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A CRYPTOGRAPHIC DEFINITIONS
From now on, we abbreviate Probabilistic Polynomial-time Turing
Machine into PPTM.

A.1 Commitment schemes
For an infinite countable set X, we define the property Φ[X] as
follows

Φ[X] holds def⇐⇒


X

def

=
⋃
𝜂∈N∗

X(𝜂) ;

∀𝜂 ∈ N∗, Card(X(𝜂) ) < +∞
(
X(𝜂) is finite

)
;

and log
2
Card(X(𝜂) ) ⩾ 𝜂.

(Φ)
Let M be an infinite countable set of messages such that Φ[M]
holds and, for all 𝜂 ∈ N∗,

(
M(𝜂) , ⊗

)
is an abelian group (let us say

multiplicative). Let KS[M] be a tuple

KS[M] def=
〈
PM, SM,VM,GenM,ComM

〉
where

• For any set X ∈
{
PM, SM,VM

}
the property Φ[X] holds ;

• The PPTM algorithm GenM : N∗ −→ PM takes as input a

security parameter 𝜂 ∈ N∗ and outputs a commitment key

𝑐𝑘 ← GenM (𝜂) ∈ P
(𝜂)
M

;

• The PPTM algorithm ComM : PM ×M × SM −→ VM takes

as inputs a commitment key 𝑐𝑘 ∈ PM, a message 𝑚 ∈ M
and a random value 𝑟 ∈ SM. Then it outputs a commit value

𝑎 ← ComM
(
𝑐𝑘,𝑚 ; 𝑟

)
∈ VM. Besides, for all security parame-

ter 𝜂 ∈ N∗, we must have 𝑐𝑘 ∈ P(𝜂)
M

,𝑚 ∈ M(𝜂) , 𝑟 ∈ S(𝜂)
M

and

𝑎 ∈ V(𝜂)
M

.

Definition A.1 (Perfect hiding).
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Definition A.2 (Binding error).

Definition A.3 (Homomorphic commitment scheme). We say that

the tuple KS[M] is a homomorphic commitment scheme for the
message setM when the following properties hold

• For all security parameter𝜂 ∈ N∗, the randomness space
(
S
(𝜂)
M

, ⊕
)

is an abelian group (let us say additive) and the commit value

space
(
V
(𝜂)
M

, ⊙
)
is also an abelian group (let us say multiplica-

tive) ;

• KS[M] is perfectly hiding ;

• There exists a negligible function 𝛿 : N∗ −→ [0, 1] such that

KS[M] is computationally binding with binding error 𝛿 ;

• For all security parameter 𝜂 ∈ N∗, for all commitment key

parameter 𝑐𝑘 ∈ P(𝜂)
M

, the following function 𝜙
(𝜂)
𝑐𝑘

is a group
homorphism:

𝜙
(𝜂)
𝑐𝑘

:

(
M(𝜂) , ⊗

)
×

(
S
(𝜂)
M

, ⊕
)
−→

(
V
(𝜂)
M

, ⊙
)

(𝑚, 𝑟 ) ↦−→ ComM(𝜂)
(
𝑐𝑘,𝑚 ; 𝑟

)
A.2 Zero-Knowledge proofs
In all this subsection, we fix a natural number 𝜇 ∈ N and a relation

R ⊆ PPR × XR ×WR . Let ZK(𝜇) [R]
def

=
(
I,P,V

)
be a (2𝜇 + 1)-

move interactive protocol for R.

Definition A.4 (Perfect completeness). The protocol ZK(𝜇) [R] is
said to be perfectly complete when, for all PPTM adversary A, the

following property holds:

∀𝜂 ∈ N∗, Pr𝜌∈T𝜂
[
1←G CompletenessA

ZK(𝜇) [R]
(
𝜂, 𝜌

) ]
= 0,

where the cryptographic completeness game is defined in Game 1.

CompletenessA
ZK(𝜇) [R]

(
𝜂, (𝜌ℎ, 𝜌𝑎)

)
– Completeness

𝜎 ← I(𝜂 ; 𝜌ℎ) ;
(𝑥,𝑤) ← A(𝜂, 𝜎 ; 𝜌𝑎) ;
𝔱𝔯 ←

(
P(𝑤) ⇌(𝜇)R V

)
(𝜂, 𝜎, 𝑥 ; 𝜌ℎ) ;

𝑏 ← 𝑣
𝜎, 𝑥
R

(
𝔱𝔯

)
∧ ¬

(
𝜑R

(
(𝜎, 𝑥,𝑤)

) )
;

returns 𝑏 ;

Game 1: Cryptographic completeness game for interactive
protocols

Definition A.5 (Public coin). The protocol ZK(𝜇) [R] is said to

be public coin when, for all security parameter 𝜂 ∈ N∗, for all
public parameter 𝜎 ∈ PPR , for all public statement 𝑥 ∈ XR , for
all witness𝑤 ∈ WR and for all PPTM prover P∗ (both honest or

dishonest), the following property holds

∀ 𝑖 ∈ ⟦1; 𝜇⟧, 𝑚2𝑖 =

(
𝑐𝑖

$← Ch𝑖R
)
,

1
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where (𝑚𝑖 )2𝜇+1𝑖=1

def

=

(
P∗ (𝑤) ⇌(𝜇)R V

)
(𝜂, 𝜎, 𝑥) is an interaction of

ZK(𝜇) [R] with the honest verifierV .

Definition A.6 (Soundness error). Let A be a PPTM adversary.

We define the soundness error ofV against the adversarial prover
A, noted 𝜀A , to be the following function

𝜀A : N∗ −→ [0, 1]
𝜂 ↦−→ Pr𝜌∈T𝜂

[
1←G SoundnessA

ZK(𝜇) [R]
(
𝜂, 𝜌

) ]
,

where the cryptographic soundness game is defined in Game 2.

SoundnessA
ZK(𝜇) [R]

(
𝜂, (𝜌ℎ, 𝜌𝑎)

)
– Soundness

𝜎 ← I(𝜂 ; 𝜌ℎ) ;
𝑥 ← A(𝜂, 𝜎 ; 𝜌𝑎) ;
𝔱𝔯 ←

(
A(𝜌𝑎) ⇌(𝜇)R V(𝜌ℎ)

)
(𝜂, 𝜎, 𝑥) ;

𝑏 ← 𝑣
𝜎, 𝜒

R
(
𝔱𝔯

)
∧ 𝑥 ∉ L𝜎 (R) ;

returns 𝑏 ;

Game 2: Cryptographic soundness game for interactive pro-
tocols

Definition A.7 (Knowledge soundness). The protocol ZK(𝜇) [R] is
said to be knowledge sound with knowledge error 𝜅 : N∗ −→ [0, 1]
when, for all deterministic Polynomial-time adversarial proverP∗,
there exists a PPTM algorithm ER , called the knowledge extractor,
such that, for all PPTM adversaryA, and for all security parameter

𝜂 ∈ N∗, the following lower bound holds:

Pr𝜌∈T𝜂
[
1←G KnowSoundA, P∗

ZK(𝜇) [R], ER

(
𝜂, 𝜌

)
𝜀P∗ ∉ negl(𝜂)

]
⩾ 1 − 𝜅 (𝜂),

where the cryptographic knowledge soundness game is defined in

Game 3.

KnowSoundA, P∗
ZK(𝜇) [R], ER

(
𝜂, (𝜌ℎ, 𝜌𝑎)

)
– Knowledge soundness

𝜎 ← I(𝜂 ; 𝜌ℎ) ;
(𝑥, 𝜌∗) ← A(𝜂, 𝜎 ; 𝜌𝑎) ;
𝑤 ← EP

∗ (𝜌∗),V(𝜌ℎ)
R (𝜂, 𝜎, 𝑥) ;

𝑏 ← 𝜑R
(
(𝜎, 𝑥,𝑤)

)
;

returns 𝑏 ;

Game 3: Cryptographic knowledge soundness game for in-
teractive protocols

Definition A.8 (Perfect Honest-Verifier Zero-Knowledge). The pro-
tocolZK(𝜇) [R] is said to be perfectly Honest-Verifier Zero-Knowledge
when there exists a PPTM algorithm SimR , called the simulator,
such that, for all PPTM adversary A, the following property holds

∀𝜂 ∈ N∗, AdvHVZK

[
A

�� ZK(𝜇) [R], SimR ] (𝜂) = 0,

where the cryptographic Honest-Verifier Zero-Knowledge game is

defined in Game 4 and the advantage of the adversary A against
the HVZK game is defined as follows

∀𝜂 ∈ N∗, AdvHVZK

[
A

�� ZK(𝜇) [R], SimR ] (𝜂) def=����� 2 · Pr𝜌∈T𝜂 [
1←G HVZKA

ZK(𝜇) [R], ER

(
𝜂, 𝜌 ; 𝛽

) ]
− 1

�����.
Definition A.9 (Zero-Knowledge argument of knowledge). The

protocolZK(𝜇) [R] is said to be a zero-knowledge argument of knowl-
edge for the relation R when the following properties hold

• ZK(𝜇) [R] is perfectly complete ;
• ZK(𝜇) [R] is public coin ;

• There exists a negligible function 𝜅 : N∗ −→ [0, 1] such that

ZK(𝜇) [R] is knowledge sound with knowledge error 𝜅 ;

• ZK(𝜇) [R] is perfectly Honest-Verifier Zero-Knowledge.

B SPECIFICATION AND CRYPTOGRAPHIC
PROOFS OF BAYER-GROTH PROTOCOL

B.1 Shuffle argument protocol
We define

RBGSA ⊆
(
G𝑛+1𝑝𝜂

× PKCS
)︸               ︷︷               ︸

Public parameter set

×
(
H𝑁𝑝𝜂 × H

𝑁
𝑝𝜂

)︸          ︷︷          ︸
Statement set

×
(
𝔖𝑁 × F𝑁𝑝𝜂

)︸        ︷︷        ︸
Witness set

to be the shuffle relation defined as follows:(
(𝑐𝑘, 𝑝𝑘), (c, c′), (𝜋, r)

)
∈ RBGSA

def⇐⇒ c′ = EncCS (𝑝𝑘, 1 ; r) ⊙ c𝜋

Hence, we define a 13-move shuffle argument protocolZK(6) [RBGSA ]
(Protocol 1) following the definition given in [1].

Theorem B.1 (Knowledge soundness of ZK(6) [RBGSA ]). The
13-move shuffle argument protocol ZK(6) [RBGSA ] is knowledge sound.

Proof. We define the extractor ESA for the Bayer-Groth shuffle

argument to be the algorithm defined as follows in Extractor 2.
Let 𝑁 = 𝑛𝑚 ∈ N∗ be a natural number. Let 𝜂 ∈ N∗ be a security

parameter. Let P∗ be a polynomial-time (in 𝜂) and deterministic

adversarial prover. Let 𝜎 = (𝑐𝑘, 𝑝𝑘) ← ISA (𝜂) be an honest public

parameter for the shuffle relation RBGSA . Let A be a probabilistic

and polynomial-time adversary. Let 𝜒 ← A(𝜂, 𝜎) be an adversarial

statement where

𝜒
def

= (c, c′) ∈ H𝑁𝑝𝜂 × H
𝑁
𝑝𝜂
.

Then, the adversary A calls the extractor ESA on inputs 𝜎 and 𝜒

with access to oracles P∗ andVSA and obtains

𝜏SA
def

=

(
c𝐴,

(
𝑥𝑙 , c

(𝑙)
𝐵

, (𝑦𝑙 , 𝑧𝑙 ),
(
c(𝑙)
𝐷

, c(𝑙)−𝑧 , 𝛽
(𝑙) ,𝐶 (𝑙)

)
,

(
Γ (𝑙) , v(𝑙)

)
︸       ︷︷       ︸
Witness of the

Product Argument

,

(
𝐵 (𝑙) , t(𝑙) , 𝜚 (𝑙)

)
︸             ︷︷             ︸

Witness of the Multi-
Exponentiation Argument

)𝑁
𝑙=1

)
.

2
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HVZKA
ZK(𝜇) [R], SimR

(
𝜂, (𝜌ℎ, 𝜌𝑎) ; 𝛽

)
– Honest-Verifier Zero-Knowledge

Case 𝛽 = 0 – Real world Case 𝛽 = 1 – Simulated world
𝜎 ← I(𝜂 ; 𝜌ℎ) ; 𝜎 ← I(𝜂 ; 𝜌ℎ) ;
(𝑥,𝑤, 𝜌∗) ← A(𝜂, 𝜎 ; 𝜌𝑎) ; (𝑥,𝑤, 𝜌∗) ← A(𝜂, 𝜎 ; 𝜌𝑎) ;
𝔱𝔯 ←

(
P(𝑤 ; 𝜌ℎ) ⇌

(𝜇)
R V(𝜌

∗)
)
(𝜂, 𝜎, 𝑥) ; 𝔱𝔯 ← SimR (𝜂, 𝜎, 𝑥, 𝜌∗ ; 𝜌ℎ) ;

𝑏 ← 𝑣
𝜎, 𝑥
R

(
𝔱𝔯

)
∧ 𝜑R

(
(𝜎, 𝑥,𝑤)

)
; 𝑏 ← 𝑣

𝜎, 𝑥
R

(
𝔱𝔯

)
∧ 𝜑R

(
(𝜎, 𝑥,𝑤)

)
;

𝑔𝛽 ← A(𝔱𝔯 ; 𝜌𝑎) ; 𝑔𝛽 ← A(𝔱𝔯 ; 𝜌𝑎) ;
returns

(
𝑏 ∧ ¬𝑔𝛽

)
; // ¬𝑔𝛽 = 1 ⇐⇒ 𝑔𝛽 = 0 = 𝛽 . returns

(
𝑏 ∧ 𝑔𝛽

)
; // 𝑔𝛽 = 1 = 𝛽 .

Game 4: Cryptographic Honest-Verifier Zero-Knowledge game for interactive protocols

(Step 1) – Obtain1 the permutation witness 𝜋 .
(Step1.1) By the knowledge soundness of the product argument pro-

tocol (see Theorem B.3), we have

∀ 𝑙 ∈ ⟦1;𝑁⟧,
𝑚∏
𝑗=1

𝑛∏
𝑖=1

Γ
(𝑙)
𝑖, 𝑗

= 𝛽 (𝑙) and

c(𝑙)
𝐷
⊙ c(𝑙)−𝑧 = ComMat𝑛×𝑚 (F𝑝𝜂 )

(
𝑐𝑘, Γ (𝑙) ; v(𝑙)

)
.

Because c(𝑙)−𝑧 ⊙c(𝑙)𝑧 = ComMat𝑛×𝑚 (F𝑝𝜂 )
(
𝑐𝑘, 𝑍 (𝑙)−𝑍 (𝑙) ; 0

)
=

1 and because ⊙ is associative, we have

c(𝑙)
𝐷

= c(𝑙)
𝐷
⊙ c(𝑙)−𝑧 ⊙ c(𝑙)𝑧

=

(
ComMat𝑛×𝑚 (F𝑝𝜂 )

(
𝑐𝑘, Γ (𝑙) ; v(𝑙)

) )
⊙

(
ComMat𝑛×𝑚 (F𝑝𝜂 )

(
𝑐𝑘, 𝑍 (𝑙) ; 0

) )
= ComMat𝑛×𝑚 (F𝑝𝜂 )

(
𝑐𝑘, Γ (𝑙) + 𝑍 (𝑙) ; v(𝑙)

)
.

Thus, if we define, for all 𝑙 ∈ ⟦1;𝑁⟧, 𝑖 ∈ ⟦1;𝑛⟧ and 𝑗 ∈
⟦1;𝑚⟧, 𝑑 (𝑙)

𝑘
= Γ
(𝑙)
𝑖, 𝑗
+ 𝑧𝑙 where 𝑘 = ( 𝑗 − 1)𝑛 + 𝑖 , the pair

of vectors

(
d(𝑙) , v(𝑙)

)
∈ F𝑁𝑝𝜂 × F

𝑚
𝑝𝜂

is an oppening of the

commit value c(𝑙)
𝐷

.

(Step1.2) Using the definition of 𝛽 (𝑙) given by Extractor 2 at line 7,

previous results obtained in step (Step1.1) lead to

𝑁∏
𝑘=1

(
𝑑
(𝑙)
𝑘
− 𝑧𝑙

)
=

𝑁∏
𝑘=1

(
𝑦𝑙𝑘 + (𝑥𝑙 )𝑘 − 𝑧𝑙

)
,

which is a polynomial equation of degree 𝑁 in 𝑧𝑙 . By the

Schwartz-Zippel lemma, we conclude the following equality
of polynomials

𝑁∏
𝑘=1

(
𝑑
(𝑙)
𝑘
− 𝑋

)
=

𝑁∏
𝑘=1

(
𝑦𝑙𝑘 + (𝑥𝑙 )𝑘 − 𝑋

)
.

However, polynomials

(
𝑑
(𝑙)
𝑘
− 𝑋

)
and

(
𝑦𝑙𝑘 + (𝑥𝑙 )𝑘 − 𝑋

)
are irreductible (degree 1) and the decomposition in irre-

ductible polynomials is unique. Consequently, there exists

a permutation 𝜋 (𝑙) ∈ 𝔖𝑁 such that

∀𝑘 ∈ ⟦1;𝑁⟧, 𝑑 (𝑙)
𝑘

= 𝑦𝑙𝜋
(𝑙) (𝑘) + (𝑥𝑙 )𝜋

(𝑙 ) (𝑘) .

1
Using line 9 of Extractor 2.

At this point, we have obtained an opening of commit

value c(𝑙)
𝐷

. It is not this commit value we want to open but

c𝐴 . Recalls that commit value c(𝑙)
𝐷

is computed this way:

c(𝑙)
𝐷

def

=
(
c𝐴 ↑ 𝑦𝑙

)
⊙ c(𝑙)

𝐵
. This is precisely why we also need

to call extractor EMEA to obtain an opening of c(𝑙)
𝐵

.

(Step1.3) By the knowledge soundness of the multi-exponentiation

argument protocol (see Theorem B.2), we have

∀ 𝑙 ∈ ⟦1;𝑁⟧, c(𝑙)
𝐵

= ComMat𝑛×𝑚 (F𝑝𝜂 )
(
𝑐𝑘, 𝐵 (𝑙) ; t(𝑙)

)
and

𝐶 (𝑙) = EncCS (𝑝𝑘, 1 ; 𝜚 (𝑙) ) ·
𝑁∏
𝑘=1

(
𝑐 ′
𝑘

)𝑏 (𝑙 )
𝑘

where, for 𝑖 ∈ ⟦1;𝑛⟧ and 𝑗 ∈ ⟦1;𝑚⟧, 𝑏 (𝑙)( 𝑗−1)𝑛+𝑖
def

= 𝐵
(𝑙)
𝑖, 𝑗

;

i.e. we have an opening for commit value c(𝑙)
𝐵

. Then, for all

𝑙 ∈ ⟦1;𝑁⟧, as c(𝑙)
𝐷

=
(
c𝐴 ↑ 𝑦𝑙

)
⊙c(𝑙)

𝐵
with𝑦𝑙 ≠ 0, properties

over ⊙ and ↑ lead to the following equality

c𝐴 = ComMat𝑛×𝑚 (F𝑝𝜂 )
©­­«𝑐𝑘,

©­«
𝑑
(𝑙)
𝑘
− 𝑏 (𝑙)

𝑘

𝑦𝑙

ª®¬
𝑁

𝑘=1

;

1

𝑦𝑙

(
v(𝑙) − t(𝑙)

)ª®®¬ .
Hence, for all 𝑙, 𝑘 ∈ ⟦1;𝑁⟧ and 𝑖 ∈ ⟦1;𝑚⟧, we define(
𝑎
(𝑙)
𝑘

, 𝑠
(𝑙)
𝑖

)
∈ F2𝑝𝜂 such that

𝑑
(𝑙)
𝑘

def

= 𝑦𝑙𝑎
(𝑙)
𝑘
+ 𝑏 (𝑙)

𝑘
and 𝑣

(𝑙)
𝑖

def

= 𝑦𝑙𝑠
(𝑙)
𝑖
+ 𝑡 (𝑙)

𝑖
.

(Step1.4) Now, let us suppose just for a moment that we have:

∃ 𝑙, 𝑙 ′ ∈ ⟦1;𝑁⟧, a(𝑙) ≠ a(𝑙
′) .

But, by the previous point, the following property holds:

c𝐴 = ComMat𝑛×𝑚 (F𝑝𝜂 )
(
𝑐𝑘, a(𝑙) ; −→𝜍 (𝑙)

)
= ComMat𝑛×𝑚 (F𝑝𝜂 )

(
𝑐𝑘, a(𝑙

′)
;
−→𝜍 (𝑙

′) ) .
Thus, as the commitment scheme KS[Mat𝑛×𝑚 (F𝑝𝜂 )] is
computationally binding, with overwhelming probability,

we conclude a contradiction. Therefore, we have shown

that the following property holds:

∀ 𝑙, 𝑙 ′ ∈ ⟦1;𝑁⟧, a(𝑙) = a(𝑙
′) .

We denote this common value a ∈ F𝑁𝑝𝜂 and we have found

an opening

(
a,−→𝜍

)
∈ F𝑁𝑝𝜂 ×F

𝑚
𝑝𝜂

independent from challenges
3
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Protocol 1: 13-move zero-knowledge protocol ZK(6) [RBGSA ] for the Bayer-Groth proof of shuffle

Public Input :A natural number 𝑁 = 𝑛𝑚 ∈ N∗. A security parameter 𝜂 ∈ N∗. A commitment key 𝑐𝑘 = (𝑔, g) ∈ G𝑛+1𝑝𝜂
for the commitment scheme

KS[Mat𝑛×𝑚 (F𝑝𝜂 ) ]. A public key 𝑝𝑘 ∈ PKCS of the cryptosystem CS. Two lists of ciphertexts c = (𝑐𝑖 )𝑁𝑖=1 ∈ H𝑁𝑝𝜂 and

c′ = (𝑐′
𝑖
)𝑁
𝑖=1
∈ H𝑁𝑝𝜂 .

Private Input :A permutation 𝜋 ∈ 𝔖𝑁 and a vector of random values r
$← F𝑁𝑝𝜂 such that c′ = EncCS (𝑝𝑘, 1 ; r) ⊙ c𝜋 .

