause 𝑢 ≠ 0, the following equations

𝑐𝑢Υ1
=

(
ComF𝑛𝑝𝜂

(
𝑐𝑘,Ξ(1) ; 𝜍1

))𝑢
i.e. 𝑐Υ1 = ComF𝑛𝑝𝜂

(
𝑐𝑘,Ξ(1) ; 𝜍1

)
= ComF𝑛𝑝𝜂

(
𝑐𝑘, Γ(1) ; 𝑣1

)
.

(Step2.3) Because EHPA has not aborted, the if-condition in

line 3 does not hold. In particular, we have 𝑐Υ1 = 𝑐Γ1 .

This finally leads to

𝑐Γ1 = ComF𝑛𝑝𝜂

(
𝑐𝑘, Γ(1) ; 𝑣1

)
.

(Step 3) – Let us show equation Eq. (O2).
(Step3.1) Using Hypo. (H2), we have

𝑚−1∏
𝑗=1

𝑐𝑢
𝑗

Υ𝑗+1
= ComF𝑛𝑝𝜂

©­«𝑐𝑘,
𝑚−1∑︁
𝑗=1

𝑢 𝑗Ξ( 𝑗+1) ;
𝑚−1∑︁
𝑗=1

𝑢 𝑗𝜍 𝑗+1
ª®¬

=

𝑚−1∏
𝑗=1

(
ComF𝑛𝑝𝜂

(
𝑐𝑘,Ξ( 𝑗+1) ; 𝜍 𝑗+1

))𝑢 𝑗

(Step3.2) By application of the function log𝑔 : G𝑝𝜂 −→ F𝑝𝜂 ,
the previous equation becomes

𝑚−1∑︁
𝑗=1

𝑢 𝑗
log𝑔 𝑐Υ𝑗+1 =

𝑚−1∑︁
𝑗=1

𝑢 𝑗
log𝑔

(
ComF𝑛𝑝𝜂

(
𝑐𝑘,Ξ( 𝑗+1) ; 𝜍 𝑗+1

))
,

which is a polynomial equation of degree at most

𝑚 − 1 in challenge 𝑢. Thus, by the Schwartz-Zippel
lemma, we conclude with overwhelming probability

the following property

∀ 𝑗 ∈ ⟦1;𝑚 − 1⟧, log𝑔 𝑐Υ𝑗+1 = log𝑔

(
ComF𝑛𝑝𝜂

(
𝑐𝑘,Ξ( 𝑗+1) ; 𝜍 𝑗+1

))
.

The injectivity of function log𝑔 leads to

∀ 𝑗 ∈ ⟦2;𝑚⟧, 𝑐Υ𝑗 = ComF𝑛𝑝𝜂

(
𝑐𝑘,Ξ( 𝑗) ; 𝜍 𝑗

)
.

(Step3.3) In the particular case of 𝑗 =𝑚, we have

𝑐Υ𝑚 = ComF𝑛𝑝𝜂

(
𝑐𝑘,Ξ(𝑚) ; 𝜍𝑚

)
.

And, because EHPA has not aborted, line 3 leads to

𝑐Υ𝑚 = 𝑐𝛽 . Consequently, we finally obtain the follow-

ing equation

𝑐𝛽 = ComF𝑛𝑝𝜂

(
𝑐𝑘,Ξ(𝑚) ; 𝜍𝑚

)
.

(Step 4) – Let us finally show equation Eq. (O3).

(Step4.1) Using Hypo. (H3) and because ★𝑣 is bilinear (see

line 7), we have

0 =

𝑚−1∑︁
𝑗=1

𝑢 𝑗
(
Γ( 𝑗+1) ★𝑣 Ξ( 𝑗)

)
+ Γ̃(𝑚) ★𝑣 Υ̃(𝑚−1) . (∇)

(Step4.2) Next, Hypo. (H1) leads to

ComF𝑛𝑝𝜂
(
𝑐𝑘,−1 ; 0

)
= 𝑐−1 = ComF𝑛𝑝𝜂

(
𝑐𝑘, Γ̃(𝑚) ; 𝜇𝑚

)
.

Thus, because KS[F𝑛𝑝𝜂 ] is computationally binding,
with overwhelming probability, the equation above

leads to Γ̃(𝑚) = −1. Moreover, by definition of Υ̃(𝑚−1)

given in line 8, we have

Υ̃(𝑚−1) =
𝑚−1∑︁
𝑗=1

𝑢 𝑗Ξ( 𝑗+1) .

