
UC Mixnets
Myrto Arapinis and Margot Catinaud

June 2025

1 Introduction

2 A UC framework for mixnets
2.1 A game-based secure mixnet
2.1.1 Mixnet definition

Definition 1 (Mixnet protocol). A mixnet protocol ΠMN is a tuple of algorithms

ΠMN =
(
Setup,Prepare,Mix,Verify,Recover,Decrypt

)
where

• Setup takes as input a security parameter η ∈ N∗ and two natural numbers n, p ∈ N∗. Informally, n is
the number of senders (Si)

n
i=1 while p is the number of mix-servers (Mj)

p
j=1. Then, Setup outputs a

public parameter σpub of the mixnet protocol and p private parameters
(
σ
(j)
priv

)p
j=1

for each mix-server ;

• Prepare takes as input an identifier id ∈ [[1;n]] of a sender Sid, the public parameter σpub, with
pk ∈ σpub, and a message m ∈ M. Then, Prepare generates a random value s

$← RCS uniformly at
random. Finally, Prepare outputs an encrypted packet p

def
= (c, tr) with c ∈ CCS a ciphertext and tr a

proof transcript such that

c
def
= EncCS

(
pk,m ; s

)
and tr �ZK

(
σpub, c, (m, s)

)
∈ Rcrypt

CS ;

• Mix takes as input a private parameter σ(id)
priv for mix-server Mid, the public parameter σpub, with pk ∈ σpub

the public key and ck ∈ σpub a commitment key parameter, and a list of ciphertexts c = (ci)
n
i=1 ∈ CnCS.

Then, Mix generates a permutation π
$← Sn and two vectors of random values r = (ri)

n
i=1

$← Rn
CS and

s = (si)
p
i=1

$←RKS[Sn] uniformly at random. Finally, Mix outputs

(i) a new list of ciphertexts c′ = (c′i)
n
i=1 ∈ CnCS such that

∀ i ∈ [[1;n]], c′i
def
= φCS

(
pk, σ

(id)
priv , cπ(i) ; ri

)
;

(ii) a commitment to the permutation π : a
def
= ComSn

(ck, π ; s) ∈ KSn ;
(iii) and a proof transcript tr such that

tr �ZK


((

σpub \ {pk}
)
, pk, σ

(id)
priv

)
∈ Rskey

CS

∧
(
σpub, (a, c, c

′),
(
π, s, σ

(id)
priv , r

))
∈ Rshuffle

CS,Sn

. (Φ)

1

• Verify takes as input the public parameter σpub and two paquet sets Pid and Pid′ where id, id′ ∈ [[1;n]].
Informally, we suppose that the paquet set Pid is already checked as valid and we want to verify that the
other paquet set Pid′ is also valid. Then, Verify works as follows:

(1) firstly, it extract from paquet set Pid′ a list of ciphertexts c′ ∈ CnCS, a commitment value a ∈ KSn
,

and a proof transcript tr′ ;
(2) secondly, it extract from paquet set Pid a list of ciphertexts c ∈ CnCS ;
(3) and finally, Verify outputs 1 if and only if the following property holds

tr′ �ZK

(
pk ∈ Lσpub\{pk}

(
Rskey

CS
))
∧

(
(a, c, c′) ∈ Lσpub

(
Rshuffle

CS,Sn

))
(Θ)

•

2.1.2 Common oracles

ODishonestSend(id, p) —
if (id /∈ IS) then

P0 ← P0 || p ;
IS ← IS ∪ {id}.

OHonestMix(id) —
(c,
−→
tr)← Recover

(
σpub,

(
σ
(j)
priv

)
j∈IM

,
(
Pj

)
j∈IM

)
;

(c′,
−→
tr ′)←Mix

(
σ
(id)
priv , σpub, c

)
;

IM ← IM ∪ {id} ;
Pid ← CreateBB

(
c′,
−→
tr }

−→
tr ′

)
.

ODishonestMix(id, c,
−→
tr) —

IM ← IM ∪ {id} ;
Pid ← CreateBB

(
c,
−→
tr
)

.

OOpen() —
if

(
M0

+
= M1

)
then

(c,_)← Recover
((

σ
(j)
priv

)p
j=1

, (Pi)
p
i=0

)
;

m′ ← Decrypt
((

σ
(j)
priv

)p
j=1

, c
)

;
return m′ ;

else return ⊥.

OPublishBB(id) —
return Pid.

2.1.3 Mixnet privacy

OHonestSend(β)(id,m0,m1) —
if (id /∈ IS) then

M0 ← m0]M0 ; M1 ← m1]M1 ;
pβ ← Prepare

(
id, σpub,mβ

)
;

P0 ← P0 || pβ ;
IS ← IS ∪ {id}.

2.1.4 Mixnet integrity

OHonestSend(id,m) —
if (id /∈ IP) then

M ← m]M ;
p← Prepare

(
id, σpub,m

)
;

P0 ← P0 || p ;
IP ← IP ∪ {id}.