Begin protocol

(1) (Commit message) The prover PBG chooses a vector of random values
−→𝜍 $← F𝑚𝑝𝜂 and set a← (𝜋 (𝑖))𝑁

𝑖=1
∈ F𝑁𝑝𝜂 . Then, PBG computes the

commit value c𝐴 ← ComMat𝑛×𝑚 (F𝑝𝜂 )
(
𝑐𝑘, a ; −→𝜍

)
∈ G𝑚𝑝𝜂 and sends it to the verifier VBG.

(2) (Challenge message) VBG chooses uniformly at random a challenge 𝑥
$← F∗𝑝𝜂 and sends it to PBG.

(3) (Commit message) PBG chooses a vector of random values t
$← F𝑚𝑝𝜂 and set b← (𝑥𝜋 (𝑖 ) )𝑁

𝑖=1
∈ F𝑁𝑝𝜂 . Then, PBG computes the commit value

c𝐵 ← ComMat𝑛×𝑚 (F𝑝𝜂 )
(
𝑐𝑘, b ; t

)
∈ G𝑚𝑝𝜂 and sends it to VBG.

(4) (Challenge message) VBG chooses uniformly at random two challenges 𝑦
$← F∗𝑝𝜂 and 𝑧

$← F∗𝑝𝜂 then sends them back to PBG.
(5-11) (Product argument call) Let c−𝑧 be the commit value defined by c−𝑧 ← ComMat𝑛×𝑚 (F𝑝𝜂 )

(
𝑐𝑘, (−𝑧, . . . ,−𝑧)︸          ︷︷          ︸

𝑁 = 𝑛𝑚 times

; 0︸︷︷︸
∈ F𝑚𝑝𝜂

)
∈ G𝑚𝑝𝜂 . The prover PBG

computes the commit value c𝐷 ← (c𝐴 ↑ 𝑦) ⊙ 𝑐𝐵 ∈ G𝑚𝑝𝜂 , the vector d← 𝑦a + b ∈ F𝑁𝑝𝜂 and the vector of random values v← 𝑦
−→
𝜍 + t ∈ F𝑚𝑝𝜂 .

Then, both prover PBG and verifier VBG engage in the 7-move zero-knowledge protocol ZK(3) [RBGPA ] for the relation R
BG
PA with public parameter

𝜎PA = 𝑐𝑘 , public statement 𝑥PA =

(
c𝐷 ⊙ c−𝑧 ,

𝑁∏
𝑖=1
(𝑦𝑖 + 𝑥𝑖 − 𝑧)

)
, and private statement 𝑤PA =

(
d − z, v

)
. We denote by 𝜏PA the proof transcript

obtained at the end of this 7-move protocol.

(11-13) (Multi-exponentiation argument call) PBG computes 𝜚 ← − ⟨r | b⟩ ∈ F𝑝𝜂 and sets x← (𝑥𝑖 )𝑁
𝑖=1
∈ F𝑁𝑝𝜂 . Then, both prover PBG and verifier

VBG engage in the Σ-protocol Σ
[
RBGMEA

]
for the relation RBGMEA with public parameter 𝜎MEA = (𝑐𝑘, 𝑝𝑘) , public statement 𝑥MEA = (c′, c ⊛ x, c𝐵 ) ,

and private statement 𝑤MEA =
(
b, t, 𝜚

)
. We denote by 𝜏MEA the proof transcript obtained at the end of this Σ-protocol.

(14) (Conclusion’s bit) The verifier VBG accepts if and only if properties 𝑣
𝜎PA, 𝑥PA
PA

(
𝜏PA

)
and 𝑣

𝜎MEA, 𝑥MEA
MEA

(
𝜏MEA

)
hold.

Extractor 2: Extractor ESA for the 13-move zero-knowledge protocol ZK(6) [RBGSA ] of the Bayer-Groth shuffle argument

Input :A security parameter 𝜂 ∈ N∗. A natural number 𝑁 = 𝑛𝑚 ∈ N∗. A public parameter (𝑐𝑘, 𝑝𝑘) ∈ G𝑛+1𝑝𝜂
× PKCS for the

Bayer-Groth shuffle relation RBGSA . A statement (c, c′) ∈
(
H𝑁𝑝𝜂

)
2

.

Blackbox access to :An adversarial prover P∗ and an honest verifier VSA.

1 Begin extractor

2 calls P∗ to get c𝐴 ∈ G𝑚𝑝𝜂 ; // State at the end of this line: st1
def

=
[
(𝑐𝑘, 𝑝𝑘) ; (c, c′) ; c𝐴

]
3 rewinds P∗ and VSA at state st1 for 𝑙 = 1 to 𝑁

4 calls VSA to get 𝑥𝑙
$← F∗𝑝𝜂 \ {𝑥𝑖 }

𝑙−1
𝑖=1

;

5 calls P∗ to get c(𝑙 )
𝐵
∈ G𝑚𝑝𝜂 ;

6 calls VSA to get 𝑦𝑙 , 𝑧𝑙
$← F∗𝑝𝜂 ;

7 computes



c(𝑙 )
𝐷

←
(
c𝐴 ↑ 𝑦𝑙

)
⊙ c(𝑙 )

𝐵
∈ G𝑚𝑝𝜂

c(𝑙 )−𝑧 ← ComMat𝑛×𝑚 (F𝑝𝜂 )
(
𝑐𝑘,−𝑍 (𝑙 ) ; 0

)
∈ G𝑚𝑝𝜂 where 𝑍 (𝑙 ) ← (𝑧𝑙 )𝑁𝑖=1 ∈ Mat𝑛×𝑚 (F𝑝𝜂 )

𝛽 (𝑙 ) ←
𝑁∏
𝑘=1

(
𝑦𝑙𝑘 + (𝑥𝑙 )𝑘 − 𝑧𝑙

)
∈ F𝑝𝜂

𝐶 (𝑙 ) ←
𝑁∏
𝑘=1

(𝑐𝑘 ) (𝑥𝑙 )
𝑘 ∈ H𝑝𝜂

;

8 calls EMEA with oracles P∗ and VSA on inputs
(
(𝑐𝑘, 𝑝𝑘),

(
(c′

𝑖
)𝑚
𝑖=1

,𝐶 (𝑙 ) , c(𝑙 )
𝐵

))
to get

(
𝐵 (𝑙 ) , t(𝑙 ) , 𝜚 (𝑙 )

)
∈

(
Mat𝑛×𝑚 (F𝑝𝜂 ) × F𝑚𝑝𝜂 × F

𝑁
𝑝𝜂

)
;

9 calls EPA with oracles P∗ and VSA on inputs
(
𝑐𝑘,

(
c(𝑙 )
𝐷
⊙ c(𝑙 )−𝑧 , 𝛽 (𝑙 )

) )
to get

(
Γ (𝑙 ) , v(𝑙 )

)
∈

(
Mat𝑛×𝑚 (F𝑝𝜂 ) × F𝑚𝑝𝜂

)
;

10 returns 𝜏SA
def

=

(
c𝐴,

(
𝑥𝑙 , c

(𝑙 )
𝐵

, (𝑦𝑙 , 𝑧𝑙 ),
(
c(𝑙 )
𝐷

, c(𝑙 )−𝑧 , 𝛽 (𝑙 ) ,𝐶 (𝑙 )
)
,

(
Γ (𝑙 ) , v(𝑙 )

)
,

(
𝐵 (𝑙 ) , t(𝑙 ) , 𝜚 (𝑙 )

))𝑁
𝑙=1

)
.

4
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(𝑥𝑙 )𝑁𝑙=1 of the commit value c𝐴:

c𝐴 = ComMat𝑛×𝑚 (F𝑝𝜂 )
(
𝑐𝑘, a ; −→𝜍

)
.

(Step1.5) Thanks to step (Step1.2), step (Step1.3) and step (Step1.4),
we obtain the following equalities

∀ 𝑙, 𝑘 ∈ ⟦1;𝑁⟧, 𝑦𝑙𝜋 (𝑙) (𝑘) + (𝑥𝑙 )𝜋
(𝑙 ) (𝑘) = 𝑦𝑙𝑎𝑘 + 𝑏

(𝑙)
𝑘

.

Actually, these equalities are 𝑁 polynomial equations of

degree 1 in𝑦𝑙 , for each 𝑙 ∈ ⟦1;𝑁⟧. Thus, by𝑁 2
applications

of the Schwartz-Zippel lemma, we obtain

∀ 𝑙, 𝑘 ∈ ⟦1;𝑁⟧, 𝑎𝑘 = 𝜋 (𝑙) (𝑘) and 𝑏 (𝑙)
𝑘

= (𝑥𝑙 )𝜋
(𝑙 ) (𝑘) .

Consequently, as the sequence (𝑎𝑘 )𝑁𝑘=1 is independent from
challenges (𝑥𝑙 )𝑁𝑙=1, so it goes for the permutation sequence(
𝜋 (𝑙)

)𝑛
𝑙=1, we denote by 𝜋 this common value. Putting all

together, we conclude the following property:

∃ 𝜋 ∈ 𝔖𝑁 , ∃−→𝜍 ∈ F𝑚𝑝𝜂 ,
c𝐴 = ComMat𝑛×𝑚 (F𝑝𝜂 )

(
𝑐𝑘,

(
𝜋 (𝑘)

)𝑁
𝑘=1 ;

−→𝜍 (𝑙)
)
.

(Step 2) – Construct2 the vector of random values r.
(Step2.1) We have seen in step (Step1.3) that the following property

holds:

∀ 𝑙 ∈ ⟦1;𝑁⟧, 𝐶 (𝑙) = EncCS (𝑝𝑘, 1 ; 𝜚 (𝑙) ) ·
𝑁∏
𝑘=1

(
𝑐 ′
𝑘

)𝑏 (𝑙 )
𝑘 . (Φ)

Besides, step (Step1.5) gives us the following property:

∀𝑘, 𝑙 ∈ ⟦1;𝑁⟧, 𝑏 (𝑙)
𝑘

= (𝑥𝑙 )𝜋 (𝑘) . (Ψ)

Thus, Eq. (Φ) becomes, by using Eq. (Ψ) and the defini-

tion of 𝐶 (𝑙) given by Extractor 2 at line 7, the following

property:

∀ 𝑙 ∈ ⟦1;𝑁⟧,
𝑁∏
𝑘=1

(𝑐𝑘 ) (𝑥𝑙 )
𝑘

= EncCS (𝑝𝑘, 1 ; 𝜚 (𝑙) ) ·
𝑁∏
𝑘=1

(
𝑐 ′
𝑘

) (𝑥𝑙 )𝜋 (𝑘 )
i.e.

𝑁∏
𝑘=1

(𝑐𝑘 ) (𝑥𝑙 )
𝑘

= EncCS (𝑝𝑘, 1 ; 𝜚 (𝑙) ) ·
𝑁∏
𝑘=1

(
𝑐 ′
𝜋−1 (𝑘)

) (𝑥𝑙 )𝑘
(Υ)

(Step2.2) Let 𝑋 ∈ Mat𝑛×𝑚 (F𝑝𝜂 ) be the matrix defined by

𝑋
def

=

©­­­­«
𝑥1 𝑥2 · · · 𝑥𝑁
𝑥2
1

𝑥2
2
· · · 𝑥2

𝑁
.
.
.

.

.

.
. . .

.

.

.

𝑥𝑁
1

𝑥𝑁
2
· · · 𝑥𝑁

𝑁

ª®®®®¬
.

We notice that this matrix 𝑋 is in fact a Vandermonde

matrix of parameters the challenges (𝑥𝑙 )𝑁𝑙=1. Each challenge
of the sequence (𝑥𝑙 )𝑁𝑙=1 is generated independently and
uniformly at random in F∗𝑝𝜂 (challenges are computed by

2
Using line 8 of Extractor 2.

the honest verifierVBG). In particular, with overwhelming
probability3, the following property holds:

𝑁−1∧
𝑙=1

𝑁∧
𝑝 = 𝑙+1

(𝑥𝑙 ≠ 𝑥𝑝 ) .

Meaning that the Vandermonde matrix 𝑋 is invertible.

(Step2.3) On another hand, we denote, for all 𝑙 ∈ ⟦1;𝑁⟧, X(𝑙) the
𝑙-th column of the matrix𝑋 , we notice that Eq. (Υ) becomes

∀ 𝑖 ∈ ⟦1;𝑁⟧, c ⊛ X(𝑙) = EncCS (𝑝𝑘, 1 ; 𝜚 (𝑙) ) ·
(
c′
𝜋−1 ⊛ X(𝑙)

)
.

Thus
4
, previous equation becomes

c ⊛ 𝑋 =

(
EncCS (𝑝𝑘, 1 ; −→𝜚 )

)
⊙

(
c′
𝜋−1 ⊛ 𝑋

)
,

where
−→𝜚 def

=
(
𝜚 (𝑙)

)𝑁
𝑙=1 ∈ F

𝑁
𝑝𝜂
. As

• 𝑋 is invertible,

•

(
c ⊛ 𝑋

)
⊛ 𝑋−1 = c ⊛

(
𝑋𝑋−1

)
= c ⊛ 𝐼𝑁 ,

5
and

• c ⊛ 𝐼𝑁 = c, 6

we conclude

c =

((
EncCS (𝑝𝑘, 1 ; −→𝜚 )

)
⊙

(
c′
𝜋−1 ⊛ 𝑋

))
⊛ 𝑋−1

Next, because the following property

∀𝑛 ∈ N∗, ∀x, y ∈ H𝑛𝑝𝜂 , ∀𝑀 ∈ Mat𝑛 (F𝑝𝜂 ),(
x ⊙ y

)
⊛ 𝑀 =

(
x ⊛ 𝑀

)
⊙

(
y ⊛ 𝑀

)
3

Comment [MC1]: Surely we have to use the property transfer

under adversarial selection here!

4
Let 𝑛 ∈ N∗ be a natural number. Let x ∈ H𝑝𝜂 be a ciphertexts vector of dimension

𝑛 and let𝑀 ∈ Mat𝑛 (F𝑝𝜂 ) be a square matrix of dimension 𝑛 × 𝑛. We extend the

function ⊛ : H𝑛𝑝𝜂 × F
𝑛
𝑝𝜂
−→ H𝑝𝜂 for matrix with coefficients in F𝑝𝜂 as follows:

x ⊛ 𝑀
def

=

(
x ⊛ M( 𝑗 )

)𝑛
𝑗=1
∈ H𝑛𝑝𝜂 ,

where M( 𝑗 ) is the 𝑗 -th column of𝑀 .

5
Let 𝑛 ∈ N∗ be a natural number. Let x ∈ H𝑛𝑝𝜂 be a ciphertexts vector of dimension 𝑛

and let𝐴, 𝐵 ∈ Mat𝑛 (F𝑝𝜂 ) be two square matrix of dimensions 𝑛 × 𝑛. By definition

of ⊛, we have(
x ⊛ 𝐴

)
⊛ 𝐵 =

( (
x ⊛ 𝐴

)
⊛ B( 𝑗 )

)𝑛
𝑗=1

=

(
𝑛∏

𝑘=1

(
x ⊛ 𝐴

)𝑏𝑘,𝑗
𝑘

)𝑛
𝑗=1

=

(
𝑛∏

𝑘=1

(
x ⊛ A(𝑘 )

)𝑏𝑘,𝑗 )𝑛
𝑗=1

=
©­«

𝑛∏
𝑘=1

(
𝑛∏
𝑖=1

(𝑥𝑖 )𝑎𝑖,𝑘
)𝑏𝑘,𝑗 ª®¬

𝑛

𝑗=1

=

(
𝑛∏

𝑘=1

𝑛∏
𝑖=1

(𝑥𝑖 )𝑎𝑖,𝑘𝑏𝑘,𝑗
)𝑛
𝑗=1

=
©­«

𝑛∏
𝑖=1

(𝑥𝑖 )
𝑛∑

𝑘=1
𝑎𝑖,𝑘𝑏𝑘,𝑗 ª®¬

𝑛

𝑗=1

=

(
x ⊛ (𝐴𝐵) ( 𝑗 )

)𝑛
𝑗=1

= x ⊛ (𝐴𝐵) . □

6
Let 𝑛 ∈ N∗ be a natural number. Let x ∈ H𝑛𝑝𝜂 be a ciphertexts vector of dimension

𝑛 and let 𝐼𝑛 ∈ Mat𝑛 (F𝑝𝜂 ) be the identity square matrix of dimensions 𝑛 ×𝑛: for all
𝑖, 𝑗 ∈ ⟦1;𝑛⟧, (𝐼𝑛)𝑖,𝑗 = 𝛿𝑖 𝑗 the Kroenecker symbol. By definition of ⊛, we have

x ⊛ 𝐼𝑁 =

(
x ⊛ I(𝑖 )

𝑁

)𝑁
𝑖=1

=

(
𝑛∏
𝑗=1

(𝑥 𝑗 )𝛿𝑗𝑖
)𝑁
𝑖=1

=
(
𝑥𝑖

)𝑁
𝑖=1

= x. □

5
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holds
7
, it leads to

c =

((
EncCS (𝑝𝑘, 1 ; −→𝜚 )

)
⊛ 𝑋−1

)
⊙

((
c′
𝜋−1 ⊛ 𝑋

)
⊛ 𝑋−1

)
=

((
EncCS (𝑝𝑘, 1 ; −→𝜚 )

)
⊛ 𝑋−1

)
⊙ c′

𝜋−1 .

Finally, we use:

(1) the following identity
8(

EncCS (𝑝𝑘, 1 ; −→𝜚 )
)
⊛ 𝑋−1 = EncCS

(
𝑝𝑘, 1 ⊛ 𝑋−1 ; (𝑋−1)𝑇 · −→𝜚

)
,

(2) and the property
9 1 ⊛ 𝑋−1 = 1,

to obtain

c = EncCS

(
𝑝𝑘, 1 ;

(
𝑋−1

)𝑇 · −→𝜚 )
⊙ c′

𝜋−1 . (Υ′)

(Step2.4) Now, we apply both sides of the previous identity the func-

tion𝜓𝑁 defined as follows

𝜓𝑁 : H𝑁𝑝𝜂 −→ H𝑝𝜂

x ↦−→ EncCS

(
𝑝𝑘, 1 ; −

(
𝑋−1

)𝑇 · −→𝜚 )
⊙ x.

7
Let 𝑛 ∈ N∗ be a natural number. Let x, y ∈ H𝑛𝑝𝜂 be two ciphertexts vectors of

dimension𝑛, and let𝑀 ∈ Mat𝑛 (F𝑝𝜂 ) be a matrix of dimensions𝑛×𝑛. By definition
of ⊛ and ⊙, we have(
x ⊙ y

)
⊛ 𝑀 =

( (
𝑥𝑖𝑦𝑖

)𝑛
𝑖=1

)
⊛ 𝑀 =

(( (
𝑥𝑖𝑦𝑖

)𝑛
𝑖=1

)
⊛ M( 𝑗 )

)𝑛
𝑗=1

=

(
𝑛∏
𝑖=1

(𝑥𝑖𝑦𝑖 )𝑚𝑖,𝑗

)𝑛
𝑗=1

=

((
𝑛∏
𝑖=1

(𝑥𝑖 )𝑚𝑖,𝑗

)
·
(

𝑛∏
𝑖=1

(𝑦𝑖 )𝑚𝑖,𝑗

))𝑛
𝑗=1

=

( (
x ⊛ M( 𝑗 )

)
·
(
y ⊛ M( 𝑗 )

) )𝑛
𝑗=1

=
(
x ⊛ 𝑀

)
⊙

(
y ⊛ 𝑀

)
. □

8
Let 𝑛 ∈ N∗ be a natural number. Let x ∈ G𝑛𝑝𝜂 and y ∈ F𝑛𝑝𝜂 be two vectors, both

of dimension 𝑛. Let 𝑀 ∈ Mat𝑛 (F𝑝𝜂 ) be a square matrix of dimensions 𝑛 × 𝑛. By
definition of ⊛ and because CS is homomorphic, we have(

EncCS (𝑝𝑘, x ; y)
)
⊛ 𝑀 =

((
EncCS (𝑝𝑘, x ; y)

)
⊛ M( 𝑗 )

)𝑛
𝑗=1

=

(
𝑛∏
𝑖=1

(
EncCS (𝑝𝑘, 𝑥𝑖 ; 𝑦𝑖 )

)𝑚𝑖,𝑗

)𝑛
𝑗=1

=

(
𝑛∏
𝑖=1

(
EncCS

(
𝑝𝑘, (𝑥𝑖 )𝑚𝑖,𝑗

; 𝑦𝑖𝑚𝑖,𝑗

)))𝑛
𝑗=1

=

(
EncCS

(
𝑝𝑘,

𝑛∏
𝑖=1

(𝑥𝑖 )𝑚𝑖,𝑗
;

𝑛∑︁
𝑖=1

𝑦𝑖𝑚𝑖,𝑗

))𝑛
𝑗=1

=

(
EncCS

(
𝑝𝑘, x ⊛ M( 𝑗 ) ;

(
𝑀𝑇 · y

) ( 𝑗 ) ))𝑛
𝑗=1

= EncCS

(
𝑝𝑘, x ⊛ 𝑀 ; 𝑀𝑇 · y

)
. □

9
Let 𝑛 ∈ N∗ be a natural number. We denote by 1 ∈ H𝑛𝑝𝜂 the ciphertexts vector of

dimension 𝑛 such that, for all 𝑖 ∈ ⟦1;𝑛⟧, 1𝑖
def

= 1. Let𝑀 ∈ Mat𝑛 (F𝑝𝜂 ) be a square
matrix of dimensions 𝑛 × 𝑛. By definition of ⊛, we have

1 ⊛ 𝑀 =

(
1 ⊛ 𝑀 ( 𝑗 )

)𝑛
𝑗=1

=

(
𝑁∏
𝑖=1

1
𝑚𝑖,𝑗

)𝑛
𝑗=1

= 1. □

Thus, it leads to
1011

EncCS

(
𝑝𝑘, 1 ; −

(
𝑋−1

)𝑇 · −→𝜚 )
⊙ c = c′

𝜋−1 .

By an index change
12
, we finally obtain the following equa-

tion
13

c′ = EncCS (𝑝𝑘, 1 ; r) ⊙ c𝜋
with r def

= −
( (
𝑋−1

)𝑇 · −→𝜚 )
𝜋
∈ F𝑁𝑝𝜂 .