(Step4.3) Therefore, by the two results obtained in previous

step (Step4.2) and because ★𝑣 is bilinear, equation

Eq. (∇) becomes

0 =

𝑚−1∑︁
𝑗=1

(
Γ( 𝑗+1) ★𝑣 Ξ( 𝑗) − 1★𝑣 Ξ( 𝑗+1)

)
𝑢 𝑗 , (∇′)

which is a polynomial equation in challenge 𝑢. Thus,

by the Schwartz-Zippel lemma, with overwhelming

probability, this previous equation Eq. (∇′) leads to

∀ 𝑗 ∈ ⟦1;𝑚 − 1⟧, 1★𝑣 Ξ( 𝑗+1) = Γ( 𝑗+1) ★𝑣 Ξ( 𝑗) . (Ψ)

(Step4.4) By definition of the bilinear map ★𝑣 given in line 7,

previous property Eq. (Ψ) becomes

∀ 𝑗 ∈ ⟦1;𝑚 − 1⟧,
𝑛∑︁
𝑖=1

Ξ𝑖, 𝑗+1𝑣𝑖 =
𝑛∑︁
𝑖=1

Γ𝑖, 𝑗+1Ξ𝑖, 𝑗𝑣𝑖 ,

which are𝑚 − 1 polynomial equations in challenge

𝑣 . Thus, by the Schwartz-Zippel lemma, with over-

whelming probability, and then by definition of oper-

ator ⊙, these equations above become

∀ 𝑗 ∈ ⟦1;𝑚 − 1⟧, Ξ( 𝑗+1) = Γ( 𝑗+1) ⊙ Ξ( 𝑗) .

(Step4.5) By immediate induction, this leads to

Ξ(𝑚) =
( 𝑚⊙
𝑗=2

Γ( 𝑗)
)
⊙ Ξ(1) .

Consequently, by definition of Γ(1) given in line 9,

we finally obtain

Ξ(𝑚) =
𝑚⊙
𝑗=1

Γ( 𝑗) .

Results obtained in steps (Step 2) to (Step 4), give us the follow-
ing result, proving that, with overwhelming probability, we have
successfully extract a witness

𝑤out
def

=

(
Γ, v,Ξ(𝑚) , 𝜍𝑚

)
∈ Mat𝑛×𝑚 (F𝑝𝜂 ) × F𝑚𝑝𝜂 × F

𝑛
𝑝𝜂
× F𝑝𝜂

18



2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

2106

2107

2108

2109

2110

2111

2112

2113

2114

2115

2116

2117

2118

2119

2120

2121

2122

2123

2124

2125

2126

2127

2128

2129

2130

2131

2132

2133

2134

2135

2136

2137

2138

2139

2140

2141

2142

2143

2144

2145

2146

Conference’17, July 2017, Washington, DC, USA

2147

2148

2149

2150

2151

2152

2153

2154

2155

2156

2157

2158

2159

2160

2161

2162

2163

2164

2165

2166

2167

2168

2169

2170

2171

2172

2173

2174

2175

2176

2177

2178

2179

2180

2181

2182

2183

2184

2185

2186

2187

2188

2189

2190

2191

2192

2193

2194

2195

2196

2197

2198
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2200
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such that

(
𝑐𝑘, 𝜒,𝑤out

)
∈ RBGHPA.

∃ Γ ∈ Mat𝑛×𝑚 (F𝑝𝜂 ), ∃ v ∈ F𝑚𝑝𝜂 , ∃
−→
𝛽 ∈ F𝑛𝑝𝜂 , ∃ 𝜉 ∈ F𝑝𝜂 ,

cΓ = ComMat𝑛×𝑚 (F𝑝𝜂 )
(
𝑐𝑘, Γ ; v

)
𝑐𝛽 = ComF𝑛𝑝𝜂

(
𝑐𝑘,
−→
𝛽 ; 𝜉

)
−→
𝛽 =

𝑚⊙
𝑗=1

Γ( 𝑗)

Proof step→

↓ Property

s
t
e
p
(
St
ep

1.
1
)

s
t
e
p
(
St
ep

3.
2
)

s
t
e
p
(
St
ep

4.
2
)

s
t
e
p
(
St
ep

4.
3
)

s
t
e
p
(
St
ep

4.
4
)

Knowledge
soundness

1 ×
EZA

Binding of
commitment

scheme
× 1

Schwartz-Zippel × 1 × 1 ×
(𝑚 − 1)

Extractor uses
rewinding? Yes (to obtain a suitable commit vector value cΥ)

Table 5: Assessment of cryptographic or probabilistic proper-
ties used to proveKnowledge Soundness ofHadamard Product
Argument protocol

□

B.6 Zero argument protocol
We define

RBGZA ⊆
(
G𝑛+1𝑝𝜂

×
(
F𝑛𝑝𝜂 × F

𝑛
𝑝𝜂
−→ F𝑝𝜂

) )︸                                   ︷︷                                   ︸
Public parameter set

×
(
G𝑚𝑝𝜂 × G

𝑚
𝑝𝜂

)︸          ︷︷          ︸
Statement set

×
(
Mat𝑛×𝑚 (F𝑝𝜂 ) × F𝑚𝑝𝜂 ×Mat𝑛×𝑚 (F𝑝𝜂 ) × F𝑚𝑝𝜂

)︸                                                        ︷︷                                                        ︸
Witness set

to be the zero argument relation defined by( (
𝑐𝑘,★

)
,

(
cΓ̃, cΥ̃

)
,

((
Γ̃( 𝑗)