2

Game 1: Cryptographic game PrivacyA, β
ΠMN

(
η
)

of privacy for a mixnet protocol ΠMN

Configuration phase
M0,M1 ← {{}} ;
IS, IM ← ∅ ;(
n, p,HS,HM

)
← A

()
; // A chooses n senders and p mix-servers

(σ
(1)
priv, . . . , σ

(p)
priv, σpub)← Setup

(
η
)

;

P0 ←
(
σ
(j)
priv

)
j /∈HM

||σpub ||nil ;

Sending phase
The adversary A has access to oracles OHonestSend and ODishonestSend as follows.
Do

id← A
(
IS

)
; // Suppose the adversary A wants to run the sender Sid for id ∈ [[1;n]] \ IS, then

If id ∈ HS then // Case where Sid is an honest sender.
A computes two messages m0,m1 and calls the oracle OHonestSend(β)(id,m0,m1).

Otherwise, // Case where Sid is dishonest.
A computes a paquet p and calls the oracle ODishonestSend(id, p).

While Card(IS) < n
At the end of the sending phase (i.e. when Card(IS) = n), the adversary A calls the oracle OPublishBB(0) and cannot

call both oracles OHonestSend and ODishonestSend anymore.

Mixing phase
if

(
¬ (M0

+
= M1)

)
then return ⊥ ;

In a similar way as in the sending phase, the adversary A has access to oracles OHonestMix and ODishonestMix
whether id ∈ HM or not. All oracles inputs are computed by the adversary A.

Besides, after each call to mix oracles OHonestMix or ODishonestMix on identity id, A calls oracle OPublishBB(id).

Conclusion
The adversary A calls, only once, the oracle OOpen() to obtain the decrypted messages list m.
b← A

()
;

return (b = β).

3

Game 2: Cryptographic game IntegrityAΠMN

(
η
)

of integrity for a mixnet protocol ΠMN

Configuration phase
M ← {{}} ;
IS, IM ← ∅ ;
(σ

(1)
priv, . . . , σ

(p)
priv, σpub)← Setup

(
η
)

;
(n, p,HS,HM)← A

()
;

P0 ←
(
σ
(j)
priv

)
j /∈HM

||σpub ||nil ;

Sending phase
The adversary A has access to oracles OHonestSend and ODishonestSend as follows.
Do

id← A
(
IS

)
; // Suppose that the adversary A wants to run the sender Sid for id ∈ [[1;n]] \ IS, then

If id ∈ HS then // Case where Sid is an honest sender.
A computes a message m and calls the oracle OHonestSend(id,m).

Otherwise, // Case where Sid is dishonest.
A computes a message p and calls the oracle ODishonestSend(id, p).

While Card(IS) < n
At the end of the sending phase (i.e. when Card(IS) = n), the adversary A calls the oracle OPublishBB(0) and cannot

call both oracles OHonestSend and ODishonestSend anymore.

Mixing phase
In a similar way as in the sending phase, the adversary A has access to oracles OHonestMix and ODishonestMix

whether id ∈ HM or not. All oracles inputs are computed by the adversary A.
Besides, after each call to mix oracles OHonestMix or ODishonestMix on identity id, A calls oracle OPublishBB(id).

Conclusion
The adversary A calls, only once, the oracle OOpen() to obtain the decrypted messages list m.
return (M ⊆m).

4

2.2 A UC secure mixnet

Ideal functionality 2.1: Ideal mixnet Fn,p,θ
MN

Let n, p ∈ N be two natural numbers. Let θ ∈]0, 1] be a threshold parameter. We define the ideal
functionality Fn,p,θ

MN for a (n, p)-mixnet with mix threshold θ, running with p mix-servers (Mi)
p
i=1, n

senders (Si)
n
i=1, and ideal adversary S, to be the following protocol.

1. Initialize a list L = ∅, set IS = ∅ and IM = ∅.

2. Upon receiving (Si,Send,mi). If i /∈ IS, set IS ← IS ∪ {i}, and append mi to the list L. Then
send (Si,Send) to S.

3. Upon receiving (Mj ,Mix). Set IM ← IM ∪ {j}. If Card(IM) > θp, then sort the list L lexico-
graphically to form a list L′, and hand (Mixed, L′) to the ideal adversary S and to all mix-servers
(Mi)

p
i=1. Otherwise, hand to S the list

(
(Mj ,Mix)

)
i∈IM

.

2.3 Equivalence between game-based security and UC security
Theorem 1. Let ΠMN be a mixnet protocol. Then, we have

ΠMN � Integrity ∧ Privacy ⇐⇒ ΠMN 4uc Fn,p,θ
MN

5

	Introduction
	A UC framework for mixnets
	A game-based secure mixnet
	Mixnet definition
	Common oracles
	Mixnet privacy
	Mixnet integrity

	A UC secure mixnet
	Equivalence between game-based security and UC security