Results obtained in step (Step 1) and step (Step 2), give us the
following result, proving that, with overwhelming probability, we

have successfully extract a witness 𝑤
def

= (𝜋, r) ∈ 𝔖𝑁 × F𝑁𝑝𝜂 such

10
Let 𝑛 ∈ N∗ be a natural number. Let x, y ∈ G𝑛𝑝𝜂 and r,−→𝜍 ∈ F𝑛𝑝𝜂 be four vectors, all

of dimension 𝑛. By definition of ⊙ and because CS is homomorphic, we have(
EncCS (𝑝𝑘, x ; r)

)
⊙

(
EncCS (𝑝𝑘, y ;

−→𝜍 )
)

=

((
EncCS (𝑝𝑘, 𝑥𝑖 ; 𝑟𝑖 )

)
·
(
EncCS (𝑝𝑘, 𝑦𝑖 ; 𝑠𝑖 )

))𝑛
𝑖=1

=

(
EncCS

(
𝑝𝑘, 𝑥𝑖 · 𝑦𝑖 ; 𝑟𝑖 + 𝑠𝑖

) )𝑛
𝑖=1

= EncCS

(
𝑝𝑘, x ⊙ y ; r + −→𝜍

)
. □

Now, let m ∈ G𝑛𝑝𝜂 be a vector of dimension 𝑛. We denote by 0 ∈ F𝑛𝑝𝜂 the vector of

dimension 𝑛 defined by, for all 𝑖 ∈ ⟦1;𝑛⟧, 0𝑖 = 0. By definition of EncCS , we have

EncCS (𝑝𝑘,m ; 0) =
(
EncCS (𝑝𝑘,𝑚𝑖 ; 0)

)𝑛
𝑖=1

= (1)𝑛𝑖=1 = 1. □

11
Let 𝑛 ∈ N∗ be a natural number. Let x, y, z ∈ H𝑛𝑝𝜂 be three vectors of dimension 𝑛.

By definition of ⊙, we have

x ⊙
(
y ⊙ z

)
= x ⊙

(
𝑦𝑖 · 𝑧𝑖

)𝑛
𝑖=1

=
(
𝑥𝑖 · 𝑦𝑖 · 𝑧𝑖

)𝑛
𝑖=1

.

Thus, by associativity of the internal law · : H𝑝𝜂 ×H𝑝𝜂 −→ H𝑝𝜂 , so it goes for the
function ⊙ : H𝑛𝑝𝜂 × H

𝑛
𝑝𝜂
−→ H𝑛𝑝𝜂 .

Besides, as 1 is the neutral element of the group

(
H𝑝𝜂 , ·

)
, so it goes with 1 for the

group

(
H𝑛𝑝𝜂 , ⊙

)
.

□

12
Let 𝑛 ∈ N∗ be a natural number. Let x, y ∈ H𝑛𝑝𝜂 be two ciphertexts vectors of

dimension 𝑛. Let 𝜎 ∈ 𝔖𝑛 be a permutation. Let z ∈ H𝑛𝑝𝜂 be the permuted result of

the ⊙ product of previous vectors: z𝜎
def

= x ⊙ y. On one hand, we have(
z𝜎

)
𝜎−1 =

( (
𝑧𝜎 (𝑖 )

)𝑛
𝑖=1

)
𝜎−1

=

(
𝑧
𝜎−1

(
𝜎 (𝑖 )

) )𝑛
𝑖=1

= z.

On another hand, we have(
x ⊙ y

)
𝜎
=

( (
𝑥𝑖 · 𝑦𝑖

)𝑛
𝑖=1

)
𝜎
=

(
𝑥𝜎 (𝑖 ) · 𝑦𝜎 (𝑖 )

)𝑛
𝑖=1

= x𝜎 ⊙ y𝜎 .

Now, let m ∈ G𝑛𝑝𝜂 and r ∈ Mat𝑛 (F𝑝𝜂 ) be two vectors of dimension 𝑛. We have(
EncCS (𝑝𝑘,m ; r)

)
𝜎
=

( (
EncCS (𝑝𝑘,𝑚𝑖 ; 𝑟𝑖 )

)𝑛
𝑖=1

)
𝜎
=

(
EncCS (𝑝𝑘,𝑚𝜎 (𝑖 ) ; 𝑟𝜎 (𝑖 ) )

)𝑛
𝑖=1

= EncCS (𝑝𝑘,m𝜎 ; r𝜎 ) .

Thus, we finally obtain

z =
(
z𝜎

)
𝜎−1 =

(
EncCS (𝑝𝑘,m𝜎−1 ; r

𝜎−1 )
)
⊙ y

𝜎−1 . □

13
More precisely, with 𝑋−1

def

=
(
𝑥̃𝑖,𝑗

)𝑁
𝑖,𝑗=1

∈ Mat𝑁 (F𝑝𝜂 ) given by the computation
of the inverse of the Vandermonde matrix 𝑋 (see [2]) with coefficients the

sequence of challenges (𝑥𝑙 )𝑁𝑙=1 , we have

∀ 𝑗 ∈ ⟦1;𝑁⟧, 𝑟 𝑗
def

= −
𝑁∑︁
𝑙=1

𝜚 (𝑙 ) · 𝑥̃𝑙,𝜋 ( 𝑗 ) .

6
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that

(
𝜎, 𝜒,𝑤

)
∈ RBGSA .

∃ 𝜋 ∈ 𝔖𝑁 , ∃ r ∈ F𝑁𝑝𝜂 ,
c′ = EncCS (𝑝𝑘, 1 ; r) ⊙ c𝜋 .
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2
)

Knowledge
soundness

𝑁 ×
EPA

𝑁 ×
EMEA

Binding of
commitment

scheme
× 1

Schwartz-Zippel × 1 ×𝑁 2

Property transfer
under adversarial

selection
Yes

Extractor uses
rewinding? Yes (𝑁 witnesses – 2 witnesses each)

Table 1: Assessment of cryptographic or probabilistic proper-
ties used to prove Knowledge Soundness of Shuffle Argument
protocol

□

B.2 Multi-exponentiation argument protocol
We define

RBGMEA ⊆
(
G𝑛+1𝑝𝜂

× PKCS
)︸               ︷︷               ︸

Public parameter set

×
(
(H𝑛𝑝𝜂 )

𝑚 × H𝑝𝜂 × G𝑚𝑝𝜂
)︸                        ︷︷                        ︸

Statement set

×
(
Mat𝑛×𝑚 (F𝑝𝜂 ), F𝑚𝑝𝜂 , F𝑝𝜂

)︸                           ︷︷                           ︸
Witness set

to be the multi-exponentiation relation defined by(
(𝑐𝑘, 𝑝𝑘),

(
(c′𝑖 )

𝑚
𝑖=1,𝐶, c𝐵

)
,
(
𝐵, t, 𝜚

) )
∈ RBGMEA

def⇐⇒


c𝐵 = ComMat𝑛×𝑚 (F𝑝𝜂 )

(
𝑐𝑘, 𝐵 ; t

)
𝐶 = EncCS (𝑝𝑘, 1 ; 𝜚 ) ·

𝑚∏
𝑖=1

c′𝑖 ⊛ b𝑖

Hence, we define a Σ-protocol for the relation ofmulti-exponentiation

Σ
[
RBGMEA

]
to be the protocol defined as follows in Protocol 3.

Theorem B.2 (Knowledge soundness of Σ
[
RBGMEA

]
). The Σ-

protocol Σ
[
RBGMEA

]
for the multi-exponentiation relationRBGMEA is knowl-

edge sound.

Proof. We define the extractor EMEA for the Bayer-Groth multi-

exponentiation argument to be the algorithm defined as follows in

Extractor 4.
Let 𝑛,𝑚 ∈ N∗ be two natural numbers. Let 𝜂 ∈ N∗ be a security

parameter. Let P∗ be a polynomial-time and deterministic adver-

sarial prover. Let 𝜎 = (𝑐𝑘, 𝑝𝑘) ← IMEA (𝜂) be an honest public

parameter for the multi-exponentiation relation RBGMEA. Let A be a

probabilistic and polynomial-time adversary. Let 𝜒 ← A(𝜂, 𝜎) be
an adversarial statement where

𝜒
def

=

(
(c′𝑖 )

𝑚
𝑖=1,𝐶, c𝐵

)
∈

(
H𝑛𝑝𝜂

)𝑚 × H𝑝𝜂 × G𝑚𝑝𝜂 .
Then, the adversary A calls the extractor EMEA on inputs 𝜎 and 𝜒

with access toP∗ andVMEA and obtains𝜏MEA
def

=

(
𝔱𝔯
𝜎, 𝜒
𝛼, 𝔷RBGMEA, P

∗ (𝑥𝑙 )
)
2𝑚

𝑙=1
.

Let 𝑙 ∈ ⟦1; 2𝑚⟧ be an index. We denote by

• 𝛼
def

=

(
𝑐𝐵0

,
(
𝑐𝐹𝑘

)
2𝑚−1
𝑘=0 ,

(
𝐸𝑘

)
2𝑚−1
𝑘=0

)
∈ G𝑝𝜂 × G2𝑚𝑝𝜂 × H

2𝑚
𝑝𝜂

the first

message ; and

• 𝔷RBG
MEA, P∗

(
𝛼, 𝑥𝑙

) def

=

(
b(𝑙) , 𝑡 (𝑙) , 𝑓 (𝑙) , 𝜍 (𝑙) , 𝜏 (𝑙)

)
∈ F𝑛𝑝𝜂 × F𝑝𝜂 ×

F𝑝𝜂 × F𝑝𝜂 × F𝑝𝜂 the response message on challenge 𝑥𝑙 .

This way, we have the following property

∀ 𝑙 ∈ ⟦1; 2𝑚⟧,


• 𝔱𝔯

𝜎, 𝜒
𝛼, 𝔷RBGMEA, P

∗ (𝑥𝑙 ) =

〈(
𝑐𝐵0

,
(
𝑐𝐹𝑘

)
2𝑚−1
𝑘=0 ,

(
𝐸𝑘

)
2𝑚−1
𝑘=0

)
,

𝑥𝑙 ,

(
b(𝑙) , 𝑡 (𝑙) , 𝑓 (𝑙) , 𝜍 (𝑙) , 𝜏 (𝑙)

)〉
• 𝑣

𝜎, 𝜒

RBG
MEA

(
𝔱𝔯
𝜎, 𝜒
𝛼, 𝔷RBGMEA, P

∗ (𝑥𝑙 )
)
= 1.

By definition of the Bayer-Groth multi-exponentiation argument

protocol, as the proof transcripts are valid, for all 𝑙 ∈ ⟦1; 2𝑚⟧, we
have

𝑐𝐹𝑚 = ComF𝑝𝜂
(
𝑐𝑘, 0 ; 0

)
and 𝐸𝑚 = 𝐶 (H1)

𝑐𝐵0
·
(
c𝐵 ⊛ x̃(𝑙)

)
= ComF𝑛𝑝𝜂

(
𝑐𝑘, b(𝑙) ; 𝑡 (𝑙)

)
(H (𝑙)

2
)

𝑐𝐹0 ·
2𝑚−1∏
𝑘=1

𝑐
(𝑥̃𝑙 )𝑘
𝐹𝑘

= ComF𝑝𝜂
(
𝑐𝑘, 𝑓 (𝑙) ; 𝜍 (𝑙)

)
(H (𝑙)

3
)

𝐸0 ·
2𝑚−1∏
𝑘=1

𝐸
(𝑥̃𝑙 )𝑘
𝑘

= EncCS (𝑝𝑘,𝑔𝑓
(𝑙 )

; 𝜏 (𝑙) ) ·
𝑚∏
𝑖=1

(
c′𝑖 ⊛

(
(𝑥𝑙 )𝑚−𝑖b(𝑙)

))
(H (𝑙)

4
)

(Step 1) – Get an opening of commit values
(
𝑐𝐵𝑘

)𝑚
𝑘=0

(Step1.1) We define the matrix 𝑋̃𝐵 ∈ Mat𝑚+1 (F𝑝𝜂 ) by

𝑋̃𝐵
def

=

©­­­­«
1 1 · · · 1

𝑥1 𝑥2 · · · 𝑥𝑚+1
.
.
.

.

.

.
. . .

.

.

.

𝑥𝑚
1

𝑥𝑚
2
· · · 𝑥𝑚

𝑚+1

ª®®®®¬
which is an invertible transposed Vandermonde ma-

trix because, with overwhelming probability, the fol-
lowing property holds:

𝑚∧
𝑙=1

𝑚+1∧
𝑝 = 𝑙+1

(𝑥𝑙 ≠ 𝑥𝑝 ) .

(Step1.2) We define the following quantities

• 𝐵𝑥̃ ∈ Mat𝑛×(𝑚+1) (F𝑝𝜂 ) the matrix with 𝑛 lines

and (𝑚 + 1) columns where columns of 𝐵𝑥̃ are

given by vectors b(𝑙) for all 𝑙 ∈ ⟦1;𝑚 + 1⟧. More

precisely, we have

∀ 𝑖 ∈ ⟦1;𝑛⟧, ∀ 𝑙 ∈ ⟦1;𝑚 + 1⟧,
(
𝐵𝑥̃

)
𝑖,𝑙

def

=
(
b(𝑙)

)
𝑖 .
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Protocol 3: Σ-protocol Σ
[
RBGMEA

]
for the Bayer-Groth multi-exponentiation argument

Public Input :Two natural numbers 𝑛,𝑚 ∈ N∗. A security parameter 𝜂 ∈ N∗. A commitment key 𝑐𝑘 = (𝑔, g) ∈ G𝑛+1𝑝𝜂
for the

commitment scheme KS[Mat𝑛×𝑚 (F𝑝𝜂 )]. A public key 𝑝𝑘 ∈ PKCS of the cryptosystem CS. A list of ciphertexts

vectors (c′
𝑖
)𝑚
𝑖=1
∈ (H𝑛𝑝𝜂 )

𝑚
, a ciphertext 𝐶 ∈ H𝑝𝜂 and a commit value c𝐵 ∈ G𝑚𝑝𝜂 .

Private Input :A matrix 𝐵 = (b𝑖 )𝑚𝑖=1 ∈ Mat𝑛×𝑚 (F𝑝𝜂 ), a vector of random values t
$← F𝑚𝑝𝜂 and a random value 𝜚

$← F𝑝𝜂 such that

c𝐵 = ComMat𝑛×𝑚 (F𝑝𝜂 )
(
𝑐𝑘, 𝐵 ; t

)
, and 𝐶 = EncCS (𝑝𝑘, 1 ; 𝜚 )

𝑚∏
𝑖=1

c′
𝑖
⊛ b𝑖 .

Begin protocol

(1) (Commit message) The prover PMEA chooses a vector of random values b0
$← F𝑛𝑝𝜂 , a random value 𝑡0

$← F𝑝𝜂 , and, for all

𝑖 ∈ ⟦0; 2𝑚 − 1⟧, three random values 𝑓𝑖 , 𝑠𝑖 , 𝜏𝑖
$← F𝑝𝜂 . Then, the prover sets 𝑓𝑚, 𝑠𝑚 ← 0 ∈ F𝑝𝜂 and 𝜏𝑚 ← 𝜚 ∈ F𝑝𝜂 . PMEA

computes 𝑐𝐵0
← ComF𝑛𝑝𝜂

(
𝑐𝑘, b0 ; 𝑡0

)
∈ G𝑝𝜂 , and, for all 𝑘 ∈ ⟦0; 2𝑚 − 1⟧, 𝑐𝐹𝑘 ← ComF𝑝𝜂

(
𝑐𝑘, 𝑓𝑘 ; 𝜍𝑘

)
∈ G𝑝𝜂 and

𝐸𝑘 ← EncCS (𝑝𝑘,𝑔𝑓𝑘 ; 𝜏𝑘 ) ·
𝑚∏
𝑖=1

c′
𝑖
⊛ b(𝑘−𝑚)+𝑖 ∈ H𝑝𝜂 . Finally, PMEA sends toVMEA values

(
𝑐𝐵0

, (𝑐𝐹𝑖 )2𝑚−1𝑖=0
, (𝐸𝑖 )2𝑚−1𝑖=0

)
.

(2) (Challenge message)VMEA chooses uniformly at random a challenge 𝑥
$← F∗𝑝𝜂 and sends it to PMEA.

(3) (Response message) Let x̃ be the vector defined by x̃← (𝑥𝑖 )𝑚
𝑖=1
∈ F𝑚𝑝𝜂 . The prover PMEA computes values b← b0 + 𝐵 · x̃ ∈ F𝑛𝑝𝜂 ,

𝑡 ← 𝑡0 + ⟨t | x̃⟩ ∈ F𝑝𝜂 , 𝑓 ←
2𝑚−1∑
𝑘=0

𝑓𝑘𝑥
𝑘 ∈ F𝑝𝜂 , 𝜍 ←

2𝑚−1∑
𝑘=0

𝜍𝑘𝑥
𝑘 ∈ F𝑝𝜂 , and 𝜏 ←

2𝑚−1∑
𝑘=0

𝜏𝑘𝑥
𝑘 ∈ F𝑝𝜂 . Then, PMEA sends to the

verifier values

(
b, 𝑡, 𝑓 , 𝜍, 𝜏

)
.

(4) (Conclusion’s bit) The verifierVMEA accepts if and only if the following equations hold

𝑐𝐹𝑚 = ComF𝑝𝜂
(
𝑐𝑘, 0 ; 0

)
, 𝐸𝑚 = 𝐶, 𝑐𝐵0

(
c𝐵 ⊛ x̃

)
= ComF𝑛𝑝𝜂

(
𝑐𝑘, b ; 𝑡

)
, 𝑐𝐹0

2𝑚−1∏
𝑘=1

𝑐𝑥̃
𝑘

𝐹𝑘
= ComF𝑝𝜂

(
𝑐𝑘, 𝑓 ; 𝜍

)
,

and 𝐸0

2𝑚−1∏
𝑘=1

𝐸𝑥̃
𝑘

𝑘
= EncCS (𝑝𝑘,𝑔𝑓 ; 𝜏)

𝑚∏
𝑖=1

c′𝑖 ⊛
(
𝑥𝑚−𝑖b

)
.

Extractor 4: Extractor EMEA for the Σ-protocol Σ
[
RBGMEA

]
of the Bayer-Groth multi-exponentiation argument

Input :A security parameter 𝜂 ∈ N∗. Two natural numbers 𝑛,𝑚 ∈ N∗. A public parameter

𝜎
def

= (𝑐𝑘, 𝑝𝑘) ∈ G𝑛+1𝑝𝜂
× PKCS for the Bayer-Groth multi-exponentiation relation RBGMEA. A statement

𝜒
def

=
(
(c′
𝑖
)𝑚
𝑖=1

,𝐶, c𝐵
)
∈

(
H𝑛𝑝𝜂

)𝑚 × H𝑝𝜂 × G𝑚𝑝𝜂 .
Blackbox access to :A deterministic adversarial prover P∗ and an honest verifierVMEA.

1 Begin extractor

2 calls P∗ to get 𝛼 def

=

(
𝑐𝐵0

, (𝑐𝐹𝑖 )2𝑚−1𝑖=0
, (𝐸𝑖 )2𝑚−1𝑖=0

)
∈

(
G𝑝𝜂 × G2𝑚𝑝𝜂 × H

2𝑚
𝑝𝜂

)
;

3 // State at this point: st1
def

=

[
(𝑐𝑘, 𝑝𝑘) ;

(
(c′𝑖 )

𝑚
𝑖=1,𝐶, c𝐵

)
;

(
𝑐𝐵0

, (𝑐𝐹𝑖 )
2𝑚−1
𝑖=0 , (𝐸𝑖 )2𝑚−1𝑖=0

)]
.

4 rewinds P∗ and VMEA at state st1 and begins with 𝑙 ← 1 ∈ N
5 calls VMEA to get 𝑥𝑙

$← F∗𝑝𝜂 ;

6 calls P∗ to get 𝑧𝑙 ← 𝔷RBG
MEA, P∗

(
𝛼, 𝑥𝑙

)
∈

(
F𝑛𝑝𝜂 × F𝑝𝜂 × F𝑝𝜂 × F𝑝𝜂 × F𝑝𝜂

)
;

7 if 𝑣𝜎, 𝜒RBG
MEA

(
𝔱𝔯
𝜎, 𝜒
𝛼, 𝔷RBGMEA, P

∗ (𝑥𝑙 )
)
and

𝑙−1∧
𝑖=1

𝑙∧
𝑗 = 𝑖+1

(𝑥𝑖 ≠ 𝑥 𝑗 ) then 𝑙 ← 𝑙 + 1 ;

8 until 𝑙 > 2𝑚 ; // i.e. until 2𝑚 valid proof transcripts with pairwise distinct challenges are obtained.

9 returns 𝜏MEA
def
=

(
𝔱𝔯
𝜎, 𝜒
𝛼, 𝔷RBGMEA, P

∗ (𝑥𝑙 )
)
2𝑚

𝑙=1

.

8
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• t𝑥̃ ∈ F𝑚+1𝑝𝜂
the vector defined by t𝑥̃

def

=
(
𝑡 (𝑙)

)𝑚+1
𝑙=1 .

By properties of the operator ⊛14, we have(
𝑐𝐵0

, . . . , 𝑐𝐵𝑚
)
=

(
𝑐𝐵0

, . . . , 𝑐𝐵𝑚
)
⊛

(
𝑋̃𝐵𝑋̃

−1
𝐵

)
see footnote 6

=

( (
𝑐𝐵0

, . . . , 𝑐𝐵𝑚
)
⊛ 𝑋̃𝐵

)
⊛ 𝑋̃−1

𝐵

see footnote 5
= ComMat𝑛×(𝑚+1) (F𝑝𝜂 )

(
𝑐𝑘, 𝐵𝑥̃ ; t𝑥̃

)
⊛ 𝑋̃−1

𝐵

by definitions of 𝐵𝑥̃ and t𝑥̃ and by
(
𝐸𝑞. (H (𝑙)

2
)

)𝑚+1
𝑙=1

= ComMat𝑛×(𝑚+1) (F𝑝𝜂 )
(
𝑐𝑘, 𝐵𝑥̃ 𝑋̃

−1
𝐵

; t𝑥̃ 𝑋̃−1𝐵

)
.

see footnote 14

(Step1.3) Now, let us suppose just for a moment that we have
15

∃𝐵𝑥̃
(
𝑋̃𝐵

)−1
, 𝐵𝑥̃ ′

(
𝑋̃ ′𝐵

)−1 ∈ Mat𝑛×(𝑚+1) (F𝑝𝜂 ), 𝐵𝑥̃
(
𝑋̃𝐵

)−1
≠ 𝐵𝑥̃ ′

(
𝑋̃ ′𝐵

)−1
.