)𝑚
𝑗=1

,−→𝜇 ,
(
Υ̃( 𝑗)

)𝑚−1
𝑗=0

,−→𝜈
))
∈ RBGZA

def⇐⇒



cΓ̃ = ComMat𝑛×𝑚 (F𝑝𝜂 )

(
𝑐𝑘,

(
Γ̃( 𝑗)

)𝑚
𝑗=1

;
−→𝜇

)
cΥ̃ = ComMat𝑛×𝑚 (F𝑝𝜂 )

(
𝑐𝑘,

(
Υ̃( 𝑗)

)𝑚−1
𝑗=0

;
−→𝜈

)
0 =

𝑚∑︁
𝑗=1

Γ̃( 𝑗) ★ Υ̃( 𝑗−1) .

Hence, we define a Σ-protocol for the zero argument relation

Σ
[
RBGZA

]
to be the protocol defined as follows in Protocol 11.

Theorem B.6 (Knowledge soundness of Σ
[
RBGZA

]
). The Σ-

protocol Σ
[
RBGZA

]
for the Bayer-Groth zero relationRBGZA is knowledge

sound.

Proof. We define the extractor EZA for the Bayer-Groth zero

argument to be the algorithm defined as follows in Extractor 12.
Let 𝑛,𝑚 ∈ N∗ be two natural numbers. Let 𝜂 ∈ N∗ be a security

parameter. Let P∗ be a polynomial-time and deterministic adver-

sarial prover. Let

(
𝑐𝑘,★

)
← IZA (𝜂) ve an honest public parameter

for the zero argument relation RBGZA . Let A be a probabilistic and

polynomial-time adversary. Let 𝜒 ← A(𝜂, 𝜎) be an adversarial

statement where

𝜒
def

=

(
cΓ̃, cΥ̃

)
∈ G𝑚𝑝𝜂 × G

𝑚
𝑝𝜂
.

Then, the adversary A calls the extractor EZA on inputs 𝜎 and 𝜒

with access to P∗ andVZA and obtains a sequence of valid proof

transcripts 𝜏ZA
def

=

(
𝔱𝔯
𝜎, 𝜒
𝛼, 𝔷RBGZA , P∗

(𝜔𝑙 )
)
2𝑚+1

𝑙=1

. Let 𝑙 ∈ ⟦1; 2𝑚 + 1⟧ be

an index. We denote by

• 𝛼
def

=

(
𝑐 Γ̃0

, 𝑐Υ̃𝑚
, cΨ

)
∈ G𝑝𝜂 × G𝑝𝜂 × G2𝑚+1𝑝𝜂

the first message ;

and

• 𝔷RBG
ZA , P∗

(
𝛼,𝜔𝑙

) def

=

(
Γ̃(𝑙)𝜔 , 𝜇

(𝑙)
𝜔 , Υ̃(𝑙)𝜔 , 𝜈

(𝑙)
𝜔 , 𝜍

(𝑙)
𝜔

)
∈ F𝑛𝑝𝜂 × F𝑝𝜂 ×

F𝑛𝑝𝜂 × F𝑝𝜂 × F𝑝𝜂 the response message on challenge 𝜔𝑙 .

This way, we have the following property

∀ 𝑙 ∈ ⟦1; 2𝑚 + 1⟧,



• 𝔱𝔯
𝜎, 𝜒
𝛼, 𝔷RBGZA , P∗

(𝜔𝑙 ) =

〈(
𝑐 Γ̃0

, 𝑐Υ̃𝑚
, cΨ

)
𝜔𝑙 ,

(
Γ̃(𝑙)𝜔 , 𝜇

(𝑙)
𝜔 , Υ̃(𝑙)𝜔 , 𝜈

(𝑙)
𝜔 , 𝜍

(𝑙)
𝜔

)〉
• 𝑣

𝜎, 𝜒

RBG
ZA

(
𝔱𝔯
𝜎, 𝜒
𝛼, 𝔷RBGZA , P∗

(𝜔𝑙 )
)
= 1.

By definition of the Bayer-Groth zero argument protocol, as the

proof transcripts are valid, for all 𝑙 ∈ ⟦1; 2𝑚 + 1⟧, we have

𝑐Ψ𝑚+1 = ComF𝑝𝜂
(
𝑐𝑘, 0 ; 0

)
, (H1)

𝑚∏
𝑖=0

𝑐
𝜔𝑖
𝑙

Γ̃𝑖
= ComF𝑛𝑝𝜂

(
𝑐𝑘, Γ̃(𝑙)𝜔 ; 𝜇

(𝑙)
𝜔

)
, (H (𝑙)

2
)

𝑚∏
𝑖=0

𝑐
𝜔𝑚−𝑖
𝑙

Υ̃𝑖
= ComF𝑛𝑝𝜂

(
𝑐𝑘, Υ̃(𝑙)𝜔 ; 𝜈

(𝑙)
𝜔

)
, (H (𝑙)

3
)

2𝑚∏
𝑘=0

𝑐
𝜔𝑘
𝑙

Ψ𝑘
= ComF𝑝𝜂

(
𝑐𝑘, Γ̃(𝑙)𝜔 ★ Υ̃(𝑙)𝜔 ; 𝜍

(𝑙)
𝜔

)
. (H (𝑙)

4
)

(Step 1) – Preliminaries –Vandermondematrix of challenges
sequence

(
𝜔𝑙

)
2𝑚+1
𝑙=1 .