But, by the previous point, the following property

holds(
𝑐𝐵0

, . . . , 𝑐𝐵𝑚
)
= ComMat𝑛×(𝑚+1) (F𝑝𝜂 )

(
𝑐𝑘, 𝐵𝑥̃

(
𝑋̃𝐵

)−1
; t𝑥̃

(
𝑋̃𝐵

)−1)
= ComMat𝑛×(𝑚+1) (F𝑝𝜂 )

(
𝑐𝑘, 𝐵𝑥̃ ′

(
𝑋̃ ′𝐵

)−1
; t𝑥̃ ′

(
𝑋̃ ′𝐵

)−1)
Thus, as the commitment schemeKS[Mat𝑛×(𝑚+1) (F𝑝𝜂 )]
is computationally binding, with overwhelming prob-
ability, we conclude a contradiction. Therefore, we
have shown that the following property holds

∀𝐵𝑥̃ , 𝐵𝑥̃ ′ ∈ Mat𝑛×(𝑚+1) (F𝑝𝜂 ), ∀ 𝑋̃𝐵, 𝑋̃
′
𝐵 ∈ Mat𝑚+1 (F𝑝𝜂 ),

𝐵𝑥̃
(
𝑋̃𝐵

)−1
= 𝐵𝑥̃ ′

(
𝑋̃ ′𝐵

)−1
.

We denote this common value 𝐵̃ ∈ Mat𝑛×(𝑚+1) (F𝑝𝜂 )
with columns

(
b𝑘

)
2𝑚
𝑘=0. Thus, we have found an open-

ing

(
𝐵̃, t

)
∈ Mat𝑛×(𝑚+1) (F𝑝𝜂 ) × F𝑚+1𝑝𝜂

independent
from challenges (𝑥𝑙 )2𝑚𝑙=1 of the commit value c𝐵 :

∀𝑘 ∈ ⟦0;𝑚⟧, 𝑐𝐵𝑘
= ComF𝑛𝑝𝜂

(
𝑐𝑘, b𝑘 ; 𝑡𝑘

)
.

14
Let 𝑛,𝑚 ∈ N∗ be two natural numbers. Let 𝑐𝑘 ∈ G𝑛+1𝑝𝜂

be a commitment key pa-

rameter for the commitment schemeKS[Mat𝑛×𝑚 (F𝑝𝜂 ) ]. Let𝑀 ∈ Mat𝑛×𝑚 (F𝑝𝜂 )
be a matrix of dimensions 𝑛 ×𝑚 and let 𝐵 ∈ Mat𝑚 (F𝑝𝜂 ) be a square matrix

of dimensions𝑚 ×𝑚. Let r ∈ F𝑚𝑝𝜂 be a vector of dimension𝑚. By definition of

ComMat𝑛×𝑚 (F𝑝𝜂 ) , we have(
ComMat𝑛×𝑚 (F𝑝𝜂 )

(
𝑐𝑘,𝑀 ; r

) )
⊛ 𝐵 =

(
ComMat𝑛×𝑚 (F𝑝𝜂 )

(
𝑐𝑘,𝑀 ; r

)
⊛ B( 𝑗 )

)𝑚
𝑗=1

=

(
ComF𝑛𝑝𝜂

(
𝑐𝑘,𝑀 · B( 𝑗 ) ; ⟨r | B( 𝑗 ) ⟩

))𝑚
𝑗=1

= ComMat𝑛×𝑚 (F𝑝𝜂 )
(
𝑐𝑘,𝑀𝐵 ; r𝐵

)
. □

15
More precisely, we suppose the existence of 𝐵𝑥̃ , 𝐵𝑥̃′ ∈ Mat𝑛×(𝑚+1) (F𝑝𝜂 ) two
matrix of dimensions 𝑛 × (𝑚 + 1) and 𝑋̃𝐵 , 𝑋̃

′
𝐵
∈ Mat𝑚+1 (F𝑝𝜂 ) two square matrix

of dimensions𝑚 + 1 such that we are in one of the two following cases:

• Case 1: Their exists a sequence

(
𝑥̃𝑙

)𝑚+1
𝑙=1

of challenges in F∗𝑝𝜂 and at
least another challenge 𝑥̃ ′

𝑙
0

∈ F∗𝑝𝜂 with 𝑥̃ ′
𝑙
0

≠ 𝑥̃𝑙
0

for some 𝑙0 ∈

⟦1;𝑚 + 1⟧ such that 𝑋̃𝐵
def

= 𝑉 (𝑥̃1, . . . , 𝑥̃𝑙
0
−1, 𝑥̃𝑙

0
, 𝑥̃𝑙

0
+1, . . . , 𝑥̃𝑚+1) and

𝑋̃ ′
𝐵

def

= 𝑉 (𝑥̃1, . . . , 𝑥̃𝑙
0
−1, 𝑥̃ ′𝑙

0

, 𝑥̃𝑙
0
+1, . . . , 𝑥̃𝑚+1) ;

• Case 2: Their exists at least one column 𝑙0 ∈ ⟦1;𝑚+1⟧ such thatB(𝑙0 )
𝑥̃

≠ B(𝑙0 )
𝑥̃′ .

(Step 2) – Get an opening of commit values
(
𝑐𝐹𝑘

)
2𝑚−1
𝑘=0

(Step2.1) We define the matrix 𝑋̃𝐹 ∈ Mat2𝑚 (F𝑝𝜂 ) by

𝑋̃𝐹
def

=

©­­­­«
1 1 · · · 1

𝑥1 𝑥2 · · · 𝑥2𝑚
.
.
.

.

.

.
. . .

.

.

.

𝑥2𝑚−1
1

𝑥2𝑚−1
2

· · · 𝑥2𝑚−1
2𝑚

ª®®®®¬
,

which is again an invertible transposed Vandermonde

matrix because (𝑥𝑙 )2𝑚𝑙=1 are pairwise distincts, with

overwhelming probability.
(Step2.2) We define the following quantities

f𝑥̃
def

=
(
𝑓 (𝑙)

)
2𝑚
𝑙=1 ∈ F

2𝑚
𝑝𝜂

and
−→𝜍 𝑥̃

def

=
(
𝜍 (𝑙)

)
2𝑚
𝑙=1 ∈ F

2𝑚
𝑝𝜂

.

Thus, we have(
𝑐𝐹0 , . . . , 𝑐𝐹2𝑚−1

)
=

( (
𝑐𝐹0 , . . . , 𝑐𝐹2𝑚−1

)
⊛ 𝑋̃𝐹

)
⊛ 𝑋̃−1𝐹

= ComF𝑝𝜂
(
𝑐𝑘, f𝑥̃ ;

−→𝜍 𝑥̃

)
⊛ 𝑋̃−1𝐹

by hypothesis
(
𝐸𝑞. (H (𝑙)

3
)

)
2𝑚

𝑙=1

= ComF𝑝𝜂
(
𝑐𝑘, f𝑥̃ 𝑋̃

−1
𝐹 ;
−→𝜍 𝑥̃ 𝑋̃

−1
𝐹

)
.

(Step2.3) As seen in step (Step1.3), by the binding property for

the commitment scheme KS[F𝑝𝜂 ], we conclude with
overwhelming probability, the existence of a sequence(
(𝑓𝑘 , 𝜍𝑘 )

)
2𝑚−1
𝑘=0 ∈

(
F𝑝𝜂 ×F𝑝𝜂

)
2𝑚

which is independent

from challenges
(
𝑥𝑙

)
2𝑚
𝑙=1 and such that

∀𝑘 ∈ ⟦0; 2𝑚 − 1⟧, 𝑐𝐹𝑘 = ComF𝑝𝜂
(
𝑐𝑘, 𝑓𝑘 ; 𝜍𝑘

)
.

(Step 3) – Obtain the computation of values
(
𝐸𝑘

)
2𝑚−1
𝑘=0

(Step3.1) By hypothesis Eq. (H (𝑙)
2

), and by definition of vectors(
b𝑖

)𝑚
𝑖=0 (see step (Step1.3)), for all 𝑙 ∈ ⟦1;𝑚 + 1⟧, we

have

𝑛∑︁
𝑖=0

(𝑥𝑙 )𝑖b𝑖 = 𝐵̃ · X̃(𝑙)
𝐵

=
(
𝐵̃𝑋̃𝐵

) (𝑙)
=

(
𝐵𝑥̃ 𝑋̃

−1
𝐵 𝑋̃𝐵

) (𝑙)
= B(𝑙)

𝑥̃
.

Thus, by definition of 𝐵𝑥̃ , the following equation

holds

∀ 𝑙 ∈ ⟦1;𝑚 + 1⟧, b(𝑙) =
𝑚∑︁
𝑖=0

(𝑥𝑙 )𝑖b𝑖 . (Φ)

(Step3.2) Likewise but with hypothesis Eq. (H (𝑙)
3

) and defini-

tion of vector f𝑥̃ (see step (Step2.3)), the following
property holds

∀ 𝑙 ∈ ⟦1; 2𝑚⟧, 𝑓 (𝑙) =
2𝑚−1∑︁
𝑖=0

(𝑥𝑙 )𝑘 𝑓𝑘 . (Ψ)

9
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(Step3.3) For all 𝑙 ∈ ⟦1;𝑚 + 1⟧, Eq. (Φ) leads to
𝑚∏
𝑖=1

c′𝑖 ⊛
(
(𝑥𝑙 )𝑚−𝑖b(𝑙)

)
=

𝑚∏
𝑖=1

c′𝑖 ⊛
©­«
𝑚∑︁
𝑗=0

(𝑥𝑙 )𝑚−𝑖+𝑗b( 𝑗)
ª®¬

=

𝑚∏
𝑖=1

𝑚∏
𝑗=0

(
c′𝑖 ⊛ b( 𝑗)

) (𝑥̃𝑙 )𝑚−𝑖+𝑗

=

2𝑚−1∏
𝑘=0

©­­­«
𝑚∏
𝑗=0

1⩽𝑚−𝑖+𝑗⩽𝑚

(
c𝑚−𝑘+𝑗 ⊛ b( 𝑗)

)ª®®®¬
(𝑥𝑙 )𝑘

We define E def

=
(
𝐸𝑘

)
2𝑚−1
𝑘=0 ∈ H2𝑚𝑝𝜂 and, for all 𝑖 ∈

⟦0; 2𝑚 − 1⟧, ỹ(𝑖) ∈ F2𝑚𝑝𝜂 the (𝑖 + 1)-th column of the

matrix 𝑋̃−1
𝐹

. Let 𝑖 ∈ ⟦0; 2𝑚 − 1⟧. We have
16

𝐸𝑖 = E ⊛
(
𝑋̃𝐹 · ỹ(𝑖)

)
because 𝑋̃𝐹 · ỹ(𝑖) = u𝑖

=

2𝑚−1∏
𝑘=0

𝐸

(
𝑋̃𝐹 ·ỹ(𝑖 )

)
𝑘

𝑘
by definition of ⊛

By definition of 𝑋̃𝐹 , for all 𝑘 ∈ ⟦0; 2𝑚 − 1⟧, we have(
𝑋̃𝐹 · ỹ(𝑖)

)
𝑘 =

2𝑚∑︁
𝑙=1

(
𝑋̃𝐹

)
𝑘,𝑙𝑦
(𝑖)
𝑙

=

2𝑚∑︁
𝑙=1

𝑥𝑘
𝑙
𝑦
(𝑖)
𝑙

.

Thus, we can compute 𝐸𝑖 as follows

𝐸𝑖 =

2𝑚−1∏
𝑘=0

2𝑚∏
𝑙=1

𝐸
𝑥̃𝑘
𝑙
𝑥̃
(𝑖 )
𝑙

𝑘
=

2𝑚∏
𝑙=1

(
2𝑚−1∏
𝑘=0

𝐸
𝑥̃𝑘
𝑙

𝑙

) 𝑦̃ (𝑖 )
𝑙

=

2𝑚∏
𝑙=1

(
EncCS (𝑝𝑘,𝑔𝑓

(𝑙 )
; 𝜏 (𝑙) ) ·

𝑚∏
𝑖=1

(
c′𝑖 ⊛

(
𝑥𝑚−𝑖
𝑙

b(𝑙)
) ))𝑥̃ (𝑖 )𝑙

by hypothesis
(
𝐸𝑞. (H (𝑙)

4
)

)
2𝑚

𝑙=1

=

2𝑚∏
𝑙=1

©­­­­­­­«

EncCS (𝑝𝑘,𝑔𝑓
(𝑙 )

; 𝜏 (𝑙) ) ·

2𝑚−1∏
𝑘=0

©­­­­«
𝑚∏
𝑗=0

1⩽𝑚−𝑘+𝑗⩽𝑚

(
c′
𝑚−𝑘+𝑗 ⊛ b( 𝑗)

)ª®®®®¬
𝑥̃𝑘
𝑙

ª®®®®®®®¬

𝑦̃
(𝑖 )
𝑙

= EncCS
©­«𝑝𝑘,𝑔

2𝑚∑
𝑙=1

𝑓 (𝑙 ) 𝑦̃ (𝑖 )
𝑙

;

2𝑚∑︁
𝑙=1

𝜏 (𝑙)𝑦 (𝑖)
𝑙

ª®¬
·
2𝑚−1∏
𝑘=0

©­­­«
𝑚∏
𝑗=0

1⩽𝑚−𝑘+𝑗⩽𝑚

(
c′
𝑚−𝑘+𝑗 ⊛ b( 𝑗)

)ª®®®¬
because CS is homomorphic

16
Let 𝑛 ∈ N∗ be a natural number. Let x ∈ H𝑛𝑝𝜂 be a ciphertexts vector of dimension

𝑛. Let 𝑖 ∈ ⟦1;𝑛⟧. By definition of ⊛, we have

x ⊛ u𝑖 =
𝑛∏
𝑗=1

𝑥
𝛿𝑗𝑖

𝑗
= 𝑥𝑖 . □

It follows

𝐸𝑖 = EncCS (𝑝𝑘,𝑔𝑓𝑖 ; 𝜏𝑖 ) ·
2𝑚−1∏
𝑘=0

©­­­«
𝑚∏
𝑗=0

1⩽𝑚−𝑘+𝑗⩽𝑚

(
c′
𝑚−𝑘+𝑗 ⊛ a( 𝑗)

)ª®®®¬
𝛿𝑘𝑖

,

because, for all 𝑘 ∈ ⟦0; 2𝑚 − 1⟧, the following prop-
erties hold

• 𝑓𝑘
def

=
(
f𝑥̃ 𝑋̃
−1
𝐹

)
𝑘 =

2𝑚∑︁
𝑙=1

𝑓 (𝑙)𝑦 (𝑘)
𝑙

;

• ∀ 𝑗 ∈ ⟦0; 2𝑚 − 1⟧,
2𝑚∑︁
𝑙=1

𝑥𝑘
𝑙
𝑦
( 𝑗)
𝑘

=
(
𝑋̃−1𝐹 ỹ( 𝑗)

)
𝑘 =

𝛿𝑘 𝑗 ;

• We define 𝑡𝑘 to be 𝜏𝑘
def

=

2𝑚∑︁
𝑙=1

𝜏 (𝑙)𝑦 (𝑘)
𝑙
∈ F𝑝𝜂 .

Consequently, we conclude the following property

∀𝑘 ∈ ⟦0; 2𝑚 − 1⟧, 𝐸𝑘 = EncCS (𝑝𝑘,𝑔𝑓𝑘 ; 𝜏𝑘 )
𝑚∏
𝑖=1

(
c′𝑖 ⊛ b𝑘−𝑚+𝑖

)
where 𝑓𝑘 =

2𝑚∑︁
𝑙=1

𝑓 (𝑙)𝑦 (𝑘)
𝑙

and 𝜏𝑘 =

2𝑚∑︁
𝑙=1

𝜏 (𝑙)𝑦 (𝑘)
𝑙

.

(Step 4) – Obtain the computation of value 𝐶
By hypothesis Eq. (H1), we have 𝑐𝐹𝑚 = ComF𝑝𝜂

(
𝑐𝑘, 0 ; 0

)
and 𝐸𝑚 = 𝐶 . As the commitment scheme KS[F𝑝𝜂 ] is
computationally binding, with overwhelming probability,

we have 𝑓𝑚 = 0. This leads to

𝐶 = 𝐸𝑚 = EncCS (𝑝𝑘,𝑔0 ; 𝑡𝑚)
𝑚∏
𝑖=1

(
c′𝑖 ⊛ b𝑖

)
.

Results obtained in steps (Step 1) to (Step 4) give us the following
result, proving that, with overwhelming probability, we have success-

fully extract a witness𝑤
def

=
(
𝐵, t, 𝜚

)
∈ Mat𝑛×𝑚 (F𝑝𝜂 ) × F𝑚𝑝𝜂 × F𝑝𝜂

such that

(
𝜎, 𝜒,𝑤

)
∈ RBGMEA.

∃𝐵 ∈ Mat𝑛×𝑚 (F𝑝𝜂 ), ∃ t ∈ F𝑚𝑝𝜂 , ∃ 𝜚 ∈ F𝑝𝜂 ,
c𝐵 = ComMat𝑛×𝑚 (F𝑝𝜂 )

(
𝑐𝑘, 𝐵 ; t

)
𝐶 = EncCS (𝑝𝑘, 1 ; 𝜚 ) ·

𝑚∏
𝑖=1

(
c′
𝑖
⊛ b𝑖

)
where B( 𝑗)

def
= b( 𝑗) , for all 𝑗 ∈ ⟦1;𝑚⟧.

10
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Proof step→

↓ Property
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p
(
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ep

1.
1
)
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p
(
St
ep

1.
3
)

s
t
e
p
(
St
ep

2.
1
)

s
t
e
p
(
St
ep

2.
3
)

Binding of
commitment

scheme
× 1 × 1

Property transfer
under adversarial

selection
Yes Yes

Extractor uses
rewinding? Yes (2𝑚 valid proof transcripts)

Table 2: Assessment of cryptographic or probabilistic
properties used to prove Knowledge Soundness of Multi-
Exponentiation Argument protocol

□

B.3 Product argument protocol
We define

RBGPA ⊆ G𝑛+1𝑝𝜂︸︷︷︸
Public parameter set

×
(
G𝑚𝑝𝜂 × F𝑝𝜂

)︸         ︷︷         ︸
Statement set

×
(
Mat𝑛×𝑚 (F𝑝𝜂 ) × F𝑚𝑝𝜂

)︸                       ︷︷                       ︸
Witness set

to be the product relation defined by

(
𝑐𝑘, (cΓ, 𝛽), (Γ, v)

)
∈ RBGPA

def⇐⇒


cΓ = ComMat𝑛×𝑚 (F𝑝𝜂 )

(
𝑐𝑘, Γ ; v

)
𝑛∏
𝑖=1

𝑚∏
𝑗=1

Γ𝑖, 𝑗 = 𝛽

Hence, we define a 7-move product argument protocol to be the

protocol defined as follows in Protocol 5.

Theorem B.3 (Knowledge soundness of ZK(3) [RBGPA ]). The
7-move zero-knowledge protocol ZK(3) [RBGPA ] is knowledge sound.

Proof. We define the extractor EPA for the Bayer-Groth product

argument to be the algorithm defined as follows in Extractor 6.
Let 𝑛,𝑚 ∈ N∗ be two natural numbers. Let 𝜂 ∈ N∗ be a security

parameter. Let P∗ be a polynomial-time and deterministic adver-

sarial prover. Let 𝑐𝑘 ← IPA (𝜂) be an honest public parameter for

the product argument relation RBGPA . Let A be a probabilistic and

polynomial-time adversary. Let 𝜒 ← A(𝜂, 𝑐𝑘) be an adversarial

statement where

𝜒
def

=
(
cΓ, 𝛽

)
∈ G𝑚𝑝𝜂 × F𝑝𝜂 .

Then, the adversary A calls the extractor EPA on inputs 𝑐𝑘 and 𝜒

with access to P∗ andVPA and obtains

𝜏PA
def

=

(
𝑐𝛽 ,

(
Γ, v,
−→
𝛽 (1) , 𝜉𝛿

)︸            ︷︷            ︸
Witness of the Hadamard

Product Argument

,
(−→
𝛽 (2) , 𝜉2

)︸      ︷︷      ︸
Witness of the Single

Value Product Argument

)
.

(Step 1) By the knowledge soundness of the Hadamard product

argument protocol (see Theorem B.5), we have, with over-

whelming probability in 𝜂, the following equations

cΓ = ComMat𝑛×𝑚 (F𝑝𝜂 )
(
𝑐𝑘, Γ ; v

)
(H (1)HPA)

𝑐𝛽 = ComF𝑛𝑝𝜂
(
𝑐𝑘,
−→
𝛽 (1) ; 𝜉𝛿

)
(H (2)HPA)

−→
𝛽 (1) =

𝑚⊙
𝑗=1

Γ( 𝑗) (H (3)HPA)

(Step 2) Besides, by the knowledge soundness of the Single value
product argument protocol (see Theorem B.4), we have,

with overwhelming probability in 𝜂, the following equa-

tions

𝑐𝛽 = ComF𝑛𝑝𝜂
(
𝑐𝑘,
−→
𝛽 (2) ; 𝜉2

)
(H (1)SVPA)

𝛽 =

𝑛∏
𝑖=1

𝛽
(2)
𝑖

(H (2)SVPA)

(Step 3) By equations Eq. (H (2)HPA) and Eq. (H (1)SVPA), we have

𝑐𝛽 = ComF𝑛𝑝𝜂
(
𝑐𝑘,
−→
𝛽 (1) ; 𝜉𝛿

)
= ComF𝑛𝑝𝜂

(
𝑐𝑘,
−→
𝛽 (2) ; 𝜉2

)
.

Thus, because the commitment scheme KS[F𝑛𝑝𝜂 ] is com-
putationally binding, we conclude with overwhelming

probability in 𝜂 that

−→
𝛽 (1) =

−→
𝛽 (2) . We denote this com-

mon value

−→
𝛽 ∈ F𝑛𝑝𝜂 .

Results obtained in steps (Step 1) to (Step 3) give us the follow-
ing result

17
, proving that, with overwhelming probability, we have

successfully extract a witness 𝑤
def

=
(
Γ, v

)
∈ Mat𝑛×𝑚 (F𝑝𝜂 ) × F𝑚𝑝𝜂

such that

(
𝜎, 𝜒,𝑤

)
∈ RBGPA .

∃ Γ ∈ Mat𝑛×𝑚 (F𝑝𝜂 ), ∃ v ∈ F𝑚𝑝𝜂 ,
cΓ = ComMat𝑛×𝑚 (F𝑝𝜂 )

(
𝑐𝑘, Γ ; v

)
𝛽 =

𝑛∏
𝑖=1

𝑚∏
𝑗=1

Γ𝑖, 𝑗

17
More precisely, on one hand we have

𝛽 =

𝑛∏
𝑖=1

𝛽𝑖 by step (Step 3) and Eq. (H (2)SVPA)

=

𝑛∏
𝑖=1

(
𝑚⊙
𝑗=1

Γ( 𝑗 )
)
𝑖

by step (Step 3) and Eq. (H (3)HPA)

=

𝑛∏
𝑖=1

𝑚∏
𝑗=1

Γ𝑖,𝑗 . by definition of operator ⊙

And on another hand, 𝐸𝑞. (H (1)HPA) gives us

cΓ = ComMat𝑛×𝑚 (F𝑝𝜂 )
(
𝑐𝑘, Γ ; v

)
.

11
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Protocol 5: 7-move zero-knowledge protocol ZK(3) [RBGPA ] for the Bayer-Groth product argument

Public Input :Two natural numbers 𝑛,𝑚 ∈ N∗. A security parameter 𝜂 ∈ N∗. A commitment key 𝑐𝑘 = (𝑔, g) ∈ G𝑛+1𝑝𝜂
for the

commitment scheme KS[Mat𝑛×𝑚 (F𝑝𝜂 )]. A commit value cΓ ∈ G𝑚𝑝𝜂 , and a value 𝛽 ∈ F𝑝𝜂 .

Private Input :A matrix 𝐴 ∈ Mat𝑛×𝑚 (F𝑝𝜂 ), and a vector of random values v
$← F𝑚𝑝𝜂 such that cΓ = ComMat𝑛×𝑚 (F𝑝𝜂 )

(
𝑐𝑘, Γ ; v

)
and

𝑛∏
𝑖=1

𝑚∏
𝑗=1

Γ𝑖, 𝑗 = 𝛽 .

Begin protocol

(1) (Commit message) The prover PPA chooses uniformly at random a value 𝜉
$← F𝑝𝜂 and computes the commit value

𝑐𝑏 ← ComF𝑛𝑝𝜂

(
𝑐𝑘,

(
𝑚∏
𝑗=1

Γ𝑖, 𝑗

)𝑛
𝑖=1

; 𝜉

)
∈ G𝑝𝜂 . Then, PPA sends this commit value 𝑐𝛽 to the verifierVPA.

(1-5) (Hadamard product argument call) Both prover PPA and verifierVPA engage in the 5-move zero-knowledge protocol

ZK(2) [RBGHPA] for the relation R
BG
HPA with public parameter 𝜎HPA

def

= 𝑐𝑘 , public statement 𝜒HPA
def

=
(
cΓ, 𝑐𝛽

)
, and private statement

𝑤HPA
def

=

(
Γ, v

𝑚⊙
𝑗=1

Γ( 𝑗) , 𝜉

)
. We denote by 𝜏HPA the proof transcript obtained at the end of this 5-move protocol.

(5-7) (Single value product argument call) Both prover PPA and verifierVPA engage in the Σ-protocol Σ
[
RBGSVPA

]
for the relation

RBGSVPA with public parameter 𝜎SVPA
def

= 𝑐𝑘 , public statement 𝜒SVPA
def

= (𝑐𝛽 , 𝛽), and private statement𝑤SVPA
def

=

(
𝑚⊙
𝑗=1

Γ( 𝑗) , 𝜉

)
. We

denote by 𝜏SVPA the proof transcript obtained at the end of this Σ-protocol.

(8) (Conclusion’s bit) The verifierVPA accepts if and only if the following property holds

(
𝑣
𝜎HPA, 𝜒HPA
HPA

(
𝜏HPA

)
∧ 𝑣𝜎SVPA, 𝜒SVPASVPA

(
𝜏SVPA

) )
.

Extractor 6: Extractor EPA for the 7-move zero-knowledge protocol ZK(3) [RBGPA ] of the Bayer-Groth product argument

Input :A security parameter 𝜂 ∈ N∗. Two natural numbers 𝑛,𝑚 ∈ N∗. A public parameter 𝜎
def

= 𝑐𝑘 ∈ G𝑛+1𝑝𝜂
for the

Bayer-Groth product relation RBGPA . A statement 𝜒
def

=
(
cΓ, 𝛽

)
∈ G𝑚𝑝𝜂 × F𝑝𝜂 .

Blackbox access to :A deterministic adversarial prover P∗ and an honest verifierVPA.

1 Begin extractor
2 calls P∗ to get 𝑐𝛽 ∈ G𝑝𝜂 ;

3
calls EHPA with oracles P∗ and VPA on inputs

(
𝜎, (cΓ, 𝑐𝛽 )

)
to get

(
Γ, v,
−→
𝛽 (1) , 𝜉𝛿

)
∈

(
Mat𝑛×𝑚 (F𝑝𝜂 ) × F𝑚𝑝𝜂 × F

𝑛
𝑝𝜂
× F𝑝𝜂

)
;

4 calls ESVPA with oracles P∗ and V𝑃𝐴 on inputs
(
𝜎, (𝑐𝛽 , 𝛽)

)
to get

(−→
𝛽 (2) , 𝜉2

)
∈

(
F𝑛𝑝𝜂 × F𝑝𝜂

)
;

5 returns 𝜏PA
def
=

(
𝑐𝛽 ,

(
Γ, v,
−→
𝛽 (1) , 𝜉𝛿

)
,

(−→
𝛽 (2) , 𝜉2

))
.

Proof step→

↓ Property

s
t
e
p
(S
te
p
1)

s
t
e
p
(S
te
p
2)

s
t
e
p
(S
te
p
3)

Knowledge
Soundness

1 ×
EHPA

1 ×
ESVPA

Binding of
commitment

scheme
× 1

Extractor uses
rewinding? No

Table 3: Assessment of cryptographic or probabilistic proper-
ties used to proveKnowledge Soundness of Product Argument
protocol

□

B.4 Single value product argument protocol
We define

RBGSVPA ⊆ G𝑛+1𝑝𝜂︸︷︷︸
Public parameter set

×
(
G𝑝𝜂 × F𝑝𝜂

)︸         ︷︷         ︸
Statement set

×
(
F𝑛𝑝𝜂 × F𝑝𝜂

)︸        ︷︷        ︸
Witness set
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Protocol 7: Σ-protocol Σ
[
RBGSVPA

]
for the Bayer-Groth single value product argument

Public Input :A natural number 𝑛 ∈ N∗. A security parameter 𝜂 ∈ N∗. A commitment key 𝑐𝑘 = (𝑔, g) ∈ G𝑛+1𝑝𝜂
for the commitment

scheme KS[F𝑛𝑝𝜂 ]. A commit value 𝑐𝛽 ∈ G𝑝𝜂 and a value 𝛽 ∈ F𝑝𝜂 .

Private Input :A vector

−→
𝛽 ∈ F𝑛𝑝𝜂 and a random value 𝜉

$← F𝑝𝜂 such that 𝑐𝛽 = ComF𝑛𝑝𝜂
(
𝑐𝑘,
−→
𝛽 ; 𝜉

)
, and 𝛽 =

𝑛∏
𝑖=1

𝛽𝑖 .

Begin protocol

(1) (Commit message) The prover PSVPA computes, for all 𝑗 ∈ ⟦1;𝑛⟧, ˜𝛽 ( 𝑗) ←
𝑗∏

𝑖=1
𝛽𝑖 ∈ F𝑛𝑝𝜂 . Then, he chooses uniformly at random

values Δ1, . . . ,Δ𝑛
$← F𝑝𝜂 , 𝛿2, . . . , 𝛿𝑛−1

$← F𝑝𝜂 , and 𝜉𝛿 , 𝜉Λ, 𝜉Δ
$← F𝑝𝜂 . Next, PSVPA sets 𝛿1 ← Δ1 ∈ F𝑝𝜂 and 𝛿𝑛 ← 0 ∈ F𝑝𝜂 then

computes

𝑐Δ ← ComF𝑛𝑝𝜂
(
𝑐𝑘,∆ ; 𝜉Δ

)
∈ G𝑝𝜂 , 𝑐𝛿 ← ComF𝑛−1𝑝𝜂

(
𝑐𝑘,

(
−𝛿𝑖Δ𝑖+1

)𝑛−1
𝑖=1 ; 𝜉𝛿

)
∈ G𝑝𝜂 , and

𝑐Λ ← ComF𝑛−1𝑝𝜂

(
𝑐𝑘,

(
𝛿𝑖 − 𝛽𝑖𝛿𝑖−1 − ˜𝛽𝑖−1Δ𝑖

)𝑛
𝑖=2

; 𝜉Λ

)
∈ G𝑝𝜂

Finally, PSVPA sends toVSVPA values

(
𝑐Δ, 𝑐𝛿 , 𝑐Λ

)
.

(2) (Challenge message) The verifierVSVPA chooses uniformly at random a challenge 𝑥
$← F∗𝑝𝜂 and sends it to PSVPA.

(3) (Response message) The prover PSVPA computes values
ˆ𝜉 ← 𝑥𝜉 + 𝜉Δ ∈ F𝑝𝜂 , ˆ𝜁 ← 𝑥𝜉Λ + 𝜉𝛿 ∈ F𝑝𝜂 , and, for all 𝑖 ∈ ⟦1;𝑛⟧,

ˆ𝛽𝑖 ← 𝑥𝛽𝑖 + Δ𝑖 ∈ F𝑝𝜂 and
ˆ𝛿𝑖 ← 𝑥 ˜𝛽𝑖 + 𝛿𝑖 ∈ F𝑝𝜂 . Then, PSVPA sends values

( (
ˆ𝛽𝑖
)𝑛
𝑖=1,

(
ˆ𝛿𝑖
)𝑛
𝑖=1,

ˆ𝜉, ˆ𝜁

)
toVSVPA.

(4) (Conclusion’s bit) The verifierVSVPA accepts if and only if the following equations hold

𝑐𝑥
𝛽
𝑐Δ = ComF𝑛𝑝𝜂

(
𝑐𝑘,

(
ˆ𝛽𝑖
)𝑛
𝑖=1,

ˆ𝜉

)
, 𝑐𝑥Λ𝑐𝛿 = ComF𝑛−1𝑝𝜂

(
𝑐𝑘,

(
𝑥 ˆ𝛿𝑖− ˆ𝛿𝑖−1 ˆ𝛽𝑖

)𝑛
𝑖=2

, ˆ𝜁

)
, ˆ𝛿1 = ˆ𝛽1, and

ˆ𝛿𝑛 = 𝑥𝛽.

Extractor 8: Extractor ESVPA for the Σ-protocol Σ
[
RBGSVPA

]
of the Bayer-Groth single value product argument

Input :A security parameter 𝜂 ∈ N∗. A natural number 𝑛 ∈ N∗. A public parameter 𝜎
def

= 𝑐𝑘 ∈ G𝑛+1𝑝𝜂
for the

Bayer-Groth single value product relation RBGSVPA. A statement 𝜒
def

= (𝑐𝛽 , 𝛽) ∈ G𝑝𝜂 × F𝑝𝜂 .
Blackbox access to :A deterministic adversarial prover P∗ and an honest verifierVSVPA.

1 Begin extractor

2 calls P∗ to get 𝛼 def

=
(
𝑐Δ, 𝑐𝛿 , 𝑐Λ

)
∈

(
G𝑝𝜂 × G𝑝𝜂 × G𝑝𝜂

)
; // State at this point: st1

def

=

[
𝑐𝑘 ; (𝑐𝛽 , 𝛽) ;

(
𝑐Δ, 𝑐𝛿 , 𝑐Λ

) ]
.

3 rewinds P∗ and VSVPA at state st1 and begins with 𝑙 ← 1 ∈ N
4 calls VSVPA to get 𝑥𝑙

$← F∗𝑝𝜂 ;

5 calls P∗ to get 𝔷RBG
SVPA, P∗

(
𝛼, 𝑥𝑙

)
∈

(
F𝑛𝑝𝜂 × F

𝑛
𝑝𝜂
× F𝑝𝜂 × F𝑝𝜂

)
;

6 if 𝑣𝑐𝑘, 𝜒RBG
SVPA

(
𝔱𝔯
𝑐𝑘, 𝜒
𝛼, 𝔷RBGSVPA, P

∗ (𝑥𝑙 )
)
and

𝑙−1∧
𝑖=1

(𝑥𝑖 ≠ 𝑥𝑙 ) then 𝑙 ← 𝑙 + 1 ;

7 until 𝑙 > 2 ;

8 returns 𝜏SVPA
def
=

(
𝔱𝔯
𝑐𝑘, 𝜒
𝛼, 𝔷RBGSVPA, P

∗ (𝑥1), 𝔱𝔯
𝑐𝑘, 𝜒
𝛼, 𝔷RBGSVPA, P

∗ (𝑥2)
)
.

to be the single value product relation defined by

(
𝑐𝑘, (𝑐𝛽 , 𝛽), (

−→
𝛽 , 𝜉)

)
∈ RBGSVPA

def⇐⇒


𝑐𝛽 = ComF𝑛𝑝𝜂

(
𝑐𝑘,
−→
𝛽 ; 𝜉

)
𝛽 =

𝑛∏
𝑖=1

𝛽𝑖

Hence, we define a Σ-protocol for the relation of single value

product Σ
[
RBGSVPA

]
to be the protocol defined as follows inProtocol 7.

Theorem B.4 (Knowledge soundness of Σ
[
RBGSVPA

]
). The Σ-

protocol Σ
[
RBGSVPA

]
for the single value product relation RBGSVPA is

knowledge sound.
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Proof. We define the extractor ESVPA for the Bayer-Groth sin-

gle value product argument to be the algorithm defined as follows

in Extractor 8.
Let 𝑛 ∈ N∗ be a natural number. Let 𝜂 ∈ N∗ be a security pa-

rameter. Let P∗ be a polynomial-time and deterministic adversarial

prover. Let 𝜎 = 𝑐𝑘 ← ISVPA (𝜂) be an honest public parameter for

the single value product relation RBGSVPA. LetA be a probabilistic and

polynomial-time adversary. Let 𝜒 ← A(𝜂, 𝑐𝑘) be an adversarial

statement where

𝜒
def

=
(
𝑐𝛽 , 𝛽

)
∈ G𝑝𝜂 × F𝑝𝜂 .

Next, the adversary A calls the extractor ESVPA on inputs 𝑐𝑘 and

𝜒 with access to P∗ and VSVPA and obtains a pair of valid proof

transcripts 𝜏SVPA where

𝜏SVPA
def

=

(
𝔱𝔯
𝑐𝑘, 𝜒
𝛼, 𝔷RBGSVPA, P

∗ (𝑥1), 𝔱𝔯
𝑐𝑘, 𝜒
𝛼, 𝔷RBGSVPA, P

∗ (𝑥2)
)
.

We denote by

• 𝛼
def

=
(
𝑐Δ, 𝑐𝛿 , 𝑐Λ

)
∈ G𝑝𝜂 × G𝑝𝜂 × G𝑝𝜂 the first message ; and

• for 𝑙 ∈ {1, 2}, the response message on challenge 𝑥𝑙 is

𝔷RBG
SVPA, P∗

(
𝛼, 𝑥𝑙

) def

=

( (
ˆ𝛽
(𝑙)
𝑖

)𝑛
𝑖=1,

(
ˆ𝛿
(𝑙)
𝑖

)𝑛
𝑖=1,

ˆ𝜉 (𝑙) , ˆ𝜁 (𝑙)
)

∈
(
F𝑛𝑝𝜂 × F

𝑛
𝑝𝜂
× F𝑝𝜂 × F𝑝𝜂

)
.

By definition of the Bayer-Groth single value product argument

protocol, as the proof transcripts in 𝜏SVPA are valid, for 𝑙 ∈ {1, 2},
we have

𝑐
𝑥𝑙
𝛽
𝑐Δ = ComF𝑛𝑝𝜂

(
𝑐𝑘,

(
ˆ𝛽
(𝑙)
𝑖

)𝑛
𝑖=1

;
ˆ𝜉 (𝑙)

)
(H (𝑙)

1
)

𝑐
𝑥𝑙
Λ 𝑐𝛿 = ComF𝑛−1𝑝𝜂

(
𝑐𝑘,

(
𝑥𝑙

ˆ𝛿
(𝑙)
𝑖
− ˆ𝛿
(𝑙)
𝑖−1

ˆ𝛽
(𝑙)
𝑖

)𝑛
𝑖=2

;
ˆ𝜁 (𝑙)

)
(H (𝑙)

2
)

ˆ𝛿
(𝑙)
1

= ˆ𝛽
(𝑙)
1

and
ˆ𝛿
(𝑙)
𝑛 = 𝑥𝑙 𝛽 (H (𝑙)

3
)

(Step 1) – Get an opening of commit value 𝑐𝛽 .

(Step1.1) Hypothesis Eq. (H (𝑙)
1

) and homomorphism ofComF𝑛𝑝𝜂
lead to

𝑐
𝑥1−𝑥2
𝛽

= ComF𝑛𝑝𝜂

(
𝑐𝑘,

(
ˆ𝛽
(1)
𝑖
− ˆ𝛽
(2)
𝑖

)𝑛
𝑖=1

;
ˆ𝜉 (1) − ˆ𝜉 (2)

)
.

Because 𝑥1 ≠ 𝑥2, we have

𝑐𝛽 =

(
ComF𝑛𝑝𝜂

(
𝑐𝑘,

(
ˆ𝛽
(1)
𝑖
− ˆ𝛽
(2)
𝑖

)𝑛
𝑖=1

;
ˆ𝜉 (1) − ˆ𝜉 (2)

)) 1

𝑥̂
1
−𝑥̂

2

= ComF𝑛𝑝𝜂

(
𝑐𝑘,

1

𝑥1 − 𝑥2

(
ˆ𝛽
(1)
𝑖
− ˆ𝛽
(2)
𝑖

)𝑛
𝑖=1

;

1

𝑥1 − 𝑥2

(
ˆ𝜉 (1) − ˆ𝜉 (2)

))
.

(Step1.2) Therefore, the pair

(
(𝛽𝑖 )𝑛𝑖=1, 𝑟

)
∈ F𝑛𝑝𝜂 × F𝑝𝜂 is an

opening of 𝑐𝛽 with

∀ 𝑖 ∈ ⟦1;𝑛⟧, 𝛽𝑖
def

=
1

𝑥1 − 𝑥2

(
ˆ𝛽
(1)
𝑖
− ˆ𝛽
(2)
𝑖

)
and 𝜉

def

=
1

𝑥1, 𝑥2

(
ˆ𝜉 (1) − ˆ𝜉 (2)

)
,

which is independent of challenges 𝑥1 and 𝑥2 because
the commitment scheme KS[F𝑛𝑝𝜂 ] is computationally
binding.

(Step 2) – Get an opening of commit value 𝑐Δ.
(Step2.1) We have,

• 𝑐Δ = 𝑐
−𝑥1
𝛽

ComF𝑛𝑝𝜂

(
𝑐𝑘,

(
ˆ𝛽
(1)
𝑖

)𝑛
𝑖=1

;
ˆ𝜉 (1)

)
by hypoth-

esis Eq. (H (𝑙)
1

) applied to 𝑙 = 1 ; and

• by step (Step 1), 𝑐𝛽 = ComF𝑛𝑝𝜂
(
𝑐𝑘, (𝛽𝑖 )𝑛𝑖=1 ; 𝜉

)
.

This leads to

𝑐Δ =

(
ComF𝑛𝑝𝜂

(
𝑐𝑘, (𝛽𝑖 )𝑛𝑖=1 ; 𝜉

) )−𝑥1
· ComF𝑛𝑝𝜂

(
𝑐𝑘,

(
ˆ𝛽
(1)
𝑖

)𝑛
𝑖=1

;
ˆ𝜉 (1)

)
= ComF𝑛𝑝𝜂

(
𝑐𝑘,

(
ˆ𝛽
(1)
𝑖
− 𝑥1𝛽𝑖

)𝑛
𝑖=1

, ˆ𝜉 (1) − 𝑥1𝜉
)
.

(Step2.2) Therefore, the pair

(
(Δ𝑖 )𝑛𝑖=1, 𝜉Δ

)
∈ F𝑛𝑝𝜂 × F𝑝𝜂 is an

opening of 𝑐Δ with

∀ 𝑖 ∈ ⟦1;𝑛⟧, Δ𝑖
def

= ˆ𝛽
(1)
𝑖
− 𝑥1𝛽𝑖 and 𝜉Δ

def

= ˆ𝜉 (1) − 𝑥1𝜉,

which is independent of challenge 𝑥1 because the com-

mitment scheme KS[F𝑛𝑝𝜂 ] is computationally binding.
(Step 3) – Get an opening of commit value 𝑐Λ.

(Step3.1) By hypothesis Eq. (H (𝑙)
2

) and because 𝑥1 ≠ 𝑥2, we

have

𝑐Λ = ComF𝑛−1𝑝𝜂

(
𝑐𝑘,

1

𝑥1 − 𝑥2

(
𝑥1 ˆ𝛿
(1)
𝑖
− ˆ𝛿 (1)

𝑖−1
ˆ𝛽
(1)
𝑖
−𝑥2 ˆ𝛿 (2)𝑖

+ ˆ𝛿 (2)
𝑖−1

ˆ𝛽
(2)
𝑖

)𝑛
𝑖=2

;

1

𝑥1 − 𝑥2

(
ˆ𝜁 (1) − ˆ𝜁 (2)

))
.