Let Ωall ∈ Mat2𝑚+1 (F𝑝𝜂 ) and Ωpart ∈ Mat𝑚+1 (F𝑝𝜂 ) be
two matrix defined as follows

Ωall
def

=

©­­­­«
1 1 · · · 1

𝜔1 𝜔2 · · · 𝜔2𝑚+1
.
.
.

.

.

.
. . .

.

.

.

𝜔2𝑚
1

𝜔2𝑚
2

· · · 𝜔2𝑚
2𝑚+1

ª®®®®¬
and Ωpart

def

=

©­­­­«
1 1 · · · 1

𝜔1 𝜔2 · · · 𝜔𝑚+1
.
.
.

.

.

.
. . .

.

.

.

𝜔𝑚
1

𝜔𝑚
2
· · · 𝜔𝑚

𝑚+1

ª®®®®¬
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Protocol 11: Σ-protocol Σ
[
RBGZA

]
for the Bayer-Groth zero argument

Public Input :Two natural numbers 𝑛,𝑚 ∈ N∗. A security parameter 𝜂 ∈ N∗. A commitment key 𝑐𝑘 = (𝑔, g) ∈ G𝑛+1𝑝𝜂
for the

commitment scheme KS[Mat𝑛×𝑚 (F𝑝𝜂 )]. A bilinear map ★ : F𝑛𝑝𝜂 × F
𝑛
𝑝𝜂
−→ F𝑝𝜂 . Two commit values cΓ̃, cΥ̃ ∈ G

𝑚
𝑝𝜂
.

Private Input :Two matrix Γ̃ =

(
Γ̃( 𝑗)

)𝑚
𝑗=1
∈ Mat𝑛×𝑚 (F𝑝𝜂 ) and Υ̃ =

(
Υ̃( 𝑗)

)𝑚−1
𝑗=0
∈ Mat𝑛×𝑚 (F𝑝𝜂 ), and two vectors of random values

−→𝜇 ,−→𝜈 $← F𝑚𝑝𝜂 such that cΓ̃
def

= ComMat𝑛×𝑚 (F𝑝𝜂 )
(
𝑐𝑘, Γ̃ ; −→𝜇

)
, cΥ̃

def

= ComMat𝑛×𝑚 (F𝑝𝜂 )
(
𝑐𝑘, Υ̃ ; −→𝜈

)
, and

0 =
𝑚∑
𝑗=1

Γ̃( 𝑗) ★ Υ̃( 𝑗−1) .

Begin protocol

(1) (Commit message) The prover PZA generates two random vectors Γ̃(0) , Υ̃(𝑚)
$← F𝑛𝑝𝜂 and two random values 𝜇0, 𝜈𝑚

$← F𝑝𝜂 .

Then, the prover computes values 𝑐 Γ̃0
← ComF𝑛𝑝𝜂

(
𝑐𝑘, Γ̃(0) ; 𝜇0

)
∈ G𝑝𝜂 , 𝑐Υ̃𝑚 ← ComF𝑛𝑝𝜂

(
𝑐𝑘, Υ̃(𝑚) ; 𝜈𝑚

)
∈ G𝑝𝜂 , and, for all

𝑘 ∈ ⟦0; 2𝑚⟧, Ψ𝑘 ←
𝑚∑
𝑗=0

Γ̃( 𝑗) ★ Υ̃(𝑚−𝑘+𝑗) ∈ F𝑝𝜂 . Next, PZA generates a vector of random values
−→𝜍 = (𝜍𝑖 )2𝑚𝑖=0

$← F2𝑚+1𝑝𝜂
, sets

𝜍𝑚+1 ← 0 ∈ F𝑝𝜂 , and computes commit value cΨ ← ComF2𝑚+1𝑝𝜂

(
𝑐𝑘,Ψ ;

−→𝜍
)
∈ G2𝑚+1𝑝𝜂

. Finally, the prover PZA sends commit values(
𝑐 Γ̃0

, 𝑐Υ̃𝑚
, cΨ

)
to the verifierVZA.

(2) (Challenge message) The verifierVZA generates a challenge 𝜔
$← F∗𝑝𝜂 and sends it to the prover PZA.