(Step3.2) Thus,

(
(𝜆𝑖 )𝑛𝑖=2, 𝜉Λ

)
∈ F𝑛−1𝑝𝜂

× F𝑝𝜂 is an opening – in-
dependent of challenges 𝑥1 and 𝑥2 by the binding
property for the commiment scheme KS[F𝑛−1𝑝𝜂

] – of

𝑐Λ with

∀ 𝑖 ∈ ⟦2;𝑛⟧, 𝜆𝑖
def

=
1

𝑥1 − 𝑥2

(
𝑥1 ˆ𝛿
(1)
𝑖
− ˆ𝛿
(1)
𝑖−1

ˆ𝛽
(1)
𝑖
− 𝑥2 ˆ𝛿 (2)𝑖

+ ˆ𝛿
(2)
𝑖−1

ˆ𝛽
(2)
𝑖

)
and 𝜉Λ

def

=
1

𝑥1 − 𝑥2

(
ˆ𝜁 (1) − ˆ𝜁 (2)

)
.

(Step 4) – Get an opening of commit value 𝑐𝛿 .
(Step4.1) We have,

• 𝑐𝛿 = 𝑐
−𝑥1
Λ ComF𝑛𝑝𝜂

(
𝑐𝑘,

(
𝑥1 ˆ𝛿
(1)
𝑖
− ˆ𝛿 (1)

𝑖−1
ˆ𝛽
(1)
𝑖

)𝑛
𝑖=2

;
ˆ𝜁 (1)

)
by hypothesis Eq. (H (𝑙)

2
) applied to 𝑙 = 1 ; and

• by step (Step 3), 𝑐Λ = ComF𝑛𝑝𝜂
(
𝑐𝑘, (𝜆𝑖 )𝑛𝑖=2 ; 𝜉Λ

)
.

This leads to

𝑐𝛿 = ComF𝑛−1𝑝𝜂

(
𝑐𝑘,

(
𝑥1 ˆ𝛿
(1)
𝑖
− ˆ𝛿
(1)
𝑖−1

ˆ𝛽
(1)
𝑖
− 𝑥1𝜆𝑖

)𝑛
𝑖=2

;
ˆ𝜁 (1) − 𝑥1𝜉Λ

)
.

(Step4.2) Thus,

(
(𝛾𝑖 )𝑛𝑖=2, 𝜉𝛿

)
∈ F𝑛−1𝑝𝜂

× F𝑝𝜂 is an opening – in-
dependent of challenge 𝑥1 by the binding property for

the commitment scheme KS[F𝑛−1𝑝𝜂
] – of 𝑐𝛿 with

∀ 𝑖 ∈ ⟦2;𝑛⟧, 𝛾𝑖
def

= 𝑥1 ˆ𝛿
(1)
𝑖
− ˆ𝛿
(1)
𝑖−1

ˆ𝛽
(1)
𝑖
− 𝑥1𝜆𝑖

and 𝜉𝛿
def

= ˆ𝜁 (1) − 𝑥1𝜉Λ .
14
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(Step 5) – It remains to verify equation 𝛽 =
𝑛∏
𝑖=1

𝛽𝑖 .

(Step5.1) By step (Step 4) and because sequences (𝜆𝑖 )𝑛𝑖=2 and
(𝛾𝑖 )𝑛𝑖=2 are independent of challenge 𝑥1, we have:

∀ 𝑖 ∈ ⟦2;𝑛⟧, 𝑥1 ˆ𝛿 (1)𝑖
= ˆ𝛿
(1)
𝑖−1

ˆ𝛽
(1)
𝑖
+ 𝑝 (𝑖)

1
(𝑥1) (∗)

where 𝑝
(𝑖)
1

is a polynomial of degree 1 in variable

𝑥1
18
.

(Step5.2) Now, let us prove the following property P( 𝑗) for
𝑗 ∈ ⟦1;𝑛⟧ by induction:

𝑥
𝑗−1
1

ˆ𝛿
(1)
𝑗

=

𝑗∏
𝑖=1

ˆ𝛽
(1)
𝑖
+ 𝑝 ( 𝑗)

𝑗−1 (𝑥1) where 𝑝
( 𝑗)
𝑗−1 is a polynomial of

degree at most 𝑗 − 1 in variable 𝑥1 . (P( 𝑗))

• Initialisation ( 𝑗 = 1): By hypothesis Eq. (H (𝑙)
3

),

we have
ˆ𝛿
(1)
1

= ˆ𝛽
(1)
1

. Thus, we have 𝑥1−1
1

ˆ𝛿1 =∏
1

𝑖=1
ˆ𝛽𝑖 +0 with 𝑝 (1)

0

def

= 0 a polynomial of degree

at most 0. Consequently, P(1) holds.
• Heredity (let 𝑗 ∈ ⟦2;𝑛⟧):We suppose P( 𝑗 − 1).

By Eq. (∗), we have 𝑥1 ˆ𝛿 (1)𝑗
= ˆ𝛿
(1)
𝑗−1

ˆ𝛽
(1)
𝑗
+ 𝑝 ( 𝑗)

1
(𝑥1)

with 𝑝
( 𝑗)
1

of degree at most 1. Thus, we have

𝑥
𝑗−1
1

ˆ𝛿
(1)
𝑗

= 𝑥
𝑗−2
1

ˆ𝛿
(1)
𝑗−1

ˆ𝛽
(1)
𝑗
+ 𝑥 𝑗−2

1
𝑝
( 𝑗)
1
(𝑥1)

=

(
𝑗−1∏
𝑖=1

ˆ𝛽
(1)
𝑖

)
· ˆ𝛽 (1)

𝑗
+ ˆ𝛽
(1)
𝑗

𝑝
( 𝑗−1)
𝑗−2 (𝑥1) + 𝑥

𝑗−2
1

𝑝
( 𝑗)
1
(𝑥)

because P( 𝑗 − 1) holds

=

𝑗∏
𝑖=1

ˆ𝛽
(1)
𝑖
+

( deg ⩽ 𝑗−2︷            ︸︸            ︷
ˆ𝛽
(1)
𝑗

𝑝
( 𝑗−1)
𝑗−2 (𝑥1) +

deg ⩽ 𝑗−1︷          ︸︸          ︷
𝑥
𝑗−2
1

𝑝
( 𝑗)
1
(𝑥1)︸                                  ︷︷                                  ︸

deg ⩽ max

(
𝑗−2, 𝑗−1

)
= 𝑗−1

)
.

Consequently, we have

𝑥
𝑗−1
1

ˆ𝛿
(1)
𝑗

=

𝑗∏
𝑖=1

ˆ𝛽
(1)
𝑖
+ 𝑝 ( 𝑗)

𝑗−1 (𝑥1)

where 𝑝
( 𝑗)
𝑗−1 is a polynomial of degree at most 𝑗−1

in 𝑥1.

Thus, by induction, for all 𝑗 ∈ ⟦1;𝑛⟧, the property
P( 𝑗) holds. In particular, because 𝑥1𝛽 = ˆ𝛿

(1)
𝑛 (hy-

pothesis Eq. (H (𝑙)
3

)), for 𝑗 = 𝑛, we have

𝑥𝑛
1
𝛽 = 𝑥𝑛−1

1

ˆ𝛿
(1)
𝑛 =

𝑛∏
𝑖=1

ˆ𝛽𝑖 + 𝑝
(𝑛)
𝑛−1 (𝑥1)︸    ︷︷    ︸

of degree ⩽ 𝑛−1

. (𝑖)

(Step5.3) On another hand, by the opening of 𝑐Δ (see step (Step 2)),
we have

∀ 𝑖 ∈ ⟦1;𝑛⟧, Δ𝑖 = ˆ𝛽
(1)
𝑖
− 𝑥1𝛽𝑖 , (𝑖𝑖)

18
More precisely, polynomial 𝑝

(𝑖 )
1

is defined as follows:

∀ 𝑖 ∈ ⟦2;𝑛⟧, 𝑝 (𝑖 )
1
(𝑋 ) def= 𝛾𝑖 + 𝜆𝑖𝑋,

where 𝛾𝑖 and 𝜆𝑖 are some constant values regarding 𝑋 .

where sequences (Δ𝑖 )𝑛𝑖=1 and
(
ˆ𝛽
(1)
𝑖

)𝑛
𝑖=1

are indepen-

dent of challenge 𝑥1.

Thus, by Eq. (𝑖) and Eq. (𝑖𝑖), previous property leads

to

𝑥𝑛
1
𝛽 =

𝑛∏
𝑖=1

(
𝑥1𝛽𝑖 + Δ𝑖

)
+ 𝑝 (𝑛)

𝑛−1 (𝑥1).

Besides, there exists a polynomial Θ ∈ F𝑝𝜂 [𝑋 ] such
that

𝑛∏
𝑖=1

(
𝑥1𝛽𝑖 + Δ𝑖

)
= 𝑥𝑛

1

𝑛∏
𝑖=1

𝛽𝑖 + Θ(𝑥1)

and Θ is of degree at most 𝑛 − 1 by construction.

(Step5.4) Consequently, the two results obtained in step (Step5.3)
lead to(
𝑛∏
𝑖=1

𝛽𝑖 − 𝛽
)
𝑥𝑛
1
+ 𝑝

(𝑛)
𝑛−1 (𝑥1) + Θ(𝑥1)︸                ︷︷                ︸

of degree at most 𝑛 − 1

= 0.

By the Schwartz-Zippel lemma, we conclude with

overwhelming probability the following result

𝛽 =

𝑛∏
𝑖=1

𝛽𝑖 .

Results obtained in steps (Step 1) to (Step 5), give us the follow-
ing result, proving that, with overwhelming probability, we have

successfully extract a witness 𝑤
def

=
(−→
𝛽 , 𝜉

)
∈ F𝑛𝑝𝜂 × F𝑝𝜂 such that(

𝜎, 𝜒,𝑤
)
∈ RBGSVPA.

∃−→𝛽 ∈ F𝑛𝑝𝜂 , ∃ 𝜉 ∈ F𝑝𝜂 ,
𝑐𝛽 = ComF𝑛𝑝𝜂

(
𝑐𝑘,
−→
𝛽 ; 𝜉

)
𝛽 =

𝑛∏
𝑖=1

𝛽𝑖

Proof step→

↓ Property

s
t
e
p
(S
te
p
1)

s
t
e
p
(S
te
p
2)

s
t
e
p
(S
te
p
3)

s
t
e
p
(S
te
p
4)

s
t
e
p
(
St
ep

5.
4
)

Binding of
commitment

scheme
× 1 × 1 × 1 × 1

Schwartz-Zippel × 1

Extractor uses
rewinding? Yes (2 witnesses)

Table 4: Assessment of cryptographic or probabilistic prop-
erties used to prove Knowledge Soundness of Single Value
Product Argument protocol

Comment [MC2]: Verify if we need property transfer under adver-

sarial selection here

□
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B.5 Hadamard product argument protocol
We define

RBGHPA ⊆ G𝑛+1𝑝𝜂︸︷︷︸
Public parameter set

×
(
G𝑚𝑝𝜂 × G𝑝𝜂

)︸          ︷︷          ︸
Statement set

×
(
Mat𝑛×𝑚 (F𝑝𝜂 ) × F𝑚𝑝𝜂 × F

𝑛
𝑝𝜂
× F𝑝𝜂

)︸                                         ︷︷                                         ︸
Witness set

to be the Hadamard product relation defined by(
𝑐𝑘,

(
cΓ, 𝑐𝛽

)
,

((
Γ( 𝑗)

)𝑚
𝑗=1

, v,
−→
𝛽 , 𝜉

))
∈ RBGHPA

def⇐⇒



cΓ = ComMat𝑛×𝑚 (F𝑝𝜂 )

(
𝑐𝑘,

(
Γ( 𝑗)

)𝑚
𝑗=1

; v
)

𝑐𝛽 = ComF𝑛𝑝𝜂
(
𝑐𝑘,
−→
𝛽 ; 𝜉

)
−→
𝛽 =

𝑚⊙
𝑗=1

Γ( 𝑗)

Hence, we define a 5-move zero-knowledge protocol for the

Hadamard product argument ZK(2) [RBGHPA] to be the protocol de-

fined as follows in Protocol 9.

Theorem B.5 (Knowledge soundness of ZK(2) [RBGHPA]). The
5-move zero-knowledge protocol ZK(2) [RBGHPA] for the Hadamard
product relation RBGHPA is knowledge sound.

Proof. We define the extractorEHPA for the Bayer-GrothHadamard

product argument to be the algorithm defined as follows inExtractor 1019.
Let 𝑛,𝑚 ∈ N∗ be two natural numbers. Let 𝜂 ∈ N∗ be a security

parameter. Let P∗ be a polynomial-time and deterministic adversar-

ial prover. Let 𝜎 = 𝑐𝑘 ← IHPA (𝜂) be an honest public parameter for

the Hadamard product relation RBGHPA. Let A be a probabilistic and

polynomial-time adversary. Let 𝜒 ← A(𝜂, 𝑐𝑘) be an adversarial

statement where

𝜒
def

=
(
𝑐Γ, 𝑐𝛽

)
∈ G𝑚𝑝𝜂 × G𝑝𝜂 .

Next, the adversary A calls the extractor EHPA on inputs 𝑐𝑘 and 𝜒

with access to P∗ andVHPA and obtains a witness candidate𝑤out
– in particular, EHPA has not aborted – where

𝑤out
def

=

(
Γ, v,Ξ(𝑚) , 𝜍𝑚

)
.

The only thing it remains to prove is to verify if we have indeed a

witness for RBGHPA with public parameter 𝜎 and adversarial statement

𝜒 , i.e. we have to show the following property:(
𝑐𝑘,

(
cΓ, c𝛽

)
,𝑤out

)
∈ RBGHPA .

19

Comment [MC3]: Funny fact:

– Warning – Extractor 10 at line 3 leads to some probability of failure. It

depends whether P∗ gives a suitable commit vector value cΥ or not.

– Proposed fix – A possible fix to this issue is to rewind P∗ until we have

a suitable commit vector value cΥ .

More precisely, by definition of the relation RBGHPA, we have to prove
the three following properties

cΓ = ComMat𝑛×𝑚 (F𝑝𝜂 )
(
𝑐𝑘, Γ ; v

)
, (O1)

𝑐𝛽 = ComF𝑛𝑝𝜂

(
𝑐𝑘,Ξ(𝑚) ; 𝜍𝑚

)
, (O2)

Ξ(𝑚) =
𝑚⊙
𝑗=1

Γ( 𝑗) (O3)

(Step 1) – Preliminaries – Zero Argument consequences.

(Step1.1) By the knowledge soundness of the zero argument

protocol (see Theorem B.6), we obtain

• cΓ̃ = ComMat𝑛×𝑚 (F𝑝𝜂 )

(
𝑐𝑘,

(
Γ̃( 𝑗)

)𝑚
𝑗=1

;
−→𝜇

)
;

• cΥ̃ = ComMat𝑛×𝑚 (F𝑝𝜂 )

(
𝑐𝑘,

(
Υ̃( 𝑗)

)𝑚
𝑗=1

;
−→𝜈

)
; and

• 0 =

𝑚∑︁
𝑗=1

Γ̃( 𝑗) ★𝑣 Υ̃( 𝑗−1) .

Using definitions given by the extractor EHPA
(see Extractor 10), these hypothesis become:

(H1) For all 𝑗 ∈ ⟦1;𝑚 − 1⟧,

𝑐Γ𝑗+1 = 𝑐 Γ̃𝑗
= ComF𝑛𝑝𝜂

(
𝑐𝑘, Γ̃( 𝑗) ; 𝜇 𝑗

)
see line 5

= ComF𝑛𝑝𝜂

(
𝑐𝑘, Γ( 𝑗+1) ; 𝑣 𝑗+1

)
see line 9

and, for the special case 𝑗 =𝑚, we have

𝑐−1 = 𝑐 Γ̃𝑗
= ComF𝑛𝑝𝜂

(
𝑐𝑘, Γ̃(𝑚) ; 𝜇𝑚

)
see line 5

(H2) For all 𝑗 ∈ ⟦0;𝑚 − 2⟧,

𝑐𝑢
𝑗+1

Υ𝑗+1
= 𝑐Υ̃𝑗

= ComF𝑛𝑝𝜂

(
𝑐𝑘, Υ̃( 𝑗) ; 𝜈 𝑗

)
see line 5

= ComF𝑛𝑝𝜂

(
𝑐𝑘,𝑢 𝑗+1Ξ( 𝑗+1) ; 𝑢 𝑗+1𝜍 𝑗+1

)
see line 8

and, for the special case 𝑗 =𝑚 − 1, we have

𝑐Υ̃𝑚−1
=

𝑚−1∏
𝑗=1

𝑐𝑢
𝑗

Υ𝑗+1
= ComF𝑛𝑝𝜂

(
𝑐𝑘, Υ̃(𝑚−1) ; 𝜈𝑚−1

)
see line 5

= ComF𝑛𝑝𝜂
©­«𝑐𝑘,

𝑚−1∑︁
𝑗=1

𝑢 𝑗Ξ( 𝑗+1) ;
𝑚−1∑︁
𝑗=1

𝑢 𝑗𝜍 𝑗+1
ª®¬ see line 8

(H3) The following equation holds:

0 =

𝑚∑︁
𝑗=1

Γ̃( 𝑗) ★𝑣 Υ̃( 𝑗−1)

=

𝑚−1∑︁
𝑗=1

Γ( 𝑗+1) ★𝑣

(
𝑢 𝑗Ξ( 𝑗)

)
+ Γ̃(𝑚) ★𝑣 Υ̃(𝑚−1) see lines 8 and 9

(Step1.2) Notice that, thanks to the rewinding lemma, with

overwhelming probability, extractor EHPA does not

abort.

(Step 2) – Let us show equation Eq. (O1).
(Step2.1) Using Hypo. (H1), we already have

∀ 𝑗 ∈ ⟦2;𝑚⟧, 𝑐Γ𝑗 = ComF𝑛𝑝𝜂

(
𝑐𝑘, Γ( 𝑗) ; 𝑣 𝑗

)
.
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Protocol 9: 5-move zero-knowledge protocol ZK(2) [RBGHPA] for the Bayer-Groth Hadamard product argument

Public Input :Two natural numbers 𝑛,𝑚 ∈ N∗ . A security parameter 𝜂 ∈ N∗ . A commitment key 𝑐𝑘 = (𝑔, g) ∈ G𝑛+1𝑝𝜂
for the commitment scheme KS[Mat𝑛×𝑚 (F𝑝𝜂 ) ].

Two commit values cΓ ∈ G𝑚𝑝𝜂 and 𝑐𝛽 ∈ G𝑝𝜂 .

Private Input :A matrix Γ =

(
Γ( 𝑗 )

)𝑚
𝑗=1
∈ Mat𝑛×𝑚 (F𝑝𝜂 ) , a vector of random values v

$← F𝑚𝑝𝜂 , a vector
−→
𝛽 ∈ F𝑛𝑝𝜂 , and a random value 𝜉

$← F𝑝𝜂 , such that

cΓ = ComMat𝑛×𝑚 (F𝑝𝜂 )
(
𝑐𝑘, Γ ; v

)
, 𝑐𝛽 = ComF𝑛𝑝𝜂

(
𝑐𝑘,
−→
𝛽 ; 𝜉

)
, and

−→
𝛽 =

𝑚⊙
𝑗=1

Γ( 𝑗 ) .

Begin protocol

(1) (Commit message) The prover PHPA defines, for all 𝑗 ∈ ⟦1;𝑚 − 1⟧, Υ( 𝑗 ) ←
𝑗⊙

𝑘=1

Γ(𝑘 ) ∈ F𝑛𝑝𝜂 and Υ(𝑚) ← −→𝛽 ∈ F𝑛𝑝𝜂 . Next, the prover generates random values

𝜍2, . . . , 𝜍𝑚−1
$← F𝑝𝜂 and computes commit values 𝑐Υ𝑗 ← ComF𝑛𝑝𝜂

(
𝑐𝑘,Υ𝑗 ; 𝜍 𝑗

)
∈ G𝑝𝜂 for all 𝑗 ∈ ⟦2;𝑚 − 1⟧. Then, PHPA defines 𝜍1 ← 𝑣1 ∈ F𝑝𝜂 and

𝜍𝑚 ← 𝜉 ∈ F𝑝𝜂 and then sets 𝑐Υ
1
← 𝑐Γ

1
∈ G𝑝𝜂 and 𝑐Υ𝑚 ← 𝑐𝛽 ∈ G𝑝𝜂 . Finally, the prover PHPA sends to the verifier VHPA the commit value cΥ .

(2) (Challenge message) The verifier VHPA generates two challenges 𝑢, 𝑣
$← F∗𝑝𝜂 and sends them to the prover.

(3-5) (Zero argument call) For all 𝑖 ∈ ⟦1;𝑚 − 1⟧, let 𝑐Υ̃𝑖 the value defined by 𝑐Υ̃𝑖
← 𝑐𝑢

𝑖

Υ𝑖
∈ G𝑝𝜂 , let 𝑐Υ̃ be the value defined by 𝑐Υ̃ ←

𝑚−1∏
𝑖=1

𝑐𝑢
𝑖

Υ𝑖+1
∈ G𝑝𝜂 , and let 𝑐−1 the

commit value 𝑐−1 ← ComF𝑛𝑝𝜂
(
𝑐𝑘,−1 ; 0

)
∈ G𝑝𝜂 . Let★𝑣 : F𝑛𝑝𝜂 × F

𝑛
𝑝𝜂
−→ F𝑝𝜂 be the bilinear application defined by, for two vectors a = (𝑎𝑖 )𝑛𝑖=1 ∈ F𝑛𝑝𝜂 and

b = (𝑏𝑖 )𝑛𝑖=1 ∈ F𝑛𝑝𝜂 , a★𝑣 b def

=
𝑛∑
𝑖=1

𝑎𝑖𝑏𝑖 𝑣
𝑖
. Then, both prover PHPA and verifier VHPA engage in the Σ-protocol Σ

[
RBG
ZA

]
for the relation RBG

ZA with public parameter

𝜎ZA
def

= 𝑐𝑘 , public statement 𝑥ZA
def

=

( (
𝑐Γ

2
, . . . , 𝑐Γ𝑚 , 𝑐−1

)
,
(
𝑐Υ̃

1

, . . . , 𝑐Υ̃𝑚−1 , 𝑐Υ̃
) )
, and private statement

𝑤ZA
def

=

((
Γ(2) , . . . , Γ(𝑚) ,−1

)
,
(
𝑣2, . . . , 𝑣𝑚, 0

)
,

(
𝑢Υ1, . . . ,𝑢

𝑚−1Υ(𝑚−1) ,
𝑚−1∑
𝑗=1

𝑢 𝑗Υ( 𝑗+1)
)
,

(
𝑢𝜍1, . . . ,𝑢

𝑚−1𝜍𝑚−1,
𝑚−1∑
𝑗=1

𝑢 𝑗𝜍 𝑗+1

))
. We denote by 𝜏ZA the proof transcript

obtained at the end of this Σ-protocol.