(3) (Response message) The prover PZA computes values Γ̃←
𝑚∑
𝑗=0

𝜔 𝑗 Γ̃( 𝑗) ∈ F𝑛𝑝𝜂 , 𝜇 ←
𝑚∑
𝑖=0

𝜔𝑖𝜇𝑖 ∈ F𝑝𝜂 , Υ̃←
𝑚∑
𝑗=0

𝜔𝑚−𝑗 Υ̃( 𝑗) ∈ F𝑛𝑝𝜂 ,

𝜈 ←
𝑚∑
𝑖=0

𝜔𝑚−𝑖𝜈𝑖 ∈ F𝑝𝜂 , and 𝜍 ←
2𝑚∑
𝑘=0

𝜔𝑘𝜍𝑘 ∈ F𝑝𝜂 . Then, PZA sends those values

(
Γ̃, 𝜇, Υ̃, 𝜈, 𝜍

)
to the verifier.

(4) (Conclusion’s bit) The verifierVZA accepts if and only if the following equations hold

𝑐Ψ𝑚+1 = ComF𝑝𝜂
(
𝑐𝑘, 0 ; 0

)
,

𝑚∏
𝑖=0

𝑐𝜔
𝑖

Γ̃𝑖
= ComF𝑛𝑝𝜂

(
𝑐𝑘, Γ̃ ; 𝜇

)
,

𝑚∏
𝑖=0

𝑐𝜔
𝑚−𝑖

Υ̃𝑖
= ComF𝑛𝑝𝜂

(
𝑐𝑘, Υ̃ ; 𝜈

)
,

and

2𝑚∏
𝑘=0

𝑐𝜔
𝑘

Ψ𝑘
= ComF𝑝𝜂

(
𝑐𝑘, Γ̃★ Υ̃ ; 𝜍

)
.

Extractor 12: Extractor EZA for the Σ-protocol Σ
[
RBGZA

]
of the Bayer-Groth zero argument

Input :A security parameter 𝜂 ∈ N∗. Two natural numbers 𝑛,𝑚 ∈ N∗. A public parameter 𝜎
def

= (𝑐𝑘,★) for the
Bayer-Groth zero argument relation RBGZA with a bilinear map ★ : F𝑛𝑝𝜂 × F

𝑛
𝑝𝜂
−→ F𝑝𝜂 and a commitment key

𝑐𝑘 ∈ (𝑔, g) ∈ G𝑛+1𝑝𝜂
for the commiment scheme KS[Mat𝑛×𝑚 (F𝑝𝜂 )]. A statement 𝜒

def

=
(
cΓ̃, cΥ̃

)
∈ G𝑚𝑝𝜂 × G

𝑚
𝑝𝜂
.

Blackbox access to :A deterministic adversarial prover P∗ and an honest verifierVZA.

1 Begin extractor

2 calls P∗ to get 𝛼 def

=

(
𝑐 Γ̃0

, 𝑐Υ̃𝑚
, cΨ

)
∈

(
G𝑝𝜂 × G𝑝𝜂 × G2𝑚+1𝑝𝜂

)
; // State at this point: st1

def

=

[ (
𝑐𝑘,★

)
,
(
cΓ̃, cΥ̃

)
,

(
𝑐 Γ̃0

, 𝑐Υ̃𝑚
, cΨ

)]
.

3 rewinds P∗ and VZA at state st1 and begins with 𝑙 ← 1 ∈ N
4 calls VZA to get 𝜔𝑙

$← F∗𝑝𝜂 ;

5 calls P∗ to get 𝑧𝑙 ← 𝔷RBG
ZA , P∗

(
𝛼,𝜔𝑙

)
∈

(
F𝑛𝑝𝜂 × F𝑝𝜂 × F

𝑛
𝑝𝜂
× F𝑝𝜂 × F𝑝𝜂

)
;

6 if 𝑣𝑐𝑘, 𝜒RBG
ZA

(
𝔱𝔯
𝑐𝑘, 𝜒
𝛼, 𝔷RBGZA , P∗

(𝜔𝑙 )
)
and

𝑙−1∧
𝑖=1

𝑙∧
𝑗 = 𝑖+1

(𝜔𝑖 ≠ 𝜔 𝑗 ) then 𝑙 ← 𝑙 + 1 ;

7 until 𝑙 > 2𝑚 + 1 ;

8 returns 𝜏ZA
def
=

(
𝔱𝔯
𝜎, 𝜒
𝛼, 𝔷RBGZA , P∗

(𝜔𝑙 )
)
2𝑚+1

𝑙=1
.
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Ωall and Ωpart are both transposed Vandermonde matrix

with parameters the challenges sequence

(
𝜔𝑙

)
2𝑚+1
𝑙=1 , which

is a sequence of pairwise distincts values with overwhelm-

ing probability in 𝜂. Thus, Ωall and Ωpart are invertible

matrix.

(Step 2) – Get an opening of commit value cΨ.
(Step2.1) We denote by Ψ𝜔 ∈ F2𝑚+1𝑝𝜂

and
−→𝜍 𝜔 ∈ F2𝑚+1𝑝𝜂

the two

vectors defined by

Ψ𝜔
def

=

(
Γ̃(𝑙)𝜔 ★ Υ̃(𝑙)𝜔

)
2𝑚+1

𝑙=1

, and
−→𝜍 𝜔

def

=

(
𝜍
(𝑙)
𝜔

)
2𝑚+1

𝑙=1
. (∇)

Thus, we have

cΨ =
(
cΨ ⊛ Ωall

)
⊛ Ω−1all see footnotes 5 and 6

=

(
ComF2𝑚+1𝑝𝜂

(
𝑐𝑘,Ψ𝜔 ;

−→𝜍 𝜔

))
⊛ Ω−1all see Eq. (∇) and Hypo.H1

= ComF2𝑚+1𝑝𝜂

(
𝑐𝑘,Ψ𝜔 · Ω−1all ;

−→𝜍 𝜔 · Ω−1all

)
see footnote 14

(Step2.2) Next, by the binding property of KS[F2𝑚+1𝑝𝜂
], with

overwhelming probability, there exists a sequence( (
Ψ𝑘 , 𝜍𝑘

) )2𝑚
𝑘=0

of elements in F𝑝𝜂 × F𝑝𝜂 independent

of the sequence of challenges
(
𝜔𝑙

)
2𝑚+1
𝑙=1 and such that

the following property holds

∀𝑘 ∈ ⟦0; 2𝑚⟧, 𝑐Ψ𝑘 = ComF𝑝𝜂
(
𝑐𝑘,Ψ𝑘 ; 𝜍𝑘

)
;

where Ψ𝑘
def

=

(
Ψ𝜔 · Ω−1all

)
𝑘
and 𝜍𝑘

def

=

(−→𝜍 𝜔 · Ω−1all
)
𝑘

(Step 3) – Get an opening of commit value cΓ̃ .
We denote by Γ̃𝜔 ∈ Mat𝑛×(𝑚+1) (F𝑝𝜂 ) the matrix and

−→𝜇 𝜔 ∈ F𝑚+1𝑝𝜂
the vector defined as follows

Γ̃𝜔
def

=

(
Γ̃(𝑙)𝜔

)𝑚+1
𝑙=1

, and
−→𝜇 𝜔

def

=

(
𝜇
(𝑙)
𝜔

)𝑚+1
𝑙=1

.

Thus, similarly to the previous step (Step 2) but with
matrix Ωpart instead of matrix Ωall and with binding prop-
erty on the commitment scheme KS[Mat𝑛×(𝑚+1) (F𝑝𝜂 )]
instead of KS[F2𝑚+1𝑝𝜂

], extractor EZA obtains an opening

of cΓ̃ . Thus, there exists a sequence
((

Γ̃( 𝑗) , 𝜇 𝑗
))𝑚

𝑗=0

of ele-

ments in F𝑛𝑝𝜂 × F𝑝𝜂 independent of the challenges sequence(
𝜔𝑙

)
2𝑚+1
𝑙=1 such that

∀ 𝑗 ∈ ⟦0;𝑚⟧, 𝑐 Γ̃𝑗 = ComF𝑛𝑝𝜂

(
𝑐𝑘, Γ̃( 𝑗) ; 𝜇 𝑗

)
where Γ̃( 𝑗) def=

(
Γ̃𝜔Ω

−1
part

) ( 𝑗+1)
and 𝜇 𝑗

def

=

(−→𝜇 𝜔 · Ω−1part
)
𝑗

(Step 4) – Get an opening of commit value cΥ̃.

For all 𝑙 ∈ ⟦1; 2𝑚 + 1⟧, we rewrite Hypo.H (𝑙)
3

as follows:

𝑚∏
𝑗=0

𝑐
𝜔

𝑗

𝑙

Υ̃𝑚−𝑗
= ComF𝑛𝑝𝜂

(
𝑐𝑘, Υ̃(𝑙)𝜔 ; 𝜈

(𝑙)
𝜔

)
.

Let c′
Υ̃
∈ F𝑚+1𝑝𝜂

be the vector defined by, for all 𝑗 ∈ ⟦0;𝑚⟧,

𝑐 ′
Υ̃𝑗

def

= 𝑐Υ̃𝑚−𝑗
. We denote by Υ̃𝜔 ∈ Mat𝑛×(𝑚+1) (F𝑝𝜂 ) the

matrix and
−→𝜈 𝜔 ∈ F𝑚+1𝑝𝜂

the vector defined as follows

Υ̃𝜔
def

=

(
Υ̃(𝑙)𝜔

)𝑚+1
𝑙=1

, and
−→𝜈 𝜔

def

=

(
𝜈
(𝑙)
𝜔

)𝑚+1
𝑙=1

.