(6) (Conclusion’s bit) The verifier VZA checks if 𝑐Υ
1
= 𝑐Γ

1
and 𝑐Υ𝑚 = 𝑐𝛽 . Then, VZA accepts if and only if 𝑣

𝜎ZA, 𝑥ZA
ZA

(
𝜏ZA

)
holds.

Extractor 10: Extractor EHPA for the 5-move zero-knowledge protocol ZK(2) [RBGHPA] of the Bayer-Groth Hadamard product argument

Input :A security parameter 𝜂 ∈ N∗ . Two natural numbers 𝑛,𝑚 ∈ N∗ . A public parameter 𝜎
def

= 𝑐𝑘 ∈ G𝑛+1𝑝𝜂
for the Bayer-Groth Hadamard product relation

RBG
HPA . A statement 𝜒

def

=
(
cΓ, 𝑐𝛽

)
∈ G𝑚𝑝𝜂 × G𝑝𝜂 .

Blackbox access to :A deterministic adversarial prover P∗ and an honest verifier VHPA .

1 Begin extractor

2 calls P∗ to get cΥ
def

=
(
𝑐Υ𝑖

)𝑚
𝑖=1
∈ G𝑚𝑝𝜂 ;

3 if 𝑐Υ
1
≠ 𝑐Γ

1
or 𝑐Υ𝑚 ≠ 𝑐𝛽 then abort;

4 calls VHPA to get (𝑢, 𝑣) $← F∗𝑝𝜂 × F
∗
𝑝𝜂

;

5 computes



cΓ̃ ←
(
𝑐 Γ̃𝑖

)𝑚
𝑖=1
∈ G𝑚𝑝𝜂 where, for all 𝑖 ∈ ⟦1;𝑚⟧, 𝑐 Γ̃𝑖 ←

{
𝑐Γ𝑖+1 if 𝑖 <𝑚

𝑐−1
def

= ComF𝑛𝑝𝜂
(
𝑐𝑘,−1 ; 0

)
otherwise, i.e. 𝑖 =𝑚.

cΥ̃ ←
(
𝑐Υ̃𝑖

)𝑚−1
𝑖=0
∈ G𝑚𝑝𝜂 where, for all 𝑖 ∈ ⟦0;𝑚 − 1⟧, 𝑐Υ̃𝑖 ←


𝑐𝑢

𝑖+1
Υ𝑖+1

if 𝑖 <𝑚 − 1
𝑚−1∏
𝑗=1

𝑐𝑢
𝑗

Υ𝑗+1
otherwise, i.e. 𝑖 =𝑚 − 1.

;

6 sets ★𝑣 :

F𝑛𝑝𝜂 × F
𝑛
𝑝𝜂

−→ F𝑝𝜂(
(𝑎𝑖 )𝑛𝑖=1, (𝑏𝑖 )𝑛𝑖=1

)
↦−→

𝑛∑
𝑖=1

𝑎𝑖𝑏𝑖 𝑣
𝑖 ;

7 calls EZA with oracles P∗ and VHPA on inputs
(
(𝑐𝑘,★𝑣 ),

(
cΓ̃, cΥ̃

))
to get

((
Γ̃( 𝑗 )

)𝑚
𝑗=1

,
−→
𝜇 ,

(
Υ̃( 𝑗 )

)𝑚−1
𝑗=0

,
−→
𝜈

)
∈

(
Mat𝑛×𝑚 (F𝑝𝜂 ) × F𝑚𝑝𝜂 ×Mat𝑛×𝑚 (F𝑝𝜂 ) × F𝑚𝑝𝜂

)
;

8 computes



Ξ ←
(
Ξ( 𝑗 )

)𝑚
𝑗=1
∈ Mat𝑛×𝑚 (F𝑝𝜂 ) where, for all 𝑗 ∈ ⟦1;𝑚⟧, Ξ( 𝑗 ) ←


𝑢−𝑗 Υ̃( 𝑗−1) if 𝑗 <𝑚

𝑢1−𝑚
(
Υ̃(𝑚−1) −

𝑚−2∑
𝑗=1

𝑢 𝑗Ξ( 𝑗+1)
)

otherwise, i.e. 𝑗 =𝑚

−→𝜍 ←
(
𝜍 𝑗

)𝑚
𝑗=1
∈ F𝑚𝑝𝜂 where, for all 𝑗 ∈ ⟦1;𝑚⟧, 𝜍 𝑗 ←


𝑢−𝑗 𝜈𝑗−1 if 𝑗 <𝑚

𝑢1−𝑚
(
𝜈𝑚−1 −

𝑚−2∑
𝑗=1

𝑢 𝑗𝜍 𝑗+1

)
otherwise, i.e. 𝑗 =𝑚.

;

9 computes


Γ ←

(
Γ( 𝑗 )

)𝑚
𝑗=1
∈ Mat𝑛×𝑚 (F𝑝𝜂 ) where, for all 𝑗 ∈ ⟦1;𝑚⟧, Γ( 𝑗 ) ←

{
Γ̃( 𝑗−1) if 𝑗 > 1

Ξ(1) otherwise, i.e. 𝑗 = 1

v←
(
𝑣𝑗

)𝑚
𝑗=1
∈ F𝑚𝑝𝜂 where, for all 𝑗 ∈ ⟦1;𝑚⟧, 𝑣𝑗 ←

{
𝜇 𝑗−1 si 𝑗 > 1

𝜍1 otherwise, i.e. 𝑗 = 1.

;

10 returns
(
Γ, v,Ξ(𝑚) , 𝜍𝑚

)
.
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(Step2.2) Next, by definition given in line 9, we have

Γ(1) def= Ξ(1) and 𝑣1
def

= 𝜍1 .

By definition given in line 8, we have

Ξ(1) def= 𝑢−1Υ̃(0) and 𝜍1
def

= 𝑢−1𝜈0 .

Then, Hypo. (H2) leads to

𝑐𝑢Υ1
= ComF𝑛𝑝𝜂

(
𝑐𝑘, Υ̃(0) ; 𝜈0

)
= ComF𝑛𝑝𝜂

(
𝑐𝑘,𝑢Ξ(1) ; 𝑢𝜍1

)
It follows, because ComF𝑛𝑝𝜂 is homomorphic and be-

cause 𝑢 ≠ 0, the following equations

𝑐𝑢Υ1
=

(
ComF𝑛𝑝𝜂

(
𝑐𝑘,Ξ(1) ; 𝜍1

))𝑢
i.e. 𝑐Υ1 = ComF𝑛𝑝𝜂

(
𝑐𝑘,Ξ(1) ; 𝜍1

)
= ComF𝑛𝑝𝜂

(
𝑐𝑘, Γ(1) ; 𝑣1

)
.

(Step2.3) Because EHPA has not aborted, the if-condition in

line 3 does not hold. In particular, we have 𝑐Υ1 = 𝑐Γ1 .

This finally leads to

𝑐Γ1 = ComF𝑛𝑝𝜂

(
𝑐𝑘, Γ(1) ; 𝑣1

)
.

(Step 3) – Let us show equation Eq. (O2).
(Step3.1) Using Hypo. (H2), we have

𝑚−1∏
𝑗=1

𝑐𝑢
𝑗

Υ𝑗+1
= ComF𝑛𝑝𝜂

©­«𝑐𝑘,
𝑚−1∑︁
𝑗=1

𝑢 𝑗Ξ( 𝑗+1) ;
𝑚−1∑︁
𝑗=1

𝑢 𝑗𝜍 𝑗+1
ª®¬

=

𝑚−1∏
𝑗=1

(
ComF𝑛𝑝𝜂

(
𝑐𝑘,Ξ( 𝑗+1) ; 𝜍 𝑗+1

))𝑢 𝑗

(Step3.2) By application of the function log𝑔 : G𝑝𝜂 −→ F𝑝𝜂 ,
the previous equation becomes

𝑚−1∑︁
𝑗=1

𝑢 𝑗
log𝑔 𝑐Υ𝑗+1 =

𝑚−1∑︁
𝑗=1

𝑢 𝑗
log𝑔

(
ComF𝑛𝑝𝜂

(
𝑐𝑘,Ξ( 𝑗+1) ; 𝜍 𝑗+1

))
,

which is a polynomial equation of degree at most

𝑚 − 1 in challenge 𝑢. Thus, by the Schwartz-Zippel
lemma, we conclude with overwhelming probability

the following property

∀ 𝑗 ∈ ⟦1;𝑚 − 1⟧, log𝑔 𝑐Υ𝑗+1 = log𝑔

(
ComF𝑛𝑝𝜂

(
𝑐𝑘,Ξ( 𝑗+1) ; 𝜍 𝑗+1

))
.

The injectivity of function log𝑔 leads to

∀ 𝑗 ∈ ⟦2;𝑚⟧, 𝑐Υ𝑗 = ComF𝑛𝑝𝜂

(
𝑐𝑘,Ξ( 𝑗) ; 𝜍 𝑗

)
.

(Step3.3) In the particular case of 𝑗 =𝑚, we have

𝑐Υ𝑚 = ComF𝑛𝑝𝜂

(
𝑐𝑘,Ξ(𝑚) ; 𝜍𝑚

)
.

And, because EHPA has not aborted, line 3 leads to

𝑐Υ𝑚 = 𝑐𝛽 . Consequently, we finally obtain the follow-

ing equation

𝑐𝛽 = ComF𝑛𝑝𝜂

(
𝑐𝑘,Ξ(𝑚) ; 𝜍𝑚

)
.

(Step 4) – Let us finally show equation Eq. (O3).

(Step4.1) Using Hypo. (H3) and because ★𝑣 is bilinear (see

line 7), we have

0 =

𝑚−1∑︁
𝑗=1

𝑢 𝑗
(
Γ( 𝑗+1) ★𝑣 Ξ( 𝑗)

)
+ Γ̃(𝑚) ★𝑣 Υ̃(𝑚−1) . (∇)

(Step4.2) Next, Hypo. (H1) leads to

ComF𝑛𝑝𝜂
(
𝑐𝑘,−1 ; 0

)
= 𝑐−1 = ComF𝑛𝑝𝜂

(
𝑐𝑘, Γ̃(𝑚) ; 𝜇𝑚

)
.

Thus, because KS[F𝑛𝑝𝜂 ] is computationally binding,
with overwhelming probability, the equation above

leads to Γ̃(𝑚) = −1. Moreover, by definition of Υ̃(𝑚−1)

given in line 8, we have

Υ̃(𝑚−1) =
𝑚−1∑︁
𝑗=1

𝑢 𝑗Ξ( 𝑗+1) .

(Step4.3) Therefore, by the two results obtained in previous

step (Step4.2) and because ★𝑣 is bilinear, equation

Eq. (∇) becomes

0 =

𝑚−1∑︁
𝑗=1

(
Γ( 𝑗+1) ★𝑣 Ξ( 𝑗) − 1★𝑣 Ξ( 𝑗+1)

)
𝑢 𝑗 , (∇′)

which is a polynomial equation in challenge 𝑢. Thus,

by the Schwartz-Zippel lemma, with overwhelming

probability, this previous equation Eq. (∇′) leads to

∀ 𝑗 ∈ ⟦1;𝑚 − 1⟧, 1★𝑣 Ξ( 𝑗+1) = Γ( 𝑗+1) ★𝑣 Ξ( 𝑗) . (Ψ)

(Step4.4) By definition of the bilinear map ★𝑣 given in line 7,

previous property Eq. (Ψ) becomes

∀ 𝑗 ∈ ⟦1;𝑚 − 1⟧,
𝑛∑︁
𝑖=1

Ξ𝑖, 𝑗+1𝑣𝑖 =
𝑛∑︁
𝑖=1

Γ𝑖, 𝑗+1Ξ𝑖, 𝑗𝑣𝑖 ,

which are𝑚 − 1 polynomial equations in challenge

𝑣 . Thus, by the Schwartz-Zippel lemma, with over-

whelming probability, and then by definition of oper-

ator ⊙, these equations above become

∀ 𝑗 ∈ ⟦1;𝑚 − 1⟧, Ξ( 𝑗+1) = Γ( 𝑗+1) ⊙ Ξ( 𝑗) .

(Step4.5) By immediate induction, this leads to

Ξ(𝑚) =
( 𝑚⊙
𝑗=2

Γ( 𝑗)
)
⊙ Ξ(1) .

Consequently, by definition of Γ(1) given in line 9,

we finally obtain

Ξ(𝑚) =
𝑚⊙
𝑗=1

Γ( 𝑗) .

Results obtained in steps (Step 2) to (Step 4), give us the follow-
ing result, proving that, with overwhelming probability, we have
successfully extract a witness

𝑤out
def

=

(
Γ, v,Ξ(𝑚) , 𝜍𝑚

)
∈ Mat𝑛×𝑚 (F𝑝𝜂 ) × F𝑚𝑝𝜂 × F

𝑛
𝑝𝜂
× F𝑝𝜂
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such that

(
𝑐𝑘, 𝜒,𝑤out

)
∈ RBGHPA.

∃ Γ ∈ Mat𝑛×𝑚 (F𝑝𝜂 ), ∃ v ∈ F𝑚𝑝𝜂 , ∃
−→
𝛽 ∈ F𝑛𝑝𝜂 , ∃ 𝜉 ∈ F𝑝𝜂 ,

cΓ = ComMat𝑛×𝑚 (F𝑝𝜂 )
(
𝑐𝑘, Γ ; v

)
𝑐𝛽 = ComF𝑛𝑝𝜂

(
𝑐𝑘,
−→
𝛽 ; 𝜉

)
−→
𝛽 =

𝑚⊙
𝑗=1

Γ( 𝑗)

Proof step→

↓ Property

s
t
e
p
(
St
ep

1.
1
)

s
t
e
p
(
St
ep

3.
2
)

s
t
e
p
(
St
ep

4.
2
)

s
t
e
p
(
St
ep

4.
3
)

s
t
e
p
(
St
ep

4.
4
)

Knowledge
soundness

1 ×
EZA

Binding of
commitment

scheme
× 1

Schwartz-Zippel × 1 × 1 ×
(𝑚 − 1)

Extractor uses
rewinding? Yes (to obtain a suitable commit vector value cΥ)

Table 5: Assessment of cryptographic or probabilistic proper-
ties used to proveKnowledge Soundness ofHadamard Product
Argument protocol

□

B.6 Zero argument protocol
We define

RBGZA ⊆
(
G𝑛+1𝑝𝜂

×
(
F𝑛𝑝𝜂 × F

𝑛
𝑝𝜂
−→ F𝑝𝜂

) )︸                                   ︷︷                                   ︸
Public parameter set

×
(
G𝑚𝑝𝜂 × G

𝑚
𝑝𝜂

)︸          ︷︷          ︸
Statement set

×
(
Mat𝑛×𝑚 (F𝑝𝜂 ) × F𝑚𝑝𝜂 ×Mat𝑛×𝑚 (F𝑝𝜂 ) × F𝑚𝑝𝜂

)︸                                                        ︷︷                                                        ︸
Witness set

to be the zero argument relation defined by( (
𝑐𝑘,★

)
,

(
cΓ̃, cΥ̃

)
,

((
Γ̃( 𝑗)

)𝑚
𝑗=1

,−→𝜇 ,
(
Υ̃( 𝑗)

)𝑚−1
𝑗=0

,−→𝜈
))
∈ RBGZA

def⇐⇒



cΓ̃ = ComMat𝑛×𝑚 (F𝑝𝜂 )

(
𝑐𝑘,

(
Γ̃( 𝑗)

)𝑚
𝑗=1

;
−→𝜇

)
cΥ̃ = ComMat𝑛×𝑚 (F𝑝𝜂 )

(
𝑐𝑘,

(
Υ̃( 𝑗)

)𝑚−1
𝑗=0

;
−→𝜈

)
0 =

𝑚∑︁
𝑗=1

Γ̃( 𝑗) ★ Υ̃( 𝑗−1) .

Hence, we define a Σ-protocol for the zero argument relation

Σ
[
RBGZA

]
to be the protocol defined as follows in Protocol 11.

Theorem B.6 (Knowledge soundness of Σ
[
RBGZA

]
). The Σ-

protocol Σ
[
RBGZA

]
for the Bayer-Groth zero relationRBGZA is knowledge

sound.

Proof. We define the extractor EZA for the Bayer-Groth zero

argument to be the algorithm defined as follows in Extractor 12.
Let 𝑛,𝑚 ∈ N∗ be two natural numbers. Let 𝜂 ∈ N∗ be a security

parameter. Let P∗ be a polynomial-time and deterministic adver-

sarial prover. Let

(
𝑐𝑘,★

)
← IZA (𝜂) ve an honest public parameter

for the zero argument relation RBGZA . Let A be a probabilistic and

polynomial-time adversary. Let 𝜒 ← A(𝜂, 𝜎) be an adversarial

statement where

𝜒
def

=

(
cΓ̃, cΥ̃

)
∈ G𝑚𝑝𝜂 × G

𝑚
𝑝𝜂
.

Then, the adversary A calls the extractor EZA on inputs 𝜎 and 𝜒

with access to P∗ andVZA and obtains a sequence of valid proof

transcripts 𝜏ZA
def

=

(
𝔱𝔯
𝜎, 𝜒
𝛼, 𝔷RBGZA , P∗

(𝜔𝑙 )
)
2𝑚+1

𝑙=1

. Let 𝑙 ∈ ⟦1; 2𝑚 + 1⟧ be

an index. We denote by

• 𝛼
def

=

(
𝑐 Γ̃0

, 𝑐Υ̃𝑚
, cΨ

)
∈ G𝑝𝜂 × G𝑝𝜂 × G2𝑚+1𝑝𝜂

the first message ;

and

• 𝔷RBG
ZA , P∗

(
𝛼,𝜔𝑙

) def

=

(
Γ̃(𝑙)𝜔 , 𝜇

(𝑙)
𝜔 , Υ̃(𝑙)𝜔 , 𝜈

(𝑙)
𝜔 , 𝜍

(𝑙)
𝜔

)
∈ F𝑛𝑝𝜂 × F𝑝𝜂 ×

F𝑛𝑝𝜂 × F𝑝𝜂 × F𝑝𝜂 the response message on challenge 𝜔𝑙 .

This way, we have the following property

∀ 𝑙 ∈ ⟦1; 2𝑚 + 1⟧,



• 𝔱𝔯
𝜎, 𝜒
𝛼, 𝔷RBGZA , P∗

(𝜔𝑙 ) =

〈(
𝑐 Γ̃0

, 𝑐Υ̃𝑚
, cΨ

)
𝜔𝑙 ,

(
Γ̃(𝑙)𝜔 , 𝜇

(𝑙)
𝜔 , Υ̃(𝑙)𝜔 , 𝜈

(𝑙)
𝜔 , 𝜍

(𝑙)
𝜔

)〉
• 𝑣

𝜎, 𝜒

RBG
ZA

(
𝔱𝔯
𝜎, 𝜒
𝛼, 𝔷RBGZA , P∗

(𝜔𝑙 )
)
= 1.

By definition of the Bayer-Groth zero argument protocol, as the

proof transcripts are valid, for all 𝑙 ∈ ⟦1; 2𝑚 + 1⟧, we have

𝑐Ψ𝑚+1 = ComF𝑝𝜂
(
𝑐𝑘, 0 ; 0

)
, (H1)

𝑚∏
𝑖=0

𝑐
𝜔𝑖
𝑙

Γ̃𝑖
= ComF𝑛𝑝𝜂

(
𝑐𝑘, Γ̃(𝑙)𝜔 ; 𝜇

(𝑙)
𝜔

)
, (H (𝑙)

2
)

𝑚∏
𝑖=0

𝑐
𝜔𝑚−𝑖
𝑙

Υ̃𝑖
= ComF𝑛𝑝𝜂

(
𝑐𝑘, Υ̃(𝑙)𝜔 ; 𝜈

(𝑙)
𝜔

)
, (H (𝑙)

3
)

2𝑚∏
𝑘=0

𝑐
𝜔𝑘
𝑙

Ψ𝑘
= ComF𝑝𝜂

(
𝑐𝑘, Γ̃(𝑙)𝜔 ★ Υ̃(𝑙)𝜔 ; 𝜍

(𝑙)
𝜔

)
. (H (𝑙)

4
)

(Step 1) – Preliminaries –Vandermondematrix of challenges
sequence

(
𝜔𝑙

)
2𝑚+1
𝑙=1 .

Let Ωall ∈ Mat2𝑚+1 (F𝑝𝜂 ) and Ωpart ∈ Mat𝑚+1 (F𝑝𝜂 ) be
two matrix defined as follows

Ωall
def

=

©­­­­«
1 1 · · · 1

𝜔1 𝜔2 · · · 𝜔2𝑚+1
.
.
.

.

.

.
. . .

.

.

.

𝜔2𝑚
1

𝜔2𝑚
2

· · · 𝜔2𝑚
2𝑚+1

ª®®®®¬
and Ωpart

def

=

©­­­­«
1 1 · · · 1

𝜔1 𝜔2 · · · 𝜔𝑚+1
.
.
.

.

.

.
. . .

.

.

.