Thus, similarly to previous points with commit vector c′
Υ̃
,

Vandermonde matrix Ωpart, and by the binding property
of KS[F𝑚+1𝑝𝜂

], EZA obtains an opening of c′
Υ̃
, and then

of cΥ̃ . Therefore, there exists a sequence
((

Υ̃( 𝑗) , 𝜈 𝑗
))𝑚

𝑗=0

of elements in F𝑛𝑝𝜂 × F𝑝𝜂 independent of the challenges

sequence
(
𝜔𝑙

)
2𝑚+1
𝑙=1 such that

∀ 𝑗 ∈ ⟦0;𝑚⟧, 𝑐Υ̃𝑗 = ComF𝑛𝑝𝜂

(
𝑐𝑘, Υ̃( 𝑗) ; 𝜈 𝑗

)
where Υ̃( 𝑗) def=

(
Υ̃𝜔Ω

−1
part

) (𝑚+1−𝑗)
and

𝜈 𝑗
def

=

(−→𝜈 𝜔 · Ω−1part
)
𝑚+1−𝑗

(Step 5) – It remains to prove the following equation:

0 =

𝑚∑︁
𝑗=1

Γ̃( 𝑗) ★ Υ̃( 𝑗−1) .

(Step5.1) For all 𝑙 ∈ ⟦1;𝑚 + 1⟧ and 𝑖 ∈ ⟦1;𝑛⟧, we have

©­«
𝑚∑︁
𝑗=0

𝜔
𝑗

𝑙
Γ̃( 𝑗)ª®¬𝑖 = ©­«

𝑚∑︁
𝑗=0

𝜔
𝑗

𝑙

(
Γ̃𝜔Ω

−1
part

) ( 𝑗+1)ª®¬𝑖
by step (Step 3)

=
©­«
𝑚+1∑︁
𝑗=1

(
Ωpart

)
𝑗,𝑙

(
Γ̃𝜔Ω

−1
part

) ( 𝑗)ª®¬𝑖
see definition of Ωpart in step (Step 1)

=

𝑚+1∑︁
𝑗=1

(
Ωpart

)
𝑗,𝑙

(
Γ̃𝜔Ω

−1
part

)
𝑖, 𝑗

=

((
Γ̃𝜔Ω

−1
part

)
Ωpart

)
𝑖,𝑙

=
(
Γ̃𝜔

)
𝑖,𝑙 =

(
Γ̃(𝑙)𝜔

)
𝑖
.

Consequently, we have the following property

∀ 𝑙 ∈ ⟦1;𝑚 + 1⟧, Γ̃(𝑙)𝜔 =

𝑚∑︁
𝑗=0

𝜔
𝑗

𝑙
Γ̃( 𝑗) .

(Step5.2) Similarly, for all 𝑙 ∈ ⟦1;𝑚 + 1⟧, we have
𝑚∑︁
𝑗=0

𝜔
𝑚−𝑗
𝑙

Υ̃( 𝑗) =
𝑚∑︁
𝑗=0

(
Ωpart

)
𝑚+1−𝑗,𝑙

(
Υ̃𝜔Ω

−1
part

) (𝑚+1−𝑗)
= Υ̃(𝑙)𝜔 .

by step (Step 4)

(Step5.3) As in steps (Step5.1) and (Step5.2) but with full Van-

dermonde matrix Ωall instead of Ωpart, step (Step 2)
leads to

∀ 𝑙 ∈ ⟦1; 2𝑚 + 1⟧, Γ̃(𝑙) ★ Υ̃(𝑙) =
2𝑚∑︁
𝑘=0

𝜔𝑘
𝑙
Ψ𝑘 .
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(Step5.4) Hence, from equations obtained in steps (Step5.1)
to (Step5.3), and using Hypo. H1, we conclude, for

all 𝑙 ∈ ⟦1;𝑚 + 1⟧, the following equation:
2𝑚∑︁
𝑘=0

𝜔𝑘
𝑙
Ψ𝑘 =

(
𝑚∑︁
𝑖=0

𝜔𝑖
𝑙
Γ̃(𝑖)

)
★

©­«
𝑚∑︁
𝑗=0

𝜔
𝑚−𝑗
𝑙

Υ̃( 𝑗)ª®¬ .
(Step5.5) By the previous step and because ★ is a bilinear map,

for all 𝑙 ∈ ⟦1;𝑚 + 1⟧, we have(
𝑚∑︁
𝑖=0

𝜔𝑖
𝑙
Γ̃(𝑖)

)
★

( 𝑚∑︁
𝑗=0

𝜔
𝑚−𝑗
𝑙

Υ̃( 𝑗)
)
=

𝑚∑︁
𝑖=0

𝑚∑︁
𝑗=0

𝜔
𝑖+𝑚−𝑗
𝑙

Γ̃(𝑖) ★ Υ̃( 𝑗)

=

𝑚∑︁
𝑘=0

©­­­«
𝑚∑︁
𝑗=0

0⩽ 𝑗+𝑚−𝑘⩽𝑚

Γ̃( 𝑗) ★ Υ̃( 𝑗+𝑚−𝑘)
ª®®®¬𝜔

𝑘
𝑙
,

where "𝑘 ← 𝑖 +𝑚 − 𝑗"

which is a polynomial equation of degree at most

2𝑚 in the challenges sub-sequence

(
𝜔𝑙

)𝑚+1
𝑙=1 . Thus,

by the Schwartz-Zippel lemma, with overwhelming

probability, equation obtained in the previous step

leads to

∀𝑘 ∈ ⟦0; 2𝑚⟧, Ψ𝑘 =

𝑚∑︁
𝑗=0

0⩽ 𝑗+𝑚−𝑘⩽𝑚

Γ̃( 𝑗) ★ Υ̃( 𝑗+𝑚−𝑘)

(Step5.6) In the particular case of 𝑘 =𝑚 + 1, property obtained

in previous step (Step5.5) leads to

Ψ𝑚+1 =
𝑚∑︁
𝑗=1

Γ̃( 𝑗) ★ Υ̃( 𝑗−1) .

But, we have

• 𝑐Ψ𝑚+1 = ComF𝑝𝜂
(
𝑐𝑘, 0 ; 0

)
by Hypo.H1 ; and

• 𝑐Ψ𝑚+1 = ComF𝑝𝜂
(
𝑐𝑘,Ψ𝑚+1 ; 𝜍𝑚+1

)
by definition

of Ψ𝑚+1 – see step (Step 2).
Therefore, the binding property of KS[F𝑝𝜂 ] leads to
Ψ𝑚+1 = 0 with overwhelming probability. Conse-

quently, the following equality holds:

0 =

𝑚∑︁
𝑗=1

Γ̃( 𝑗) ★ Υ̃( 𝑗−1) .

Results obtained in steps (Step 2) to (Step 5), give us the follow-
ing result, proving that, with overwhelming probability, we have

successfully extract a witness𝑤
def

=

(
Γ̃,−→𝜇 , Υ̃,−→𝜈

)
∈ Mat𝑛×𝑚 (F𝑝𝜂 ) ×

F𝑚𝑝𝜂 ×Mat𝑛×𝑚 (F𝑝𝜂 ) × F𝑚𝑝𝜂 such that

(
𝑐𝑘, 𝜒,𝑤

)
∈ RBGZA .

∃ Γ̃ def

=

(
Γ̃( 𝑗)

)𝑚
𝑗=1
∈ Mat𝑛×𝑚 (F𝑝𝜂 ), ∃−→𝜇 ∈ F𝑚𝑝𝜂 ,

∃ Υ̃ def

=

(
Υ̃( 𝑗)

)𝑚
𝑗=0
∈ Mat𝑛×𝑚 (F𝑝𝜂 ), ∃−→𝜈 ∈ F𝑚𝑝𝜂

cΓ̃ = ComMat𝑛×𝑚 (F𝑝𝜂 )
(
𝑐𝑘, Γ̃ ; −→𝜇

)
cΥ̃ = ComMat𝑛×𝑚 (F𝑝𝜂 )

(
𝑐𝑘, Υ̃ ; −→𝜈

)
0 =

𝑚∑
𝑗=1

Γ̃( 𝑗) ★ Υ̃( 𝑗−1)

Proof step→

↓ Property
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(
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ep

5.
6
)

Binding of
commitment

scheme
× 1 × 1 × 1 × 1

Schwartz-Zippel × 1

Property transfer
under adversarial

selection
Yes

Extractor uses
rewinding? Yes ()

Table 6: Assessment of cryptographic or probabilistic prop-
erties used to prove Knowledge Soundness of Zero Argument
protocol

□
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Zero-Knowledge
protocol Uses Rewinding? Needs Schwartz-Zippel? Needs Binding

property?
Uses Knowledge
Soundness?

Uses property transfer
under adversarial

selection

Single value product
argument (SVPA)

Yes: 2 valid proof

transcripts

Yes: × 1 Yes: × 4 No No

Zero argument (ZA) Yes: 2𝑚 + 1 valid proof

transcripts

Yes: × 1 Yes: × 4 No Yes: 1 × pairwise distincts

challenges

Hadamard product
argument (HPA)

Yes: 1 suitable commit

vector value

Yes: × (𝑚 + 1) Yes: × 1 Yes: 1 × EZA No

Product argument (PA) No No Yes: × 1 Yes: 1 × ESVPA and 1 ×
EHPA No

Multi-exponentiation
argument (MEA)

Yes: 2𝑚 valid proof

transcripts

No Yes: × 2 No Yes: 2 × pairwise distincts

challenges

Shuffle argument (SA) Yes: 𝑁 times for a total of

2𝑁 witnesses

Yes: × (𝑁 2 + 1) Yes: × 1 Yes: 𝑁 × EPA and 𝑁 ×
EMEA

Yes: 1 × pairwise distincts

challenges

Table 7: Quick overview of arguments needed to prove knowledge soundness
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