𝜔𝑚
1

𝜔𝑚
2
· · · 𝜔𝑚

𝑚+1

ª®®®®¬
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Protocol 11: Σ-protocol Σ
[
RBGZA

]
for the Bayer-Groth zero argument

Public Input :Two natural numbers 𝑛,𝑚 ∈ N∗. A security parameter 𝜂 ∈ N∗. A commitment key 𝑐𝑘 = (𝑔, g) ∈ G𝑛+1𝑝𝜂
for the

commitment scheme KS[Mat𝑛×𝑚 (F𝑝𝜂 )]. A bilinear map ★ : F𝑛𝑝𝜂 × F
𝑛
𝑝𝜂
−→ F𝑝𝜂 . Two commit values cΓ̃, cΥ̃ ∈ G

𝑚
𝑝𝜂
.

Private Input :Two matrix Γ̃ =

(
Γ̃( 𝑗)

)𝑚
𝑗=1
∈ Mat𝑛×𝑚 (F𝑝𝜂 ) and Υ̃ =

(
Υ̃( 𝑗)

)𝑚−1
𝑗=0
∈ Mat𝑛×𝑚 (F𝑝𝜂 ), and two vectors of random values

−→𝜇 ,−→𝜈 $← F𝑚𝑝𝜂 such that cΓ̃
def

= ComMat𝑛×𝑚 (F𝑝𝜂 )
(
𝑐𝑘, Γ̃ ; −→𝜇

)
, cΥ̃

def

= ComMat𝑛×𝑚 (F𝑝𝜂 )
(
𝑐𝑘, Υ̃ ; −→𝜈

)
, and

0 =
𝑚∑
𝑗=1

Γ̃( 𝑗) ★ Υ̃( 𝑗−1) .

Begin protocol

(1) (Commit message) The prover PZA generates two random vectors Γ̃(0) , Υ̃(𝑚)
$← F𝑛𝑝𝜂 and two random values 𝜇0, 𝜈𝑚

$← F𝑝𝜂 .

Then, the prover computes values 𝑐 Γ̃0
← ComF𝑛𝑝𝜂

(
𝑐𝑘, Γ̃(0) ; 𝜇0

)
∈ G𝑝𝜂 , 𝑐Υ̃𝑚 ← ComF𝑛𝑝𝜂

(
𝑐𝑘, Υ̃(𝑚) ; 𝜈𝑚

)
∈ G𝑝𝜂 , and, for all

𝑘 ∈ ⟦0; 2𝑚⟧, Ψ𝑘 ←
𝑚∑
𝑗=0

Γ̃( 𝑗) ★ Υ̃(𝑚−𝑘+𝑗) ∈ F𝑝𝜂 . Next, PZA generates a vector of random values
−→𝜍 = (𝜍𝑖 )2𝑚𝑖=0

$← F2𝑚+1𝑝𝜂
, sets

𝜍𝑚+1 ← 0 ∈ F𝑝𝜂 , and computes commit value cΨ ← ComF2𝑚+1𝑝𝜂

(
𝑐𝑘,Ψ ;

−→𝜍
)
∈ G2𝑚+1𝑝𝜂

. Finally, the prover PZA sends commit values(
𝑐 Γ̃0

, 𝑐Υ̃𝑚
, cΨ

)
to the verifierVZA.

(2) (Challenge message) The verifierVZA generates a challenge 𝜔
$← F∗𝑝𝜂 and sends it to the prover PZA.

(3) (Response message) The prover PZA computes values Γ̃←
𝑚∑
𝑗=0

𝜔 𝑗 Γ̃( 𝑗) ∈ F𝑛𝑝𝜂 , 𝜇 ←
𝑚∑
𝑖=0

𝜔𝑖𝜇𝑖 ∈ F𝑝𝜂 , Υ̃←
𝑚∑
𝑗=0

𝜔𝑚−𝑗 Υ̃( 𝑗) ∈ F𝑛𝑝𝜂 ,

𝜈 ←
𝑚∑
𝑖=0

𝜔𝑚−𝑖𝜈𝑖 ∈ F𝑝𝜂 , and 𝜍 ←
2𝑚∑
𝑘=0

𝜔𝑘𝜍𝑘 ∈ F𝑝𝜂 . Then, PZA sends those values

(
Γ̃, 𝜇, Υ̃, 𝜈, 𝜍

)
to the verifier.

(4) (Conclusion’s bit) The verifierVZA accepts if and only if the following equations hold

𝑐Ψ𝑚+1 = ComF𝑝𝜂
(
𝑐𝑘, 0 ; 0

)
,

𝑚∏
𝑖=0

𝑐𝜔
𝑖

Γ̃𝑖
= ComF𝑛𝑝𝜂

(
𝑐𝑘, Γ̃ ; 𝜇

)
,

𝑚∏
𝑖=0

𝑐𝜔
𝑚−𝑖

Υ̃𝑖
= ComF𝑛𝑝𝜂

(
𝑐𝑘, Υ̃ ; 𝜈

)
,

and

2𝑚∏
𝑘=0

𝑐𝜔
𝑘

Ψ𝑘
= ComF𝑝𝜂

(
𝑐𝑘, Γ̃★ Υ̃ ; 𝜍

)
.

Extractor 12: Extractor EZA for the Σ-protocol Σ
[
RBGZA

]
of the Bayer-Groth zero argument

Input :A security parameter 𝜂 ∈ N∗. Two natural numbers 𝑛,𝑚 ∈ N∗. A public parameter 𝜎
def

= (𝑐𝑘,★) for the
Bayer-Groth zero argument relation RBGZA with a bilinear map ★ : F𝑛𝑝𝜂 × F

𝑛
𝑝𝜂
−→ F𝑝𝜂 and a commitment key

𝑐𝑘 ∈ (𝑔, g) ∈ G𝑛+1𝑝𝜂
for the commiment scheme KS[Mat𝑛×𝑚 (F𝑝𝜂 )]. A statement 𝜒

def

=
(
cΓ̃, cΥ̃

)
∈ G𝑚𝑝𝜂 × G

𝑚
𝑝𝜂
.

Blackbox access to :A deterministic adversarial prover P∗ and an honest verifierVZA.

1 Begin extractor

2 calls P∗ to get 𝛼 def

=

(
𝑐 Γ̃0

, 𝑐Υ̃𝑚
, cΨ

)
∈

(
G𝑝𝜂 × G𝑝𝜂 × G2𝑚+1𝑝𝜂

)
; // State at this point: st1

def

=

[ (
𝑐𝑘,★

)
,
(
cΓ̃, cΥ̃

)
,

(
𝑐 Γ̃0

, 𝑐Υ̃𝑚
, cΨ

)]
.

3 rewinds P∗ and VZA at state st1 and begins with 𝑙 ← 1 ∈ N
4 calls VZA to get 𝜔𝑙

$← F∗𝑝𝜂 ;

5 calls P∗ to get 𝑧𝑙 ← 𝔷RBG
ZA , P∗

(
𝛼,𝜔𝑙

)
∈

(
F𝑛𝑝𝜂 × F𝑝𝜂 × F

𝑛
𝑝𝜂
× F𝑝𝜂 × F𝑝𝜂

)
;

6 if 𝑣𝑐𝑘, 𝜒RBG
ZA

(
𝔱𝔯
𝑐𝑘, 𝜒
𝛼, 𝔷RBGZA , P∗

(𝜔𝑙 )
)
and

𝑙−1∧
𝑖=1

𝑙∧
𝑗 = 𝑖+1

(𝜔𝑖 ≠ 𝜔 𝑗 ) then 𝑙 ← 𝑙 + 1 ;

7 until 𝑙 > 2𝑚 + 1 ;

8 returns 𝜏ZA
def
=

(
𝔱𝔯
𝜎, 𝜒
𝛼, 𝔷RBGZA , P∗

(𝜔𝑙 )
)
2𝑚+1

𝑙=1
.
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Ωall and Ωpart are both transposed Vandermonde matrix

with parameters the challenges sequence

(
𝜔𝑙

)
2𝑚+1
𝑙=1 , which

is a sequence of pairwise distincts values with overwhelm-

ing probability in 𝜂. Thus, Ωall and Ωpart are invertible

matrix.

(Step 2) – Get an opening of commit value cΨ.
(Step2.1) We denote by Ψ𝜔 ∈ F2𝑚+1𝑝𝜂

and
−→𝜍 𝜔 ∈ F2𝑚+1𝑝𝜂

the two

vectors defined by

Ψ𝜔
def

=

(
Γ̃(𝑙)𝜔 ★ Υ̃(𝑙)𝜔

)
2𝑚+1

𝑙=1

, and
−→𝜍 𝜔

def

=

(
𝜍
(𝑙)
𝜔

)
2𝑚+1

𝑙=1
. (∇)

Thus, we have

cΨ =
(
cΨ ⊛ Ωall

)
⊛ Ω−1all see footnotes 5 and 6

=

(
ComF2𝑚+1𝑝𝜂

(
𝑐𝑘,Ψ𝜔 ;

−→𝜍 𝜔

))
⊛ Ω−1all see Eq. (∇) and Hypo.H1

= ComF2𝑚+1𝑝𝜂

(
𝑐𝑘,Ψ𝜔 · Ω−1all ;

−→𝜍 𝜔 · Ω−1all

)
see footnote 14

(Step2.2) Next, by the binding property of KS[F2𝑚+1𝑝𝜂
], with

overwhelming probability, there exists a sequence( (
Ψ𝑘 , 𝜍𝑘

) )2𝑚
𝑘=0

of elements in F𝑝𝜂 × F𝑝𝜂 independent

of the sequence of challenges
(
𝜔𝑙

)
2𝑚+1
𝑙=1 and such that

the following property holds

∀𝑘 ∈ ⟦0; 2𝑚⟧, 𝑐Ψ𝑘 = ComF𝑝𝜂
(
𝑐𝑘,Ψ𝑘 ; 𝜍𝑘

)
;

where Ψ𝑘
def

=

(
Ψ𝜔 · Ω−1all

)
𝑘
and 𝜍𝑘

def

=

(−→𝜍 𝜔 · Ω−1all
)
𝑘

(Step 3) – Get an opening of commit value cΓ̃ .
We denote by Γ̃𝜔 ∈ Mat𝑛×(𝑚+1) (F𝑝𝜂 ) the matrix and

−→𝜇 𝜔 ∈ F𝑚+1𝑝𝜂
the vector defined as follows

Γ̃𝜔
def

=

(
Γ̃(𝑙)𝜔

)𝑚+1
𝑙=1

, and
−→𝜇 𝜔

def

=

(
𝜇
(𝑙)
𝜔

)𝑚+1
𝑙=1

.

Thus, similarly to the previous step (Step 2) but with
matrix Ωpart instead of matrix Ωall and with binding prop-
erty on the commitment scheme KS[Mat𝑛×(𝑚+1) (F𝑝𝜂 )]
instead of KS[F2𝑚+1𝑝𝜂

], extractor EZA obtains an opening

of cΓ̃ . Thus, there exists a sequence
((

Γ̃( 𝑗) , 𝜇 𝑗
))𝑚

𝑗=0

of ele-

ments in F𝑛𝑝𝜂 × F𝑝𝜂 independent of the challenges sequence(
𝜔𝑙

)
2𝑚+1
𝑙=1 such that

∀ 𝑗 ∈ ⟦0;𝑚⟧, 𝑐 Γ̃𝑗 = ComF𝑛𝑝𝜂

(
𝑐𝑘, Γ̃( 𝑗) ; 𝜇 𝑗

)
where Γ̃( 𝑗) def=

(
Γ̃𝜔Ω

−1
part

) ( 𝑗+1)
and 𝜇 𝑗

def

=

(−→𝜇 𝜔 · Ω−1part
)
𝑗

(Step 4) – Get an opening of commit value cΥ̃.

For all 𝑙 ∈ ⟦1; 2𝑚 + 1⟧, we rewrite Hypo.H (𝑙)
3

as follows:

𝑚∏
𝑗=0

𝑐
𝜔

𝑗

𝑙

Υ̃𝑚−𝑗
= ComF𝑛𝑝𝜂

(
𝑐𝑘, Υ̃(𝑙)𝜔 ; 𝜈

(𝑙)
𝜔

)
.

Let c′
Υ̃
∈ F𝑚+1𝑝𝜂

be the vector defined by, for all 𝑗 ∈ ⟦0;𝑚⟧,

𝑐 ′
Υ̃𝑗

def

= 𝑐Υ̃𝑚−𝑗
. We denote by Υ̃𝜔 ∈ Mat𝑛×(𝑚+1) (F𝑝𝜂 ) the

matrix and
−→𝜈 𝜔 ∈ F𝑚+1𝑝𝜂

the vector defined as follows

Υ̃𝜔
def

=

(
Υ̃(𝑙)𝜔

)𝑚+1
𝑙=1

, and
−→𝜈 𝜔

def

=

(
𝜈
(𝑙)
𝜔

)𝑚+1
𝑙=1

.

Thus, similarly to previous points with commit vector c′
Υ̃
,

Vandermonde matrix Ωpart, and by the binding property
of KS[F𝑚+1𝑝𝜂

], EZA obtains an opening of c′
Υ̃
, and then

of cΥ̃ . Therefore, there exists a sequence
((

Υ̃( 𝑗) , 𝜈 𝑗
))𝑚

𝑗=0

of elements in F𝑛𝑝𝜂 × F𝑝𝜂 independent of the challenges

sequence
(
𝜔𝑙

)
2𝑚+1
𝑙=1 such that

∀ 𝑗 ∈ ⟦0;𝑚⟧, 𝑐Υ̃𝑗 = ComF𝑛𝑝𝜂

(
𝑐𝑘, Υ̃( 𝑗) ; 𝜈 𝑗

)
where Υ̃( 𝑗) def=

(
Υ̃𝜔Ω

−1
part

) (𝑚+1−𝑗)
and

𝜈 𝑗
def

=

(−→𝜈 𝜔 · Ω−1part
)
𝑚+1−𝑗

(Step 5) – It remains to prove the following equation:

0 =

𝑚∑︁
𝑗=1

Γ̃( 𝑗) ★ Υ̃( 𝑗−1) .

(Step5.1) For all 𝑙 ∈ ⟦1;𝑚 + 1⟧ and 𝑖 ∈ ⟦1;𝑛⟧, we have

©­«
𝑚∑︁
𝑗=0

𝜔
𝑗

𝑙
Γ̃( 𝑗)ª®¬𝑖 = ©­«

𝑚∑︁
𝑗=0

𝜔
𝑗

𝑙

(
Γ̃𝜔Ω

−1
part

) ( 𝑗+1)ª®¬𝑖
by step (Step 3)

=
©­«
𝑚+1∑︁
𝑗=1

(
Ωpart

)
𝑗,𝑙

(
Γ̃𝜔Ω

−1
part

) ( 𝑗)ª®¬𝑖
see definition of Ωpart in step (Step 1)

=

𝑚+1∑︁
𝑗=1

(
Ωpart

)
𝑗,𝑙

(
Γ̃𝜔Ω

−1
part

)
𝑖, 𝑗

=

((
Γ̃𝜔Ω

−1
part

)
Ωpart

)
𝑖,𝑙

=
(
Γ̃𝜔

)
𝑖,𝑙 =

(
Γ̃(𝑙)𝜔

)
𝑖
.

Consequently, we have the following property

∀ 𝑙 ∈ ⟦1;𝑚 + 1⟧, Γ̃(𝑙)𝜔 =

𝑚∑︁
𝑗=0

𝜔
𝑗

𝑙
Γ̃( 𝑗) .

(Step5.2) Similarly, for all 𝑙 ∈ ⟦1;𝑚 + 1⟧, we have
𝑚∑︁
𝑗=0

𝜔
𝑚−𝑗
𝑙

Υ̃( 𝑗) =
𝑚∑︁
𝑗=0

(
Ωpart

)
𝑚+1−𝑗,𝑙

(
Υ̃𝜔Ω

−1
part

) (𝑚+1−𝑗)
= Υ̃(𝑙)𝜔 .

by step (Step 4)

(Step5.3) As in steps (Step5.1) and (Step5.2) but with full Van-

dermonde matrix Ωall instead of Ωpart, step (Step 2)
leads to

∀ 𝑙 ∈ ⟦1; 2𝑚 + 1⟧, Γ̃(𝑙) ★ Υ̃(𝑙) =
2𝑚∑︁
𝑘=0

𝜔𝑘
𝑙
Ψ𝑘 .
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(Step5.4) Hence, from equations obtained in steps (Step5.1)
to (Step5.3), and using Hypo. H1, we conclude, for

all 𝑙 ∈ ⟦1;𝑚 + 1⟧, the following equation:
2𝑚∑︁
𝑘=0

𝜔𝑘
𝑙
Ψ𝑘 =

(
𝑚∑︁
𝑖=0

𝜔𝑖
𝑙
Γ̃(𝑖)

)
★

©­«
𝑚∑︁
𝑗=0

𝜔
𝑚−𝑗
𝑙

Υ̃( 𝑗)ª®¬ .
(Step5.5) By the previous step and because ★ is a bilinear map,

for all 𝑙 ∈ ⟦1;𝑚 + 1⟧, we have(
𝑚∑︁
𝑖=0

𝜔𝑖
𝑙
Γ̃(𝑖)

)
★

( 𝑚∑︁
𝑗=0

𝜔
𝑚−𝑗
𝑙

Υ̃( 𝑗)
)
=

𝑚∑︁
𝑖=0

𝑚∑︁
𝑗=0

𝜔
𝑖+𝑚−𝑗
𝑙

Γ̃(𝑖) ★ Υ̃( 𝑗)

=

𝑚∑︁
𝑘=0

©­­­«
𝑚∑︁
𝑗=0

0⩽ 𝑗+𝑚−𝑘⩽𝑚

Γ̃( 𝑗) ★ Υ̃( 𝑗+𝑚−𝑘)
ª®®®¬𝜔

𝑘
𝑙
,

where "𝑘 ← 𝑖 +𝑚 − 𝑗"

which is a polynomial equation of degree at most

2𝑚 in the challenges sub-sequence

(
𝜔𝑙

)𝑚+1
𝑙=1 . Thus,

by the Schwartz-Zippel lemma, with overwhelming

probability, equation obtained in the previous step

leads to

∀𝑘 ∈ ⟦0; 2𝑚⟧, Ψ𝑘 =

𝑚∑︁
𝑗=0

0⩽ 𝑗+𝑚−𝑘⩽𝑚

Γ̃( 𝑗) ★ Υ̃( 𝑗+𝑚−𝑘)

(Step5.6) In the particular case of 𝑘 =𝑚 + 1, property obtained

in previous step (Step5.5) leads to

Ψ𝑚+1 =
𝑚∑︁
𝑗=1

Γ̃( 𝑗) ★ Υ̃( 𝑗−1) .

But, we have

• 𝑐Ψ𝑚+1 = ComF𝑝𝜂
(
𝑐𝑘, 0 ; 0

)
by Hypo.H1 ; and

• 𝑐Ψ𝑚+1 = ComF𝑝𝜂
(
𝑐𝑘,Ψ𝑚+1 ; 𝜍𝑚+1

)
by definition

of Ψ𝑚+1 – see step (Step 2).
Therefore, the binding property of KS[F𝑝𝜂 ] leads to
Ψ𝑚+1 = 0 with overwhelming probability. Conse-

quently, the following equality holds:

0 =

𝑚∑︁
𝑗=1

Γ̃( 𝑗) ★ Υ̃( 𝑗−1) .

Results obtained in steps (Step 2) to (Step 5), give us the follow-
ing result, proving that, with overwhelming probability, we have

successfully extract a witness𝑤
def

=

(
Γ̃,−→𝜇 , Υ̃,−→𝜈

)
∈ Mat𝑛×𝑚 (F𝑝𝜂 ) ×

F𝑚𝑝𝜂 ×Mat𝑛×𝑚 (F𝑝𝜂 ) × F𝑚𝑝𝜂 such that

(
𝑐𝑘, 𝜒,𝑤

)
∈ RBGZA .

∃ Γ̃ def

=

(
Γ̃( 𝑗)

)𝑚
𝑗=1
∈ Mat𝑛×𝑚 (F𝑝𝜂 ), ∃−→𝜇 ∈ F𝑚𝑝𝜂 ,

∃ Υ̃ def

=

(
Υ̃( 𝑗)

)𝑚
𝑗=0
∈ Mat𝑛×𝑚 (F𝑝𝜂 ), ∃−→𝜈 ∈ F𝑚𝑝𝜂

cΓ̃ = ComMat𝑛×𝑚 (F𝑝𝜂 )
(
𝑐𝑘, Γ̃ ; −→𝜇

)
cΥ̃ = ComMat𝑛×𝑚 (F𝑝𝜂 )

(
𝑐𝑘, Υ̃ ; −→𝜈

)
0 =

𝑚∑
𝑗=1

Γ̃( 𝑗) ★ Υ̃( 𝑗−1)

Proof step→

↓ Property
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(
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ep

5.
6
)

Binding of
commitment

scheme
× 1 × 1 × 1 × 1

Schwartz-Zippel × 1

Property transfer
under adversarial

selection
Yes

Extractor uses
rewinding? Yes ()

Table 6: Assessment of cryptographic or probabilistic prop-
erties used to prove Knowledge Soundness of Zero Argument
protocol

□
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Zero-Knowledge
protocol Uses Rewinding? Needs Schwartz-Zippel? Needs Binding

property?
Uses Knowledge
Soundness?

Uses property transfer
under adversarial

selection

Single value product
argument (SVPA)

Yes: 2 valid proof

transcripts

Yes: × 1 Yes: × 4 No No

Zero argument (ZA) Yes: 2𝑚 + 1 valid proof

transcripts

Yes: × 1 Yes: × 4 No Yes: 1 × pairwise distincts

challenges

Hadamard product
argument (HPA)

Yes: 1 suitable commit

vector value

Yes: × (𝑚 + 1) Yes: × 1 Yes: 1 × EZA No

Product argument (PA) No No Yes: × 1 Yes: 1 × ESVPA and 1 ×
EHPA No

Multi-exponentiation
argument (MEA)

Yes: 2𝑚 valid proof

transcripts

No Yes: × 2 No Yes: 2 × pairwise distincts

challenges

Shuffle argument (SA) Yes: 𝑁 times for a total of

2𝑁 witnesses

Yes: × (𝑁 2 + 1) Yes: × 1 Yes: 𝑁 × EPA and 𝑁 ×
EMEA

Yes: 1 × pairwise distincts

challenges

Table 7: Quick overview of arguments needed to prove knowledge soundness
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